JP2697808B2 - Vitreous alloy with almost zero magnetostriction for high frequency use - Google Patents

Vitreous alloy with almost zero magnetostriction for high frequency use

Info

Publication number
JP2697808B2
JP2697808B2 JP5190314A JP19031493A JP2697808B2 JP 2697808 B2 JP2697808 B2 JP 2697808B2 JP 5190314 A JP5190314 A JP 5190314A JP 19031493 A JP19031493 A JP 19031493A JP 2697808 B2 JP2697808 B2 JP 2697808B2
Authority
JP
Japan
Prior art keywords
alloys
alloy
magnetic
vitreous
magnetostriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5190314A
Other languages
Japanese (ja)
Other versions
JPH0693392A (en
Inventor
ハセガワ,リュウスケ
Original Assignee
アライドシグナル・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25452815&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2697808(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by アライドシグナル・インコーポレイテッド filed Critical アライドシグナル・インコーポレイテッド
Publication of JPH0693392A publication Critical patent/JPH0693392A/en
Application granted granted Critical
Publication of JP2697808B2 publication Critical patent/JP2697808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Description

【発明の詳細な説明】 【0001】 【発明の背景】この発明は高周波応用での使用に特に適
したほぼ0の磁歪を示すガラス質合金に関する。 【0002】 【先行技術の説明】飽和磁歪λSは消磁状態から飽和し
た強磁性状態に変化する磁性材料で生じるΔl/lの長
さの比率変化に関する。磁歪の値、非ディメンション量
はしばしば微小ひずみの単位で与えられる(すなわち、
微小ひずみは1ppmの長さの比率変化である)。低磁
歪の強磁性合金はいくつかの相互に関係した理由のため
望ましい。 【0003】1.軟磁性(低保磁力、高透磁率)は、一
般的に飽和磁歪λs と磁気結晶異方性kが0に近づくと
き得られる。それ故、同じ異方性であるとき、より低い
磁歪の合金はより低いdc保磁力とより高い透磁率を示
す。このような合金は種々の軟磁性応用に適する。 【0004】2.磁歪が0の材料の磁性は機械的歪に敏
感でない。この場合巻取り、パンチング又はその他この
ような材料からデバイスを形成するに必要な物理的処理
後応力除去焼鈍をほとんど必要としない。これに対して
結晶質合金のような応力に敏感な材料の磁性はこのよう
な冷間加工によって大きく劣化し、このような材料は注
意深く焼鈍しなければならない。 【0005】3.低保磁力と高透磁率が実現するとき
(磁気結晶異方性が大きすぎずかつ抵抗が小さすぎない
ことを条件として)0の磁歪を示す材料の低dc保磁力
がac操作状態にもたらされる。飽和磁歪が0のときエ
ネルギーが機械的振動として失われないので、0の磁歪
を示す材料の鉄損は極めて低い。このように、低損失及
び高ac透磁率が要求される場合には(低磁気結晶異方
性の)磁歪が0の磁性合金が有用である。このような応
用は、電力変圧機、信号変換器、磁気記録ヘッド等のよ
うな種々のテープ巻き及び積層鉄心装置を含む。 【0006】4.結局、磁歪が0の材料を含む電磁装置
はAC励磁下で騒音を生じない。これが前記のより低い
鉄損のための理由であると同時に、多くの電磁装置に固
有のハムを排除するのでそれ自身望ましい性質でもあ
る。 【0007】磁歪が0の周知の3つの結晶質合金がある
(もし他の表示がないとき原子%で示す)。 【0008】(1) 約80%ニッケルを含有するニッ
ケル−鉄合金(“80ニッケルパーマロイ”) (2) 約90%コバルトを含有するコバルト−鉄合
金、及び (3) 約6重量%珪素を含有する鉄−珪素合金 2元系であるが、特定の性質を変化させるためにモリブ
デン、銅又はアルミニウムのような他の元素を少量添加
した磁歪が0の合金もこれらの種類に包含される。これ
らは、例えば、増大した抵抗率と透磁率の4%Mo、7
9%Ni、17%Fe(モリーパーマロイ(Moly
Permalloy)という名称で販売):軟磁性と改
善した延性の銅の添加量を変化させたパーマロイ(ムメ
タル(Mumetal)という名称で販売):異方性が
0の85重量%Fe、9重量%Si、6重量%Al(セ
ンダスト(Sendust)という名称で販売)を含
む。 【0009】種類(1)に包含される合金は、低異方性
と磁歪が0であり、そのため優れた軟磁性であるために
前記の3種類の内で最もよく使用される:すなわち、そ
れらは低保磁力、高透磁率及び低鉄損を示す。これらの
合金も相対的には機械的に軟質であり、高温(1000
℃以上)焼鈍により得られた優れた磁性は相対的に軽い
機械的衝撃によって劣化しがちである。Co90Fe10
金のような種類(2)の合金はパーマロイより一層高い
飽和磁気誘導(Bs 約1.9テスラ)を有する。しかし
ながら、これらの合金は、優れた軟磁性材料であること
を妨げる強い負の磁気結晶異方性を有する。例えば、C
90Fe10の初透磁率は約100〜200にすぎない。 【0010】前記のFe−6重量%Si及び関連した3
元合金センダストのような種類(3)の合金もパーマロ
イより一層高い飽和磁気誘導(それぞれBs 約1.8テ
スラ及び1.1テスラ)を示す。しかしながら、これら
の合金は極めてもろく、そのため粉末の形のみの限られ
た使用が見つけられた。最近、Fe−6.5重量%Si
〔IEEE Trans.MAG−16,728(19
80)〕とセンダスト合金〔IEEE Trans.
AG−15,J149(1970)〕が急速凝固により
相対的に延性に製造された。しかしながら、磁歪の組成
依存性はこれらの材料において極めて強く、ほぼ0の磁
歪を確保するための合金組成の正確なテーラリング(t
ayloring)は困難である。 【0011】磁気結晶異方性はガラス状態で効果的に排
除されることはよく知られている。これ故、磁歪が0の
ガラス質合金を発見することが望ましい。このような合
金は前記組成の近傍で発見されうる。遷移金属d−電子
状態に電荷を移動させることにより磁化を消滅させる傾
向のあるメタロイドの存在のため、ともかく80ニッケ
ルパーマロイのガラス質合金は室温で非磁性か又は許容
できないほどに低い飽和磁気誘導を示す。例えば、ガラ
ス質合金Fe40Ni40146 (下付き数字は原子%で
ある)は0.8テスラの飽和磁気誘導を有する。一方、
ガラス質合金Ni49Fe29146 Si2 は約0.46
テスラの飽和磁気誘導を有し、ガラス質合金Ni8020
は非磁性である。ほぼ0に等しい飽和磁歪を有する非ガ
ラス質合金はFe高濃度のセンダスト組成の近傍でまだ
発見されていない。前記(2)のCo−Fe結晶質合金
からなる磁歪がほぼ0のガラス質合金の多くは文献に報
告された。これらは、例えば、Co72Fe3166
3 〔AIP Conference Proceed
ing,No.24,pp.745−746(197
5)〕、Co70.5Fe4.5 Si1510〔Vol.14,
日本応用物理学会誌,pp.1077−1078(19
75)〕、Co31.2Fe7.8 Ni39.014Si8 〔Pr
oceedings of 3rd Internat
ional Conference on Rapid
ly Quenched Metals,p.183
(1979)〕及びCo74Fe620〔IEEE Tr
ans.MAG−12,942(1976)〕である。
表1はこれらの材料の磁気的性質のいくつかを列挙す
る。 【0012】 これらの合金の飽和磁気誘導(Bs )は0.6〜1.2
テスラである。0.6Tに近い、Bs を示すガラス質合
金は、結晶質スーパマロイに比べて低保磁力及び高い透
磁率を示す。しかしながら、これらの合金は相対的に低
い温度(150℃)で磁気的に不安定になる傾向にあ
る。一方、Bs 1.2テスラまでのガラス質合金は第1
次結晶化温度(Tcl)近傍又はそれ以上で強磁性キュリ
ー温度(θf )を有しやすい。焼鈍がθf に近い温度で
実施されるとき最も効果的であるので、このことは、望
ましい軟磁性を得るためのこれらの材料の熱処理を極め
て困難にする。 【0013】最近の先行技術〔ジャーナル・オブ・アプ
ライド・フィジックス,53,7819(1983)〕
は優れた軟磁性と磁気的安定性を示す磁歪がほぼ0のガ
ラス質合金を発表する。これらのガラス質合金はできる
だけ高い飽和磁気誘導の考えで計画される。応用磁気学
における最近の傾向は、高い飽和磁気誘導を必ず要求す
るのでなくて、高い矩形比、高周波数での低いac鉄損
と高い透磁率を要求する。この観点で、このような性質
を示すガラス質合金は望ましい。 【0014】 【0015】この発明によると、少なくとも70%がガ
ラス質であり、磁歪がほぼ0で、磁気的及び熱的に高安
定で、高透磁率、低鉄損及び低保磁力を含む諸性質の優
れた組み合せを有する高周波で優れた軟磁性を示す磁性
合金が提供される。このガラス質合金はCoaFebMn
deSifの組成を有する。ここに下付き文字は原子%
であり、“a”は68.0〜70.0の範囲であり、
“b”は2.5〜4.0の範囲であり、“d”は1〜4
の範囲であり、“e”は10〜12の範囲であり、
“f”は14〜15の範囲であり、かつ(Fe+Mn)
/(Co+Fe+Mn)の比が0.07〜0.09であ
る。ガラス質合金は−1×10-6〜+1×10-6の範囲
の飽和磁歪値、0.65〜0.80テスラの飽和磁気誘
導、245℃〜310℃の範囲のキュリー温度及び53
0℃〜575℃の範囲の第1次結晶化温度を有する。 【0016】前記組成の純度は通常の商業的慣習のもの
である。2原子%の(Si+B)はこれらの合金の望ま
しい磁性を大きく劣化させることなく炭素、アルミニウ
ム又はゲルマニウムによって置換することが可能であ
る。 【0017】当該発明の磁歪がほぼ0のガラス質合金の
いくつかの磁気的及び熱的性質を表2に列挙する。 【0018】 金属元素Mnの存在はTclを増大し、それゆえ合金系の
熱的安定性を増大する。4原子%を超えるMnの含有量
はしかしながら通常の磁気的装置において望ましくない
245℃より低いレベルにキュリー温度を減少する。 【0019】いくつかの応用にとって、微小+又は微小
−の磁歪を有する材料の使用が望ましく又は容認され
る。その例のとき−1×10-6〜+1×10-6の範囲の
飽和磁歪値を示す表2のすべてのガラス質合金が適切で
ある。磁歪値は(Fe+Mn)/(Co+Fe+Mn)
の比率によって本質的に決定される。これらの比率は
0.07〜0.09である。 【0020】発明のガラス質合金は、ほかで容易に入手
できる技術によって都合よく調製される:例えば197
4年11月5日に発行されたU.S特許3,845,8
05及び1974年12月24日に発行されたU.S特
許3,856,513参照。一般に連続リボン、線材等
の形のガラス質合金が希望した組成の溶融物から少なく
とも約105 K/秒の冷却速度で急速冷却される。 【0021】全体の合金組成の10〜12原子%の範囲
のボロンと14〜15原子%の範囲の珪素、合計で24
〜27原子%のボロン及び珪素から成るメタロイド含有
量は、ガラス形成にとって充分である。 【0022】表3及び4は、種々の温度(T0)で焼鈍
した当該発明の磁歪がほぼ0のガラス質合金の50kヘ
ルツ及び0.1テスラの磁気誘導における透磁率
(μ)、励磁力(P8)、ac鉄損(L)を示す。要約
すれば、表3に示す熱処理後の水冷によってこの発明の
ガラス質合金は平均してL=4W/kg、P8=6VA
/kg、及びμ=28,000を示す。熱処理後の徐冷
は、一般に損失と励磁力が高く、低い透磁率となる。し
かし、熱処理後徐冷するとき、この発明のガラス質合金
では、熱処理後急冷した材料において示されるものに匹
敵するかこれより優れた結果を示すことがしばしばであ
る。 【0023】この発明の範囲外のガラス質合金の例を表
5に示す。この発明の合金の示すような、すぐれた性質
をあわせ有する合金は、従来技術の、高い飽和磁気誘導
を有するCo74Fe620のような非磁歪ガラス質合金
によっては得ることができなかった。なぜなら、キュリ
ー温度が第1次結晶化温度よりも高いからであり、また
低飽和磁気誘導におけるようには性質を改善するための
熱処理は効果的でないからである。当該発明により達成
された前記の性質は、従来技術の低磁気誘導ガラス質合
金で得られるかもしれないが、Co31.2Fe7.8Ni
39.014Si8のような従来技術の合金は、すでに述べ
たように150℃というような相対的に低い温度におい
て磁気的に不安定になりやすいのである。従来技術にお
いては、合金のもっとも優れた性質は、Co67.4Fe
4.1Ni3.0Mo1.512.5Si11.5を380℃で15分
間焼鈍後急冷したガラス質合金において得られたL=4
W/kg、P8=7VA/kg及びμ=23,000で
あった。当該発明のガラス質合金はこのクラスのガラス
質合金より一般的に優れていることは明らかである。 【0024】 表5ではa,b,c,d,e及びfの少なくとも1つが
当該発明で限定した組成の範囲外にあるCoa Feb
c Mnde Sif の組成のいくつかの代表的なガラ
ス質合金の磁気的性質を示す。この表は、限定した範囲
外の成分の少なくとも1種を有する合金はキュリー温度
又は飽和磁気誘導のいずれかが多くの磁気的応用で実用
的であるにはあまりにも低いことを示すことを列挙す
る。 【0025】次の例は、この発明のより完全な理解を提
供するために示される。特定の技術、状態、材料、比率
及び報告されたデータが原理を説明するために示され、
この発明の実際が例として役立ち、この発明の範囲を制
限するものと解釈されるべきでない。 【0026】例 1.試料調製 表2〜5に列挙したガラス質合金がU.S特許3,85
6,513のチェンとポークが教示する技術に従って溶
融物から急冷(約106 K/秒)された。典型的には厚
さ25〜30μm、幅0.5〜2.5cmの得られたリ
ボンは、X線回折法(CuK放射使用)及び走査熱量測
定によって有効な結晶性を欠くことが決定された。ガラ
ス質合金のリボンは強度があり、光沢を有し、硬くかつ
延性を示した。 【0027】2.磁性測定 例1に記載した手順に従い調製したガラス質合金の連続
リボンが密閉した磁石道(closed−magnet
−path)の環状試料を形成するためにボビン(3.
8cmO.D.)に巻かれた。各試料は1〜3gのリボ
ンを含んでいた。絶縁した1次及び2次巻き(各々少な
くとも10を数えて)が環状に適用された。これらの試
料は商用曲線トレーサを用いて初透磁率及びヒステリシ
スループ(保磁力及び残留磁気)並びに鉄損(IEEE
標準106−1972)を得るために用いられた。 【0028】各試料の飽和磁化Ms ′が商用振動試料磁
気計(プリンストン応用研究所)を用いて測定された。
この場合に、リボンはいくつかの小さい正方形(ほぼ2
mm×2mm)に切断された。これらは標準方向の周囲
に任意に配向され、それらの平面は付与する磁場(0〜
720kA/m)に平行である。飽和磁気誘導Bs (=
4π4Ms D)は測定された質量密度Dを使用すること
によって計算された。 【0029】強磁性キュリー温度(θf )はインダクタ
ンス法によって測定され、結晶化温度を決定するために
主として使用される示差走査熱量測定によっても監視さ
れた。最初の又は第1次結晶化温度(Tcl)は当該及び
従来技術の発明の種々のガラス質合金の熱的安定性を比
較するために使用された。 【0030】磁気的安定性は、ジャーナル・オブ・アプ
ライド・フィジックス,Vol.49,p.6510
(1978)に記載された方法に従って磁化の再配向運
動学(reorientation kinetic
s)から決定された。その方法はそこへ参照によってそ
の中に示されている。磁歪測定は、リボンの2つの短か
い長さ間に接合(イーストマン−910セメント)され
た金属ストレンゲージ(BLHエレクトロニクス)を使
用した。リボン軸とゲージ軸は平行であった。磁歪は、
式λ=2/3〔(Δl/l)−(Δl/l)〕に従っ
て、平坦な磁場に平行(Δl/l)に及び垂直(Δl/
l)に長さ歪から付与した磁場の関数として決定され
た。発明をかなり詳細に記載したので、この詳細な記載
に厳格に固守する必要はなく、追加した特許請求の範囲
により限定される発明の範囲内に属するすべてのなお一
層の変更及び修正が当業者に示唆されうる。
Description: BACKGROUND OF THE INVENTION The present invention relates to a vitreous alloy exhibiting near zero magnetostriction which is particularly suited for use in high frequency applications. 2. Description of the Prior Art Saturated magnetostriction λ S relates to a change in the ratio of length Δl / l that occurs in a magnetic material that changes from a demagnetized state to a saturated ferromagnetic state. Magnetostrictive values, non-dimensional quantities, are often given in units of micro-strain (ie,
Microstrain is a 1 ppm length ratio change). Low magnetostrictive ferromagnetic alloys are desirable for several interrelated reasons. [0003] 1. Soft magnetism (low coercivity, high magnetic permeability) is generally obtained when the saturation magnetostriction λ s and the magnetocrystalline anisotropy k approach zero. Therefore, at the same anisotropy, lower magnetostrictive alloys exhibit lower dc coercivity and higher permeability. Such alloys are suitable for various soft magnetic applications. [0004] 2. The magnetism of a material with zero magnetostriction is not sensitive to mechanical strain. In this case, little post-stress relief anneal is required after winding, punching or otherwise forming the device from such materials. On the other hand, the magnetism of stress-sensitive materials such as crystalline alloys is greatly degraded by such cold working, and such materials must be carefully annealed. [0005] 3. When low coercivity and high permeability are achieved (provided the magnetocrystalline anisotropy is not too large and the resistance is not too low), a low dc coercivity of the material exhibiting zero magnetostriction is brought into the ac operating state. . Since energy is not lost as mechanical vibration when the saturation magnetostriction is 0, the iron loss of a material exhibiting 0 magnetostriction is extremely low. Thus, when low loss and high ac magnetic permeability are required, a magnetic alloy with zero magnetostriction (of low magnetic crystal anisotropy) is useful. Such applications include various tape wound and laminated core devices such as power transformers, signal transducers, magnetic recording heads, and the like. [0006] 4. As a result, an electromagnetic device including a material having zero magnetostriction does not generate noise under AC excitation. While this is the reason for the lower iron loss, it is also a desirable property in itself because it eliminates the hum inherent in many electromagnetic devices. There are three well-known crystalline alloys with zero magnetostriction (expressed in atomic% unless otherwise indicated). (1) a nickel-iron alloy containing about 80% nickel ("80 nickel permalloy"); (2) a cobalt-iron alloy containing about 90% cobalt; and (3) a silicon-iron alloy containing about 6% by weight silicon. Although these alloys are binary systems of iron-silicon alloys, alloys with zero magnetostriction added with small amounts of other elements such as molybdenum, copper or aluminum to change specific properties are also included in these types. These include, for example, 4% Mo, 7 with increased resistivity and permeability.
9% Ni, 17% Fe (Molly Permalloy (Moly
Permalloy (sold under the name of Permalloy): soft magnetic and improved ductility. Permalloy with an added amount of copper (sold under the name of Mumetal): 85% by weight of Fe with anisotropy of 0 and 9% by weight of Si. , 6% by weight Al (sold under the name Sendust). The alloys included in class (1) are the most commonly used of the three above because of their low anisotropy and zero magnetostriction, and therefore excellent soft magnetism: Indicates low coercive force, high magnetic permeability and low iron loss. These alloys are also relatively mechanically soft, and have high temperatures (1000
The superior magnetism obtained by annealing tends to be degraded by relatively light mechanical impact. Alloy type (2), such as Co 90 Fe 10 alloy has a higher saturation induction than Permalloy (B s about 1.9 Tesla). However, these alloys have strong negative magnetocrystalline anisotropy which prevents them from being excellent soft magnetic materials. For example, C
The initial permeability of o 90 Fe 10 is only about 100 to 200. The above Fe-6 wt% Si and related 3
Alloy type (3) as the original alloy Sendust also shows higher saturation induction and (B s about 1.8 Tesla and 1.1 Tesla, respectively) than Permalloy. However, these alloys are very brittle, and thus have found limited use in powder form only. Recently, Fe-6.5 wt% Si
[IEEE Trans. MAG-16 , 728 (19
80)] and sendust alloy [IEEE Trans. M
AG-15 , J149 (1970)] was produced relatively rapidly by rapid solidification. However, the composition dependence of magnetostriction is extremely strong in these materials, and accurate tailoring of alloy composition (t
ailing is difficult. It is well known that magnetocrystalline anisotropy is effectively eliminated in the glassy state. It is therefore desirable to find a vitreous alloy with zero magnetostriction. Such alloys can be found near the composition. Regardless, due to the presence of metalloids, which tend to annihilate magnetization by transferring charge to the transition metal d-electronic state, 80 nickel permalloy glassy alloys are either non-magnetic or have unacceptably low saturation magnetic induction at room temperature. Show. For example, glassy alloys Fe 40 Ni 40 P 14 B 6 ( the subscript is the atomic%) having a 0.8 Tesla saturation induction. on the other hand,
The glassy alloy Ni 49 Fe 29 P 14 B 6 Si 2 is about 0.46
Visible alloy Ni 80 P 20 with saturation magnetic induction of Tesla
Is non-magnetic. Non-vitreous alloys with a saturation magnetostriction equal to approximately zero have not yet been found in the vicinity of Fe-rich Sendust compositions. Many of the vitreous alloys having a magnetostriction of almost zero made of the Co-Fe crystalline alloy of (2) have been reported in the literature. These are, for example, Co 72 Fe 3 P 16 B 6 A
l 3 [AIP Conference Proceed
ing, No. 24, pp. 745-746 (197
5)], Co 70.5 Fe 4.5 Si 15 B 10 [Vol. 14,
Journal of the Japan Society of Applied Physics, pp. 1077-1078 (19
75)], Co 31.2 Fe 7.8 Ni 39.0 B 14 Si 8 [Pr
receiveds of 3rd Internet
ionical Conference on Rapid
ly Quenched Metals, p. 183
(1979)] and Co 74 Fe 6 B 20 [IEEE Tr
ans. MAG-12, 942 (1976)].
Table 1 lists some of the magnetic properties of these materials. [0012] Saturation induction of these alloys (B s) is 0.6 to 1.2
Tesla. Near 0.6 T, glassy alloy exhibiting B s denotes a low coercive force and high permeability as compared with the crystalline Supamaroi. However, these alloys tend to be magnetically unstable at relatively low temperatures (150 ° C.). On the other hand, vitreous alloys up to 1.2 s
It tends to have a ferromagnetic Curie temperature (θ f ) near or above the secondary crystallization temperature (T cl ). This makes the heat treatment of these materials extremely difficult to obtain the desired soft magnetism, since annealing is most effective when performed at temperatures close to θ f . Recent Prior Art [Journal of Applied Physics, 53 , 7819 (1983)]
Announces a vitreous alloy with nearly zero magnetostriction that exhibits excellent soft magnetism and magnetic stability. These vitreous alloys are designed with the highest possible magnetic induction. Recent trends in applied magnetism do not necessarily require high saturation magnetic induction, but require high rectangular ratio, low ac iron loss at high frequencies and high magnetic permeability. From this viewpoint, a vitreous alloy exhibiting such properties is desirable. According to the present invention, at least 70% is vitreous, has almost zero magnetostriction, is magnetically and thermally highly stable, has high magnetic permeability, low iron loss, and low coercive force. A magnetic alloy exhibiting excellent soft magnetism at high frequencies having an excellent combination of properties is provided. The vitreous alloy is Co a Fe b Mn
having the composition of d B e Si f. The subscript here is atomic%
And “a” is in the range of 68.0 to 70.0,
“B” ranges from 2.5 to 4.0 and “d” ranges from 1 to 4
And “e” is in the range of 10 to 12,
“F” is in the range of 14 to 15, and (Fe + Mn)
The ratio of / (Co + Fe + Mn) is 0.07 to 0.09. The vitreous alloy has a saturation magnetostriction value in the range of −1 × 10 −6 to + 1 × 10 −6 , a saturation magnetic induction of 0.65 to 0.80 Tesla, a Curie temperature in the range of 245 ° C. to 310 ° C., and 53
It has a primary crystallization temperature in the range of 0C to 575C. [0016] The purity of the composition is that of normal commercial practice. 2 at% (Si + B) can be replaced by carbon, aluminum or germanium without significantly degrading the desired magnetism of these alloys. Table 2 lists some magnetic and thermal properties of the vitreous alloys of the present invention with nearly zero magnetostriction. [0018] The presence of the metal element Mn increases T cl and therefore increases the thermal stability of the alloy system. Mn contents above 4 atomic%, however, reduce the Curie temperature to levels below 245 ° C., which is undesirable in conventional magnetic devices. For some applications, the use of materials with micro + or micro-magnetostriction is desirable or acceptable. In that case, all the vitreous alloys in Table 2 exhibiting a saturation magnetostriction value in the range of -1 × 10 -6 to + 1 × 10 -6 are suitable. The magnetostriction value is (Fe + Mn) / (Co + Fe + Mn)
Is essentially determined by the ratio of These ratios are between 0.07 and 0.09. The vitreous alloys of the invention are conveniently prepared by other readily available techniques: for example, 197
U.S.A. was issued on November 5, 2014. S Patent 3,845,8
05 and December 24, 1974. See S Patent 3,856,513. Generally, vitreous alloys in the form of continuous ribbons, wires, etc. are rapidly cooled from a melt of the desired composition at a cooling rate of at least about 10 5 K / sec. Boron in the range of 10 to 12 atomic% and silicon in the range of 14 to 15 atomic% of the total alloy composition, for a total of 24
A metalloid content of ~ 27 atomic% boron and silicon is sufficient for glass formation. [0022] Tables 3 and 4, various temperatures (T 0) in annealed magnetostriction substantially 0 permeability of the magnetic induction of 50k Hz and 0.1 Tesla glassy alloys of the invention (mu), the excitation force (P 8 ) shows ac iron loss (L). In summary, the glassy alloy of the present invention averaged L = 4 W / kg and P 8 = 6 VA by water cooling after heat treatment shown in Table 3.
/ Kg, and μ = 28,000. Slow cooling after heat treatment generally results in high loss and exciting power and low magnetic permeability. However, when slowly cooled after heat treatment, the vitreous alloys of the present invention often exhibit results comparable to or better than those exhibited in the material that has been quenched after heat treatment. Table 5 shows examples of vitreous alloys outside the scope of the present invention. Alloys having excellent properties, as shown by the alloys of this invention, could not be obtained by prior art non-magnetostrictive vitreous alloys such as Co 74 Fe 6 B 20 with high saturation magnetic induction. . This is because the Curie temperature is higher than the primary crystallization temperature, and heat treatment to improve properties, such as in low saturation magnetic induction, is not effective. The above properties achieved by the present invention may be obtained with prior art low magnetic induction vitreous alloys, but with Co 31.2 Fe 7.8 Ni
Prior art alloys such as 39.0 B 14 Si 8 are susceptible to magnetic instability at relatively low temperatures, such as 150 ° C., as already mentioned. In the prior art, the best properties of the alloy are Co 67.4 Fe
4.1 Ni 3.0 Mo 1.5 B 12.5 Si 11.5 L = 4 Obtained in Vitreous Alloy Quenched After Annealing at 380 ° C. for 15 Minutes
W / kg, P 8 = 7 VA / kg and μ = 23,000. It is clear that the vitreous alloys of the present invention are generally superior to this class of vitreous alloys. [0024] In Table 5 a, b, c, d , at least one of e and f is outside the range of composition is limited in the invention Co a Fe b N
of i c Mn d Some exemplary glassy alloys of the composition of B e Si f shows the magnetic properties. This table lists that alloys having at least one of the components outside the limited range indicate that either the Curie temperature or saturation magnetic induction is too low to be practical in many magnetic applications. . The following example is provided to provide a more complete understanding of the present invention. Specific techniques, conditions, materials, ratios and reported data are provided to illustrate the principles,
The practice of the invention serves as an example and should not be construed as limiting the scope of the invention. Example 1 The glassy alloys listed in Sample Preparation Tables 2 to 5 are U.S.A. S Patent 3,85
The melt was quenched (approximately 10 6 K / sec) according to the technique taught by 6,513 Chain and Pork. The resulting ribbon, typically 25-30 μm thick and 0.5-2.5 cm wide, was determined to lack effective crystallinity by X-ray diffraction (using CuK radiation) and scanning calorimetry. . The vitreous alloy ribbon was strong, shiny, hard and ductile. 2. A continuous ribbon of a vitreous alloy prepared according to the procedure described in Magnetic Measurement Example 1 was closed to a closed magnet path.
-Path) to form a bobbin (3.
8 cmO. D. ) Each sample contained 1-3 g of ribbon. Insulated primary and secondary windings (counting at least 10 each) were applied in an annular fashion. These samples were tested using commercial curve tracers for initial permeability and hysteresis loops (coercivity and remanence) and iron loss (IEEE).
Standard 106-1972). The saturation magnetization M s ' of each sample was measured using a commercial vibrating sample magnetometer (Princeton Applied Research Laboratory).
In this case, the ribbon has several small squares (almost 2
(mm × 2 mm). These are arbitrarily oriented around a standard direction, and their planes provide the applied magnetic field (0 to 0).
720 kA / m). Saturated magnetic induction B s (=
4π4M s D) was calculated by using the measured mass density D. The ferromagnetic Curie temperature (θ f ) was measured by the inductance method and was also monitored by differential scanning calorimetry, which is mainly used to determine the crystallization temperature. Initial or primary crystallization temperatures (T cl ) were used to compare the thermal stability of various vitreous alloys of the present and prior art inventions. Magnetic stability is described in Journal of Applied Physics, Vol. 49, p. 6510
(1978) Reorientation kinetic of magnetization according to the method described in (1978).
s). The method is shown therein by reference thereto. Magnetostriction measurements used a metal strain gauge (BLH Electronics) bonded between two short lengths of ribbon (Eastman-910 cement). The ribbon axis and the gauge axis were parallel. Magnetostriction is
According to the equation λ = 2/3 [(Δl / l) − (Δl / l)], parallel (Δl / l) and perpendicular (Δl / l) to a flat magnetic field.
1) was determined as a function of the applied magnetic field from the length strain. Having described the invention in considerable detail, there is no need to strictly adhere to this detailed description, and all further changes and modifications within the scope of the invention, which are limited by the appended claims, will occur to those skilled in the art. Can be suggested.

フロントページの続き (56)参考文献 特開 昭61−210134(JP,A) 特開 昭58−25449(JP,A)Continuation of front page    (56) References JP-A-61-210134 (JP, A)                 JP-A-58-25449 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.式CoaFebMndeSifを有し、式中下付き文
字は原子%であり、aは68.0〜70.0の範囲であ
り、bは2.5〜4.0の範囲であり、dは1〜4の範
囲であり、eは10〜12の範囲であり、fは14〜1
5の範囲であり、かつ(Fe+Mn)/(Co+Fe+
Mn)の比が0.07〜0.09である、少くとも70
%がガラス質合金であり、−1×10-6〜+1×10-6
の飽和磁歪値、245℃〜310℃の範囲のキュリー温
度、530℃〜575℃の範囲の第1次結晶化温度及び
0.65〜0.80テスラの飽和磁気誘導を有する磁性
合金。 2.Co68.2Fe3.8 Mn112Si15の組成を有する
請求項1記載の磁性合金。 3.Co67.7Fe3.3 Mn212Si15の組成を有する
請求項1記載の磁性合金。 4.Co70.0Fe4.0 Mn110Si15の組成を有する
請求項1記載の磁性合金。 5.Co69.5Fe3.5 Mn210Si15の組成を有する
請求項1記載の磁性合金。 6.Co69.0Fe3.0 Mn310Si15の組成を有する
請求項1記載の磁性合金。 7.Co68.5Fe2.5 Mn410Si15の組成を有する
請求項1記載の磁性合金。
(57) [Claims] Has the formula Co a Fe b Mn d B e Si f, subscript wherein characters are atomic%, a is in the range of from 68.0 to 70.0, b is the 2.5-4.0 Range, d ranges from 1 to 4, e ranges from 10 to 12, and f ranges from 14 to 1.
5 and (Fe + Mn) / (Co + Fe +
Mn) is between 0.07 and 0.09, at least 70
% Is a vitreous alloy, -1 × 10 -6 to + 1 × 10 -6
A magnetic alloy having a Curie temperature in the range of 245C to 310C, a primary crystallization temperature in the range of 530C to 575C, and a saturation magnetic induction of 0.65 to 0.80 Tesla. 2. Co 68.2 Fe 3.8 Mn 1 B 12 Si magnetic alloy of claim 1 having a composition of 15. 3. 2. The magnetic alloy according to claim 1, having a composition of Co 67.7 Fe 3.3 Mn 2 B 12 Si 15 . 4. 2. The magnetic alloy according to claim 1, having a composition of Co 70.0 Fe 4.0 Mn 1 B 10 Si 15 . 5. Co 69.5 Fe 3.5 Mn 2 B 10 Si 15 magnetic alloy of claim 1 having a composition. 6. Co 69.0 Fe 3.0 Mn 3 B 10 Si 15 magnetic alloy of claim 1 having a composition. 7. Co 68.5 Fe 2.5 Mn 4 B 10 Si 15 magnetic alloy of claim 1 having a composition.
JP5190314A 1986-11-03 1993-07-30 Vitreous alloy with almost zero magnetostriction for high frequency use Expired - Lifetime JP2697808B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92614786A 1986-11-03 1986-11-03
US926147 1986-11-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62507130A Division JPH0625399B2 (en) 1986-11-03 1987-10-27 Glassy alloy with almost zero magnetostriction for high frequency use

Publications (2)

Publication Number Publication Date
JPH0693392A JPH0693392A (en) 1994-04-05
JP2697808B2 true JP2697808B2 (en) 1998-01-14

Family

ID=25452815

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62507130A Expired - Lifetime JPH0625399B2 (en) 1986-11-03 1987-10-27 Glassy alloy with almost zero magnetostriction for high frequency use
JP5190314A Expired - Lifetime JP2697808B2 (en) 1986-11-03 1993-07-30 Vitreous alloy with almost zero magnetostriction for high frequency use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62507130A Expired - Lifetime JPH0625399B2 (en) 1986-11-03 1987-10-27 Glassy alloy with almost zero magnetostriction for high frequency use

Country Status (4)

Country Link
EP (1) EP0329704B1 (en)
JP (2) JPH0625399B2 (en)
DE (1) DE3775778D1 (en)
WO (1) WO1988003699A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015992A (en) * 1989-06-29 1991-05-14 Pitney Bowes Inc. Cobalt-niobium amorphous ferromagnetic alloys
DE69013642T2 (en) * 1989-11-17 1995-03-02 Hitachi Metals Ltd Magnetic alloy with ultra-small crystal grains and manufacturing process.
DE19533362A1 (en) * 1995-09-09 1997-03-13 Vacuumschmelze Gmbh Elongated body as a security label for electromagnetic anti-theft systems
WO2000017897A1 (en) * 1998-09-17 2000-03-30 Vacuumschmelze Gmbh Current transformer with a direct current tolerance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358576A (en) * 1979-06-09 1994-10-25 Matsushita Electric Industrial Co., Ltd. Amorphous materials with improved properties
JPS5719361A (en) * 1980-07-11 1982-02-01 Hitachi Ltd Amorphous alloy for core of magnetic head and magnetic head for video using it
JPS5825449A (en) * 1981-08-05 1983-02-15 Toshiba Corp Amorphous magnetic alloy for magnetic head
EP0160166A1 (en) * 1981-11-26 1985-11-06 Allied Corporation Low magnetostriction amorphous metal alloys
DE3275492D1 (en) * 1982-01-18 1987-04-02 Allied Corp Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability
JPS5985835A (en) * 1982-11-10 1984-05-17 Toshiba Corp Amorphous alloy having high thermal stability, small coercive force and high squareness and saturable reactor using said alloy
JPS61261451A (en) * 1985-05-15 1986-11-19 Mitsubishi Electric Corp Magnetic material and its production
JPS61210134A (en) * 1985-11-16 1986-09-18 Res Inst Iron Steel Tohoku Univ Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance

Also Published As

Publication number Publication date
JPH0625399B2 (en) 1994-04-06
DE3775778D1 (en) 1992-02-13
EP0329704B1 (en) 1992-01-02
JPH02500788A (en) 1990-03-15
EP0329704A1 (en) 1989-08-30
WO1988003699A1 (en) 1988-05-19
JPH0693392A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
CA1082491A (en) Near-zero magnetostrictive amorphous alloy with high saturation induction
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
JP2013100603A (en) Magnetic glassy alloy for high frequency application
JP2013168637A (en) Glassy metal alloy for monitoring electron article
JP2907271B2 (en) Vitreous alloy with perminbar properties
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
EP0084138B1 (en) Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability
JP2697808B2 (en) Vitreous alloy with almost zero magnetostriction for high frequency use
JPH04506383A (en) Iron-rich metallic glass with high saturation magnetic induction and outstanding soft ferromagnetism
US4938267A (en) Glassy metal alloys with perminvar characteristics
Kikuchi et al. Elastic properties and linear magnetostriction of Fe-P amorphous Invar alloys

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970812

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11