JPH0693374A - High strength steel for induction hardening - Google Patents

High strength steel for induction hardening

Info

Publication number
JPH0693374A
JPH0693374A JP4272286A JP27228692A JPH0693374A JP H0693374 A JPH0693374 A JP H0693374A JP 4272286 A JP4272286 A JP 4272286A JP 27228692 A JP27228692 A JP 27228692A JP H0693374 A JPH0693374 A JP H0693374A
Authority
JP
Japan
Prior art keywords
steel
strength
induction
induction hardening
rolling contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4272286A
Other languages
Japanese (ja)
Inventor
Kazue Nomura
一衛 野村
Hidehisa Kato
英久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP4272286A priority Critical patent/JPH0693374A/en
Publication of JPH0693374A publication Critical patent/JPH0693374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve induction hardenability and also to improve torsional strength and rolling contact fatigue strength by incorporating specific amounts of Cr, Ni, and Mo into a steel and further adding N actively. CONSTITUTION:The steel for induction hardening has a composition consisting of, by weight ratio, 0.40-0.65% C, 0.01-0.60% Si, 0.30-1.20% Mn, <=0.018% P, <=0.010% S, 0.005-0.018% Al, 0.0100-0.0250% N, <=0.0020% O, <=0.0030% Ti, one or >=2 kinds among 0.30-0.60% Cr, 0.30-0.60% Ni, and 0.03-0.13% Mo, and the balance Fe with impurity elements. By this method, nonmetallic inclusions in the steel can be decreased, and the occurrence of strain and quenching crack of parts at the time of induction hardening can be inhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車用部品、例えば等
速ジョイントのアウタレ−ス、変速ギヤ、その他の高周
波焼入部品に用いられる転がり接触疲労強度および静的
強度等に優れた高周波焼入用鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to induction hardening which is excellent in rolling contact fatigue strength and static strength used in automobile parts such as outer races of constant velocity joints, transmission gears and other induction hardening parts. For steel.

【0002】[0002]

【従来の技術】機械構造用炭素鋼のうち中炭素のもの
は、高周波焼入によって表面硬化すると共に、自動車用
部品などに要求される転がり接触疲労強度および静的強
度等の特性を満足し、さらに鍛造性にも優れ、価格的に
も安価である。そのため、従来から例えば等速ジョイン
トのアウタレ−ス等には中炭素の機械構造用炭素鋼(S
45C〜S58C等)が用いられてきた。
2. Description of the Related Art Among carbon steels for machine structures, medium carbon ones are surface hardened by induction hardening and satisfy characteristics such as rolling contact fatigue strength and static strength required for automobile parts, Furthermore, it has excellent forgeability and is inexpensive. Therefore, conventionally, for example, in the outer race of a constant velocity joint, etc., medium carbon carbon steel for mechanical structure (S
45C to S58C) have been used.

【0003】[0003]

【発明が解決しようとする問題点】然るに、近年、自動
車用エンジンは急速に高性能化が進められ、特に等速ジ
ョイントのアウタレ−ス等の駆動伝達系部品に対して
は、エンジンの高出力化に関連し、重量増や部品のサイ
ズアップを避けるため、高強度化、耐久性の向上、軽量
化等の要請が極めて強くなってきた。
However, in recent years, the performance of automobile engines has been rapidly improved, and particularly for drive transmission system parts such as the outer race of constant velocity joints, the high output of the engine is high. In order to avoid an increase in weight and an increase in size of parts, demands for higher strength, improved durability, and lighter weight have become extremely strong.

【0004】高周波焼入は部品の表面部を急速加熱した
後、急冷するものであるために、焼入部の残留圧縮応力
の発生により、疲労強度が向上することは、よく知られ
ていることであり、また、静的強度であるねじり強度あ
るいは曲げ強度を向上させるには、高周波焼入による硬
化深さを深くすることで対処できる。
It is well known that induction hardening involves rapidly heating the surface of a part and then rapidly cooling it, so that the residual compressive stress in the hardened part improves fatigue strength. In addition, in order to improve the torsional strength or the bending strength, which is the static strength, it can be dealt with by increasing the hardening depth by induction hardening.

【0005】しかしながら、従来から自動車用部品に使
用されている中炭素の機械構造用炭素鋼では、質量効果
が大きく焼入性が比較的悪いので、設計強度を満足させ
る充分な硬化深さを得るのが難しく、更には形状面の影
響を顕著に受け部位間での硬化深さのバラツキが出て高
周波焼入条件の設定が非常に難しいと言った欠点があ
る。
However, in the carbon steel for mechanical structure of medium carbon which has been conventionally used for automobile parts, the mass effect is large and the hardenability is relatively poor, so that a sufficient hardening depth satisfying the design strength is obtained. However, there is a drawback in that it is very difficult to set the induction hardening conditions because the hardening depth varies significantly between the parts that are significantly affected by the shape.

【0006】そこで、高周波焼入性の向上、安定化に
は、機械構造用低合金鋼であるSCr440またはSC
M440等の焼入性の高い鋼への変更により対処できる
と考えられる。しかしながら、これら機械構造用低合金
鋼は鍛造時の割れ、高周波焼入による割れ、歪み等の問
題点の解決が必要になる。さらには部品成形面において
は、従来の熱間鍛造から温間鍛造、冷間鍛造への移行傾
向にあたり、加工性の面では機械構造用低合金鋼では、
問題が多くあり、従来鋼に比べて多大なコストアップに
なり、対処が難しい。
Therefore, in order to improve and stabilize the induction hardenability, SCr440 or SC which is a low alloy steel for machine structure is used.
It is thought that this can be dealt with by changing to steel having high hardenability such as M440. However, these low alloy steels for machine structures need to solve problems such as cracks during forging, cracks due to induction hardening, and distortion. Furthermore, in terms of component forming, there is a tendency to shift from conventional hot forging to warm forging and cold forging, and in terms of workability, in low alloy steel for machine structural use,
There are many problems, the cost will be much higher than that of conventional steel, and it is difficult to deal with.

【0007】また、等速ジョイントのアウタレ−ス等の
部品にはねじり強度などの静的強度以外に転がり接触疲
労強度が極めて重要であり、転がり接触疲労強度の向上
も重要な課題になっている。しかるに、従来鋼では、高
周波焼入層の強度面に限界があり、さらに、非金属介在
物の影響により転がり接触疲労強度の向上が望めない。
更には、部品成形面においては、従来の熱間鍛造から温
間鍛造、冷間鍛造への移行傾向があり、加工性の改善も
必要になってきているが、従来鋼では不純物元素の規制
が殆どなく加工性の向上が望めない。
Further, in addition to static strength such as torsional strength, rolling contact fatigue strength is extremely important for parts such as outer races of constant velocity joints, and improvement of rolling contact fatigue strength is also an important subject. . However, in the conventional steel, the strength of the induction-hardened layer is limited, and further, the rolling contact fatigue strength cannot be expected to improve due to the influence of non-metallic inclusions.
Furthermore, in terms of forming parts, there is a tendency to shift from conventional hot forging to warm forging and cold forging, and it is necessary to improve workability. There is almost no improvement in workability.

【0008】本発明は自動車用等の高周波焼入部品に使
用される従来鋼の前記のごとき問題点に鑑みてなされた
ものであって、高周波焼入性を向上することによりねじ
り強度等の静的強度を改善し、かつ転がり接触疲労強度
を向上すると共に鍛造性等の加工性を改善した高強度高
周波焼入用鋼を提供することを目的とする。
The present invention has been made in view of the above problems of conventional steels used for induction hardening parts for automobiles and the like. It is an object of the present invention to provide a high-strength induction hardening steel which has improved mechanical strength, improved rolling contact fatigue strength, and improved workability such as forgeability.

【0009】[0009]

【問題点を解決するための手段】本発明は上述の課題を
解決するために本発明者等が高周波焼入された鋼につい
て鋭意研究を重ねた結果、以下の知見を得て本発明を完
成した。
In order to solve the above-mentioned problems, the present invention has been conducted by the inventors of the present invention as a result of intensive studies on steel that has been induction hardened, and as a result, the present invention has been completed with the following findings. did.

【0010】第1に、ねじり強度あるいは曲げ強度等の
静的強度を向上させるには、鋼の焼入性を向上させるこ
とにより高周波焼入による硬化深さを大きくすることが
効果的であり、そのためにCr,Ni 等の合金の添加が考え
られる。しかしこれら合金の添加により高周波焼入れ時
の部品の歪、割れ等が増大し、また鍛造性が著しく損な
われる等、部品の製造性の低下を招く。そこで発明者等
の研究により高周波焼入れにおいては少量の合金の添加
により大きな硬化深さを得られ、これがまた部品の製造
性の低下を殆ど生じないことを発見した。
First, in order to improve the static strength such as torsional strength or bending strength, it is effective to improve the hardenability of steel to increase the hardening depth by induction hardening. Therefore, addition of alloys such as Cr and Ni can be considered. However, the addition of these alloys causes distortion, cracking and the like of the component during induction hardening, and significantly deteriorates the forgeability, leading to a decrease in the productivity of the component. Therefore, the inventors of the present invention have found that in induction hardening, a large hardening depth can be obtained by adding a small amount of alloy, and this also hardly causes deterioration of the manufacturability of parts.

【0011】具体的には、Cr:0.30〜0.60%, Ni:0.30
〜0.60%, およびMo:0.03〜0.13%のうち1種ないし2
種以上の合金添加があれば部品製造性を殆ど損なうこと
なく高周波焼入れにおいて必要な硬化深さを得ることが
できる。さらに、Nを積極的に添加させることにより、
低温焼もどしされた高周波焼入組織の降伏強度が増加
し、ねじり強度が増加することを知見した。具体的には
0.0100%以上の含有が必要である。
Specifically, Cr: 0.30 to 0.60%, Ni: 0.30
~ 0.60%, and Mo: 0.03 ~ 0.13% of 1 to 2
If more than one type of alloy is added, it is possible to obtain the required hardening depth in induction hardening with almost no loss of manufacturability. Furthermore, by positively adding N,
It has been found that the yield strength and the torsional strength of the induction-hardened structure that has been tempered at a low temperature increase. In particular
It is necessary to contain 0.0100% or more.

【0012】第2に、転がり接触疲労強度を向上させる
ために、高周波焼入れされた鋼における鋼中非金属介在
物および不純物元素と転がり接触疲労強度の関係を研究
した。その結果、転がり接触疲労強度に対して最も有害
なものは、粗大な酸化物系介在物とTiN介在物であるこ
とを発見した。理想的にはこれら介在物を皆無とすれば
良いが、現在の製鋼技術においては困難であるため、現
在の製鋼技術において最適な方法を検討した。
Secondly, in order to improve the rolling contact fatigue strength, the relationship between the rolling contact fatigue strength and the non-metallic inclusions and impurity elements in the steel in the induction hardened steel was studied. As a result, it was discovered that the most harmful substances to rolling contact fatigue strength were coarse oxide inclusions and TiN inclusions. Ideally, these inclusions should be eliminated, but it is difficult in the current steelmaking technology, so the optimum method in the current steelmaking technology was examined.

【0013】まず粗大な酸化物系介在物の低減には鋼中
O量を0.0020%以下、望ましくは0.0010%以下とするこ
とと、鋼中Alを0.005 〜0.018 %とすることが有効であ
ることが判った。鋼中O量の低減は酸化物系介在物を低
減させ、またAlが0.005 %より少ないと粗大なSiO2
の酸化物系介在物が増加し、また、Alが0.018 %を越え
るとAl2 3 等の酸化物系介在物が粗大化する。したが
ってO量、Al量の調整により鋼中に含まれる酸化物系介
在物を極力少なく、かつ微細にできる。
First, in order to reduce coarse oxide inclusions, it is effective to set the O content in the steel to 0.0020% or less, preferably 0.0010% or less, and to set the Al content in the steel to 0.005 to 0.018%. I understood. Reduction of O content in steel reduces oxide inclusions, and when Al content is less than 0.005%, coarse oxide inclusions such as SiO 2 increase, and when Al content exceeds 0.018%, Al 2 content increases. Oxide inclusions such as 0 3 become coarse. Therefore, the oxide inclusions contained in the steel can be made as small as possible and fine by adjusting the amounts of O and Al.

【0014】TiN介在物については、従来、機械構造用
鋼においては、殆ど考慮されていないのが現状である
が、不純物としてのTi量を0.0030%以下、望ましくは0.
0015%以下にすることにより、転がり接触疲労強度に対
する悪影響がなくなる。さらに、S量の低減によるMnS
介在物の低減およびP量の低減による鋼の結晶粒界強化
も高周波焼入れされた鋼の転がり接触疲労強度の向上に
有効であることを知見した。また、これらの介在物およ
び不純物元素の低減は、同時に鍛造性の向上および高周
波焼入時の割れ低減にも大きな効果があることを知見し
た。
Although TiN inclusions have not been considered so far in steels for mechanical structures, the Ti content as impurities is 0.0030% or less, preferably 0.
By setting the content to be not more than 15%, the adverse effect on the rolling contact fatigue strength is eliminated. Furthermore, MnS by reducing the amount of S
It was found that strengthening the crystal grain boundaries of steel by reducing inclusions and P content is also effective in improving the rolling contact fatigue strength of induction hardened steel. Further, it has been found that reducing these inclusions and impurity elements has a great effect on improving forgeability and reducing cracks during induction hardening at the same time.

【0015】本発明は前記の知見に基ずいて完成された
ものであって、本発明の請求項1は、重量比にして、
C:0.40〜0.65%,Si:0.01〜0.60%,Mn:0.30〜1.20
%,P:0.018 %以下、S:0.010 %以下、Al:0.005
〜0.018 %、N:0.0100〜0.0250%,O:0.0020%以
下、Ti:0.0030%以下と, Cr:0.30〜0.60%, Ni:0.30
〜0.60%,Mo:0.03〜0.13%のうち1種ないし2種以上
を含有し、残部Feならびに不純物元素からなることを特
徴とする高強度高周波焼入用鋼である。
The present invention has been completed based on the above findings, and the first aspect of the present invention is, in terms of weight ratio,
C: 0.40 to 0.65%, Si: 0.01 to 0.60%, Mn: 0.30 to 1.20
%, P: 0.018% or less, S: 0.010% or less, Al: 0.005
~ 0.018%, N: 0.0100 ~ 0.0250%, O: 0.0020% or less, Ti: 0.0030% or less, Cr: 0.30 ~ 0.60%, Ni: 0.30
It is a high-strength induction hardening steel, characterized in that it contains one or more of 0.6 to 0.60% and Mo: 0.03 to 0.13%, and the balance is Fe and impurity elements.

【0016】つぎに本発明の高周波焼入用鋼の化学成分
限定理由について説明する。 C:0.40〜0.65% Cは高周波焼入れ硬さおよび内部硬さを得るために必要
な元素であり、所望の高周波焼入れ硬さおよび内部硬さ
を確保するためには、0.40%以上含有させることが必要
である。しかし,0.65%を越えて含有すると、高周波焼
入時に割れが発生し易くなるので、上限を0.65%とし
た。
Next, the reasons for limiting the chemical composition of the steel for induction hardening of the present invention will be explained. C: 0.40 to 0.65% C is an element necessary for obtaining induction hardening hardness and internal hardness, and in order to secure the desired induction hardening hardness and internal hardness, 0.40% or more should be contained. is necessary. However, if the content exceeds 0.65%, cracking tends to occur during induction hardening, so the upper limit was made 0.65%.

【0017】Si:0.01〜0.60% Siは製鋼時の溶鋼の脱酸のために必要な元素であり、充
分な脱酸を得るためには少なくとも0.01%以上含有させ
る必要がある。しかし,0.60%を越えて含有させると、
フェライトを強化し加工性を害し、かつ酸化物系介在物
が増加するので、上限を0.60%とした。
Si: 0.01 to 0.60% Si is an element necessary for deoxidizing molten steel at the time of steel making, and at least 0.01% or more is necessary to obtain sufficient deoxidation. However, if the content exceeds 0.60%,
The upper limit was set to 0.60% because it strengthens ferrite, impairs workability, and increases oxide inclusions.

【0018】Mn:0.30〜1.20% Mnは製鋼時の溶鋼の脱酸に必要な元素である共に、基地
を強化するために必要な元素であって、前記効果を得る
ためには、少なくとも0.30%以上含有させる必要があ
る。しかし,1.20%を越えて含有させると、加工性並び
に被削性が低下し、かつ高周波焼入時に割れが発生し易
くなるので上限を1.20%とした。
Mn: 0.30 to 1.20% Mn is an element necessary for deoxidizing molten steel at the time of steel making, and is an element necessary for strengthening the matrix. To obtain the above effect, at least 0.30% It is necessary to contain the above. However, if the content exceeds 1.20%, the workability and machinability deteriorate, and cracks tend to occur during induction hardening, so the upper limit was made 1.20%.

【0019】P:0.018 %以下 Pは粒界に偏析して、高周波焼入部の静的強度をおよび
転がり接触疲労強度を低下させるので、0.018 %以下に
する必要がある。望ましくは0.015 %以下とする。
P: 0.018% or less P segregates at the grain boundaries to reduce the static strength and rolling contact fatigue strength of the induction-hardened part, so P must be 0.018% or less. It is preferably 0.015% or less.

【0020】S:0.010 %以下 Sは硫化物系介在物を生成し、転がり接触疲労強度と鍛
造性を害するので、その含有量を0.010 %以下にする必
要がある。
S: 0.010% or less S forms sulfide-based inclusions and impairs rolling contact fatigue strength and forgeability, so the content must be 0.010% or less.

【0021】Cr:0.30〜0.60% Crは鋼の焼入性を向上させる元素であり高周波焼入にお
ける硬化深さの増大に大きな効果がある。そのために少
なくとも0.30%以上含有させる必要がある。しかし、0.
60%を越えて含有させると鍛造性を低下させるため、上
限を0.60%とした。
Cr: 0.30 to 0.60% Cr is an element that improves the hardenability of steel and has a great effect on increasing the hardening depth in induction hardening. Therefore, it is necessary to contain at least 0.30% or more. But 0.
If the content exceeds 60%, the forgeability deteriorates, so the upper limit was made 0.60%.

【0022】Ni:0.30〜0.60% Niは鋼の焼入性と靱性を向上させる元素であり、特に高
周波焼入による硬化深さの増大に大きな効果がある。こ
の効果を得るためには少なくとも0.30%以上含有させる
必要がある。しかし、0.60%を越えて含有させると鍛造
性を低下させるため、上限を0.60%とした。
Ni: 0.30 to 0.60% Ni is an element that improves the hardenability and toughness of steel, and is particularly effective in increasing the hardening depth by induction hardening. To obtain this effect, it is necessary to contain at least 0.30% or more. However, if the content exceeds 0.60%, the forgeability deteriorates, so the upper limit was made 0.60%.

【0023】Mo:0.03〜0.13% Moは鋼の焼入性と焼もどし軟化抵抗を向上させる元素で
あり、特に高周波焼入による硬化深さの増大に大きな効
果がある。そのために少なくとも0.03%以上含有させる
必要がある。しかし、0.13%を越えて含有させると鍛造
性を低下させるため、上限を0.13%とした。
Mo: 0.03 to 0.13% Mo is an element that improves the hardenability and temper softening resistance of steel, and is particularly effective in increasing the hardening depth by induction hardening. Therefore, it is necessary to contain at least 0.03% or more. However, if the content exceeds 0.13%, the forgeability deteriorates, so the upper limit was made 0.13%.

【0024】Al:0.005 〜0.018 % Alは鋼の脱酸に必要な元素であるが、0.005 %より少な
いと脱酸が不充分となりSiO2 等の粗大な酸化物系介在
物が生成する。また、0.018 %を越えて含有させるとAl
2 3 介在物が粗大化して、いずれも転がり接触疲労強
度を低下させるため、その含有量を0.005 〜0.018 %と
した。
Al: 0.005 to 0.018% Al is an element necessary for deoxidizing steel, but if it is less than 0.005%, deoxidation is insufficient and coarse oxide inclusions such as SiO 2 are produced. Also, if the content exceeds 0.018%, Al
The content of 2 O 3 inclusions was set to 0.005 to 0.018% because coarsening of 2 O 3 inclusions reduces rolling contact fatigue strength.

【0025】N:0.0100〜0.0250% Nは可動転位を固定することにより、降伏点を増加させ
る効果があり、0.0100%以上の含有が必要である。しか
し0.0250%を越えて含有させると加工性を低下させるた
め上限を0.0250%とした。
N: 0.0100 to 0.0250% N has the effect of increasing the yield point by fixing mobile dislocations, and it is necessary to contain 0.0100% or more. However, if the content exceeds 0.0250%, the workability deteriorates, so the upper limit was made 0.0250%.

【0026】O:0.0020%以下 Oは酸化物系介在物を生成し、転がり接触疲労強度を低
下させる元素であり極力低減させる必要があり、その含
有量を0.0020%以下とした。望ましくは0.0010%以下と
する。
O: 0.0020% or less O is an element which forms oxide inclusions and reduces rolling contact fatigue strength, and it is necessary to reduce it as much as possible, and the content thereof is made 0.0020% or less. It is preferably 0.0010% or less.

【0027】Ti:0.0030%以下 TiはTiN介在物を生成し、転がり接触疲労強度を低下さ
せる元素でありその含有量を極力低下させる必要があ
り、その上限を0.0030%とした。望ましくは0.0015%以
下とする。
Ti: 0.0030% or less Ti is an element that forms TiN inclusions and reduces rolling contact fatigue strength, and it is necessary to reduce the content as much as possible, and the upper limit was made 0.0030%. It is preferably 0.0015% or less.

【0028】[0028]

【実施例】次に本発明鋼の特徴を比較鋼および従来鋼と
対比して実施例でもって説明する。表1はこれら供試鋼
の化学成分を示すものである。表1においてA〜D鋼は
本発明鋼である。E〜L鋼は比較鋼であって、E鋼はP
およびS含有量の高い比較鋼、F鋼はAl含有量の低い比
較鋼、G鋼はAl含有量の高い比較鋼, H鋼はTi含有量の
高い比較鋼, I鋼はMo含有量の高い比較鋼, J鋼はNi,C
r およびMo含有量がいずれも低い比較鋼, K鋼はCr含有
量の高い比較鋼,L鋼はN含有量の低い比較鋼である。
また、M〜O鋼は従来鋼であってM鋼はJIS S53C 相当
鋼, N鋼は SCr440 相当鋼、O鋼はJIS SCM440相当鋼で
ある。
EXAMPLES Next, the characteristics of the steel of the present invention will be described by way of examples in comparison with comparative steel and conventional steel. Table 1 shows the chemical composition of these test steels. In Table 1, steels A to D are steels of the present invention. E to L steels are comparative steels, and E steel is P
And comparative steels with a high S content, F steels with a low Al content, G steels with a high Al content, H steels with a high Ti content, and I steels with a high Mo content. Comparative steel, J steel is Ni, C
Comparative steels with low r and Mo contents, K steel with a high Cr content, and L steel with a low N content.
M to O steels are conventional steels, M steel is JIS S53C equivalent steel, N steel is SCr440 equivalent steel, and O steel is JIS SCM440 equivalent steel.

【0029】これら供試鋼について、ねじり強度、高周
波焼入性、転がり接触疲労強度および鍛造性について測
定し、得られた結果を表3に示した。なお、ねじり強度
については、35φの中実試験片を20KHZ で高周波焼入
れした後,180℃で90分焼もどしを行い、ねじり試験機を
用いて破断させた時の最大剪断応力を測定して評価し
た。高周波焼入性については、40φ中実試験片を20KH
Z で高周波焼入れした後、180 ℃で90分の焼もどしを行
い、表面からの硬さ分布を測定し、有効硬化深さを求
め、高周波焼入性とした。
The test steels were measured for torsional strength, induction hardenability, rolling contact fatigue strength and forgeability, and the results obtained are shown in Table 3. Regarding the torsional strength, a solid test piece of 35φ was induction hardened at 20 KH Z , then tempered at 180 ° C. for 90 minutes, and the maximum shear stress at the time of breaking was measured using a torsion tester. evaluated. For induction hardenability, 40φ solid test piece 20KH
After induction hardening with Z , tempering was performed at 180 ° C for 90 minutes, the hardness distribution from the surface was measured, and the effective hardening depth was determined to obtain induction hardening.

【0030】転がり接触疲労強度については、60φスラ
スト寿命試験片を高周波焼入、焼もどし処理後、最大ヘ
ルツ応力 560Kgf/mm2 、応力繰り返し数 1500cpm, 潤滑
油中にて試験を行い、剥離までの寿命を累積破損率で整
理し、B10寿命 (累積破損率10%での寿命)を求め評価
した。鍛造性については、高さ/径= 1.5の円柱試験片
を冷間で両端拘束据え込み試験を実施し、50%の試験片
に割れが発生する据え込み率を限界据込率として評価し
た。
Regarding rolling contact fatigue strength, a 60φ thrust life test piece was subjected to induction hardening and tempering treatment, and then tested at maximum Hertz stress of 560 Kgf / mm 2 , stress repetition number of 1500 cpm in lubricating oil, until peeling. The life was sorted by the cumulative damage rate, and the B 10 life (life at a cumulative damage rate of 10%) was obtained and evaluated. Regarding forgeability, a cylindrical test piece of height / diameter = 1.5 was subjected to a cold both-end restrained upsetting test, and the upsetting rate at which 50% of the test pieces cracked was evaluated as the critical upsetting rate.

【0031】表3から明らかなように、比較鋼であるE
鋼はB10寿命が 1.40 ×107,限界据込率が45%であっ
て、転がり接触疲労強度および鍛造性において劣ってお
り、F鋼はE鋼と同様にB10寿命が 0.85 ×107,限界据
込率が40%と、転がり接触疲労強度および鍛造性が劣っ
ており、G、H鋼は高周波焼入性については良好である
がB10寿命が 0.90 〜1.20×107,限界据込率が40〜45%
と、転がり接触疲労強度、鍛造性が劣っており、I鋼は
ねじり強度、高周波焼入性及び転がり接触疲労強度につ
いては優れているが、限界据込率が30%と鍛造性が低
く、J鋼は鍛造性については良好であるが、最大剪断応
力が1500N/mm2,有効硬化深さが5.3mm,B10寿命が2.00
×107 と、ねじり強度、高周波焼入性及び転がり接触疲
労強度が劣り、K鋼はJ鋼とは逆にねじり強度、高周波
焼入性及び転がり接触疲労強度が良好であるが、限界据
込率が30%と鍛造性が劣っており、L鋼は高周波焼入
性、鍛造性については優れているが、最大剪断応力が17
00N/mm2,有効硬化深さが3.80mmとねじり強度、転がり
接触疲労強度が劣る。
As is clear from Table 3, the comparative steel E
Steel has a B 10 life of 1.40 × 10 7 and a critical upsetting rate of 45%, and is inferior in rolling contact fatigue strength and forgeability. F steel has a B 10 life of 0.85 × 10 7 like E steel. The rolling contact fatigue strength and the forgeability are inferior at the critical upsetting ratio of 40%, and the G and H steels have good induction hardenability, but the B 10 life is 0.90 to 1.20 × 10 7 , the critical upsetting. 40-45% coverage
And rolling contact fatigue strength and forgeability are inferior. I steel is excellent in torsional strength, induction hardenability and rolling contact fatigue strength, but the limit upsetting ratio is 30% and the forgeability is low. Steel has good forgeability, but maximum shear stress is 1500 N / mm 2 , effective hardening depth is 5.3 mm, B 10 life is 2.00
× 10 7 is inferior in torsional strength, induction hardenability and rolling contact fatigue strength, and K steel is good in torsional strength, induction hardenability and rolling contact fatigue strength contrary to J steel, but the limit upsetting The forgeability is inferior at 30%, and although L steel is excellent in induction hardenability and forgeability, the maximum shear stress is 17
00N / mm 2 , effective hardening depth is 3.80mm, and torsional strength and rolling contact fatigue strength are poor.

【0032】また、従来鋼であるM鋼はJ鋼と同様に鍛
造性については良好であるが、ねじり強度、高周波焼入
性及び転がり接触疲労強が劣り、N鋼は高周波焼入性、
転がり接触疲労強度および鍛造性に劣り、O鋼は転がり
接触疲労強度、鍛造性について劣る。これら比較鋼、従
来鋼に対して、本発明鋼であるA〜D鋼は最大剪断応力
が2100〜2200N/mm2 、有効硬化深さが10.3〜10.8mm、
10寿命が4.00〜5.30×107,限界据込率が55〜60%と、
ねじり強度、高周波焼入性、転がり接触疲労強度及び鍛
造性の何れについても優れており、本発明鋼が優れた特
性を有する事が明らかになった。
Similar to J steel, M steel which is a conventional steel has good forgeability, but is inferior in torsional strength, induction hardenability and rolling contact fatigue strength, and N steel is induction hardenability.
Rolling contact fatigue strength and forgeability are inferior, and O steel is inferior in rolling contact fatigue strength and forgeability. In contrast to these comparative steels and conventional steels, the steels A to D of the present invention have maximum shear stress of 2100 to 2200 N / mm 2 , effective hardening depth of 10.3 to 10.8 mm,
B 10 life is 4.00-5.30 × 10 7 and critical upset rate is 55-60%,
It has been proved that the steel of the present invention has excellent properties because it has excellent torsional strength, induction hardenability, rolling contact fatigue strength and forgeability.

【0033】[0033]

【発明の効果】本発明鋼は上述の如く、等速ジョイント
のアウタ−レ−ス、変速ギヤ等の自動車用等の高周波焼
入部品に対して要求される高強度化、耐久性の向上、軽
量化等の要請に対して、Cr,Ni,Moを適量添加すると共に
Nを積極添加し、さらに鋼中の非金属介在物、不純物元
素の含有量を大幅に低減することにより、高周波焼入れ
時の部品の歪、焼き割れの発生を抑制し、かつ鍛造性等
の製造性を損なう事なく、ねじり強度等の静的強度の向
上と、高周波焼入性、転がり接触疲労強度を改善した高
強度高周波焼入用鋼であって極めて有用な鋼である。
As described above, the steel of the present invention has the high strength and durability required for induction hardening parts for automobiles such as outer races of constant velocity joints and transmission gears. In response to demands such as weight reduction, by adding Cr, Ni, Mo in appropriate amounts and positively adding N, and by significantly reducing the content of non-metallic inclusions and impurity elements in steel, induction hardening is possible. The high strength that suppresses the occurrence of distortion and quench cracking of parts, and improves the static strength such as torsional strength and the induction hardenability and rolling contact fatigue strength without impairing the manufacturability such as forgeability. It is a steel for induction hardening and is a very useful steel.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量比にして、C:0.40〜0.65%,Si:0.
01〜0.60%,Mn:0.30〜1.20%,P:0.018 %以下、
S:0.010 %以下、Al:0.005 〜0.018 %、N:0.0100
〜0.0250%,O:0.0020%以下、Ti:0.0030%以下と,
Cr:0.30〜0.60%, Ni:0.30〜0.60%,Mo:0.03〜0.13
%のうち1種ないし2種以上を含有し、残部Feならびに
不純物元素からなることを特徴とする高強度高周波焼入
用鋼。
1. A weight ratio of C: 0.40 to 0.65%, Si: 0.
01 to 0.60%, Mn: 0.30 to 1.20%, P: 0.018% or less,
S: 0.010% or less, Al: 0.005 to 0.018%, N: 0.0100
~ 0.0250%, O: 0.0020% or less, Ti: 0.0030% or less,
Cr: 0.30 to 0.60%, Ni: 0.30 to 0.60%, Mo: 0.03 to 0.13
%, A high strength induction hardening steel, characterized in that it contains one or two or more of Fe and the balance Fe and impurity elements.
JP4272286A 1992-09-16 1992-09-16 High strength steel for induction hardening Pending JPH0693374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272286A JPH0693374A (en) 1992-09-16 1992-09-16 High strength steel for induction hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272286A JPH0693374A (en) 1992-09-16 1992-09-16 High strength steel for induction hardening

Publications (1)

Publication Number Publication Date
JPH0693374A true JPH0693374A (en) 1994-04-05

Family

ID=17511744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272286A Pending JPH0693374A (en) 1992-09-16 1992-09-16 High strength steel for induction hardening

Country Status (1)

Country Link
JP (1) JPH0693374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902094A1 (en) * 1997-09-12 1999-03-17 Ascometal Process for manufacturing a mechanical workpiece with at least one part surface hardened by induction and workpiece obtained

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902094A1 (en) * 1997-09-12 1999-03-17 Ascometal Process for manufacturing a mechanical workpiece with at least one part surface hardened by induction and workpiece obtained
FR2768435A1 (en) * 1997-09-12 1999-03-19 Ascometal Sa PROCESS FOR MANUFACTURING A STEEL MECHANICAL PART COMPRISING AT LEAST ONE PART SURFACELY CURED BY AN INDUCTION TREATED TREATMENT, AND PART OBTAINED

Similar Documents

Publication Publication Date Title
EP1743950A1 (en) Seamless steel pipe and method for production thereof
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
EP0643148B1 (en) Steel material for induction-hardened shaft part and shaft part made therefrom
WO2006104023A1 (en) Hollow driving shaft obtained through induction hardening
JP2012214832A (en) Steel for machine structure and method for producing the same
JP4347999B2 (en) Induction hardening steel and induction hardening parts with excellent torsional fatigue properties
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JPH07188857A (en) Bearing parts
JP3081927B2 (en) Carburized and quenched parts for drive shaft coupling and method of manufacturing the same
JPH075960B2 (en) Method for manufacturing cold forging steel
JP5941439B2 (en) Coil spring and manufacturing method thereof
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP4213855B2 (en) Case-hardening steel and case-hardening parts with excellent torsional fatigue properties
JP3539529B2 (en) Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JPH1129836A (en) Steel for machine structural use for induction hardening
JPH0693374A (en) High strength steel for induction hardening
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JPH0681077A (en) High strength steel for induction hardening
JPH0978127A (en) Production of high strength and high toughness axial parts for mechanical structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees