JPH0692665A - Production of fluoride glass optical waveguide - Google Patents

Production of fluoride glass optical waveguide

Info

Publication number
JPH0692665A
JPH0692665A JP24028892A JP24028892A JPH0692665A JP H0692665 A JPH0692665 A JP H0692665A JP 24028892 A JP24028892 A JP 24028892A JP 24028892 A JP24028892 A JP 24028892A JP H0692665 A JPH0692665 A JP H0692665A
Authority
JP
Japan
Prior art keywords
fluoride glass
core
rod
pipe
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24028892A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
誠 古口
Yoshitaka Iida
義隆 飯田
Kunio Ogura
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24028892A priority Critical patent/JPH0692665A/en
Publication of JPH0692665A publication Critical patent/JPH0692665A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To decrease the eccentricity of a core of a fluoride glass optical waveguide produced by inserting a fluoride glass rod into a fluoride glass pipe and integrating the components by selecting the maximum outer diameter and the minimum outer diameter of the rod and the inner diameter of the pipe to satisfy a specific relationship. CONSTITUTION:A fluoride glass having a composition of ZrF4-BaF2-LaF3-AlF3- NaF, etc., and doped with specific amounts of compounds containing rare earth elements such as Pr (e.g. PrF3) and PbF2 is melted and cast into a mold to form a core rod having prescribed maximum outer diameter d1 and minimum outer diameter d2. Separately, a pipe for clad having a prescribed inner diameter D is produced from a ZrF4-BaF2-LaF3-AlF3-NaF fluoride glass doped with a specific amount of HfF4, etc. The rod for core is inserted into the pipe for clad in such a manner as to satisfy the relationships of 0<=(D-d1)<=0.2mm, d1>=d2>=(d1)/2 and a core eccentricity of <=0.2%. The assembly is integrated by heating in an inert gas such as Ar and drawn to obtain the objective fluoride glass optical waveguide for light amplification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として光通信システ
ムの中継部に使用される光増幅用光導波路(光ファイバ
を含む)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification optical waveguide (including an optical fiber) used mainly in a repeater section of an optical communication system.

【0002】[0002]

【従来技術】光通信システムは発光部、中継部および受
光部から構成され、これらの間は光導波路で結ばれてい
る。該中継部は、伝送する信号光が光導波路中を伝搬す
る際の伝送損失およびパルスの広がりを補償するもので
ある。従来、その構成は信号光を一度電気信号に変換し
て補償した後、半導体レーザを用いて信号光に変換する
というものであった。しかしながら、この方法は装置の
構成が極めて複雑であるため高価であるという欠点があ
った。そこで最近、希土類元素をホストガラスにドープ
したものをコア部として光導波路を作製し、この光導波
路により波長が 1.3μmまたは1.55μmの信号光を直接
増幅することが試みられている。
2. Description of the Related Art An optical communication system comprises a light emitting section, a relay section and a light receiving section, and an optical waveguide is connected between them. The relay section compensates for transmission loss and pulse spread when the transmitted signal light propagates through the optical waveguide. Conventionally, the configuration is such that the signal light is once converted into an electric signal and compensated, and then converted into a signal light using a semiconductor laser. However, this method has a drawback in that it is expensive because the structure of the apparatus is extremely complicated. Therefore, recently, it has been attempted to fabricate an optical waveguide with a core glass doped with a rare earth element as a core portion and directly amplify the signal light having a wavelength of 1.3 μm or 1.55 μm by this optical waveguide.

【0003】特にこれらの希土類元素のうち、プラセオ
ジウム (Pr) をコア部にドープしたZBLAN (ZrF4 -BaF2
-LaF3 -AlF3 -NaF) 系フッ化物ガラスのシングルモード
型光導波路は、波長が 1.3μmの信号光を効率よく増幅
するものとして注目されている。フッ化物ガラス光導波
路用母材の製法としては、原料を溶解して鋳型に鋳込む
ことによってロッドやパイプを作製し、これらを加熱・
一体化させたのち、所定の外径に延伸する方法が一般的
である。
Of these rare earth elements, ZBLAN (ZrF 4 -BaF 2 ) having a core portion doped with praseodymium (Pr) is particularly preferable.
Single-mode optical waveguides made of -LaF 3 -AlF 3 -NaF) -based fluoride glass have attracted attention because they efficiently amplify signal light with a wavelength of 1.3 μm. As a method of manufacturing a base material for a fluoride glass optical waveguide, rods and pipes are manufactured by melting raw materials and casting them into a mold, and heating these materials.
A method in which, after being integrated, the film is stretched to a predetermined outer diameter is common.

【0004】[0004]

【発明が解決しようとする課題】光増幅用光導波路のコ
ア部径は、入射光の密度が増幅の利得を決定するため、
他の光導波路に比べて約 2〜 4μmと小さくなっており
(例えば、光通信用光導波路のコア部径は約10μm) 、
前記光増幅用光導波路を接続することは容易ではない。
また例え接続ができても、コア部径が小さいので突き合
わせが難しいため、その接続損失は大きくなりやすい。
しかしながら、実用上できるだけ接続損失の小さい光導
波路が望ましい。
The diameter of the core portion of the optical waveguide for optical amplification is determined by the density of incident light, which determines the gain of amplification.
Compared with other optical waveguides, it is about 2 to 4 μm smaller (for example, the core diameter of the optical waveguide for optical communication is about 10 μm).
It is not easy to connect the optical amplification optical waveguides.
Further, even if connection is possible, since the core part diameter is small and it is difficult to butt, the connection loss tends to be large.
However, in practical use, an optical waveguide having a connection loss as small as possible is desirable.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、接続損
失の小さく、しかも増幅される光の波長が 1.3μm帯で
ある光増幅用光導波路を提供することである。本発明に
よれば、フッ化物ガラス光導波路を製造する方法におい
て、フッ化物ガラスからなるロッドをフッ化物ガラスか
らなるパイプに挿入して一体化する際に、前記ロッドの
最大外径をd1、最小外径をd2、前記パイプの内径を Dと
すると、d1、d2、 Dが 0≦(D-d1)≦ 0.2mmおよびd1≧d2
≧(d1)/2の関係を満たすようにすることを特徴とするフ
ッ化物ガラス光導波路の製造方法が提供される。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical amplification optical waveguide having a small connection loss and a wavelength of amplified light in the 1.3 μm band. According to the present invention, in the method for producing a fluoride glass optical waveguide, when the rod made of fluoride glass is inserted into a pipe made of fluoride glass and integrated, the maximum outer diameter of the rod is d1, the minimum. Assuming that the outer diameter is d2 and the inner diameter of the pipe is D, d1, d2 and D are 0 ≦ (D-d1) ≦ 0.2mm and d1 ≧ d2.
There is provided a method for manufacturing a fluoride glass optical waveguide, which is characterized by satisfying a relation of ≧ (d1) / 2.

【0006】[0006]

【作用】接続損失の小さい 1.3μm帯光増幅用光導波路
を提供するために、従来の光導波路用母材の製造方法に
ついて検討した結果、その主たる要因として、コア部の
クラッド部に対する偏心(以下単にコア偏心という)が
考えられた。さらにコア偏心の原因は、以下のように推
測される。すなわち、従来の製造方法ではコア部用ロッ
ドとクラッド部用パイプを加熱・一体化すると両者の熱
収縮率が異なるために、得られた光導波路用母材のクラ
ッド部中心とコア部中心がずれてしまうことにあると考
えられた。本来ならば、熱収縮率の差の小さなコア部用
ロッドやクラッド部用パイプの組成を見いだすべきなの
かもしれないが、現在使用されている両者の組成は、そ
の安定性などの問題から性能的に他に変わるものが見つ
からないため、そのまま、使用せざるを得ない。
[Function] In order to provide a 1.3 μm band optical amplification optical waveguide with a small connection loss, as a result of an examination of a conventional method for producing a base material for an optical waveguide, the main factor is the eccentricity of the core portion with respect to the clad portion (hereinafter Simply called core eccentricity) was considered. Further, the cause of core eccentricity is presumed as follows. That is, in the conventional manufacturing method, when the core rod and the cladding pipe are heated and integrated, the thermal contraction rates of the two differ, so the center of the cladding and the center of the core of the obtained optical waveguide preform are misaligned. It was thought that there was something to do with it. Originally, it may be necessary to find the composition of the rod for the core part and the pipe for the clad part with a small difference in heat shrinkage, but the composition of both currently used is not suitable for performance due to problems such as stability. I can't find anything else to change, so I have to use it as it is.

【0007】そこで、コア部用ロッド、クラッド部用パ
イプの組成を変えないまま、コア偏心を小さくする方法
を考えた。具体的な値として、コア偏心は 0.2%以下で
あることが望ましいと分かっている。この値を実現する
ために種々検討した結果、コア部用ロッドをクラッド部
用パイプに挿入した際に、コア部用ロッドの中心とクラ
ッド部用パイプの中心ができるだけ一致するように固定
すれば良いことがわかった。具体的には、コア部用ロッ
ドの最大外径の部分でクラッド部用パイプとの隙間をよ
り小さくすれば、コア部用ロッドがクラッド部用パイプ
内で動きにくくなる。すなわち、コア部用ロッドの中心
とクラッド部用パイプの中心を一致させれば、コア部用
ロッドの最小外径部分でもコア部中心とクラッド部中心
が一致し易くなる。
Therefore, a method of reducing the core eccentricity without changing the compositions of the core rod and the cladding pipe was considered. As a concrete value, it is known that the core eccentricity is preferably 0.2% or less. As a result of various studies to achieve this value, when the core rod is inserted into the cladding pipe, the core rod should be fixed so that the center of the core rod and the center of the cladding pipe match as much as possible. I understood it. Specifically, if the gap between the core portion rod and the clad portion pipe is made smaller in the maximum outer diameter portion, the core portion rod becomes difficult to move in the clad portion pipe. That is, if the center of the core rod and the center of the clad pipe are made to coincide with each other, the center of the core and the center of the clad can be easily coincided with each other even in the minimum outer diameter portion of the rod for the core.

【0008】また通常ロッドを作製する際に、太いロッ
ドを延伸または機械的に研磨する工程において、均一な
外径を持つ部分とテーパ型の部分とが生じるので、この
テーパ部も使用できればより経済的であると考え、テー
パ状ロッドの場合、最大外径に対して最小外径がどの程
度の範囲のものであれば外径が均一なものと同様に実用
に供するかも併せて調べた。
Further, when a rod is usually manufactured, a portion having a uniform outer diameter and a tapered portion are formed in a step of stretching or mechanically polishing a thick rod. Therefore, if this tapered portion can also be used, it is more economical. Therefore, in the case of the tapered rod, the range of the minimum outer diameter with respect to the maximum outer diameter was examined as well as the practical use as well as the uniform outer diameter.

【0009】[0009]

【実施例】以下、本発明の実験例を詳細に説明する。20
00ppmのPr、具体的には PrF3 と8mol%の PbF2 をドー
プした ZBLAN系フッ化物ガラスを作製し、該 ZBLAN系フ
ッ化物ガラスを溶解後鋳型に鋳込むことによって外径が
10mmのコア部用ロッドを作製した。該コア部用ロッドを
不活性ガス、具体的にはアルゴンガス中で延伸して形状
が異なるコア部用ロッドを 8種類作製した。また、 40m
ol%の HfF4 をドープした ZBLAN系フッ化物ガラスを作
製し、溶解後回転する鋳型に鋳込むことにより外径10m
m、内径 3.5mm、長さ 140mmのクラッド部用パイプを16
本作製した。前記形状が異なるコア部用ロッドを前記ク
ラッド部用パイプ内に挿入し、これらを不活性ガス、具
体的にはアルゴンガス中で約 300℃に加熱し一体化した
後、さらに延伸してクラッド部付きコア部用ロッドを作
製した。クラッド部の厚さを確保するため、前記クラッ
ド部付きコア部用ロッドと残りの前記クラッド部用パイ
プを1回目と同様な方法で一体化・延伸して8本の ZBLA
N系フッ化物ガラス光導波路用母材を作製をした。該 ZB
LAN系フッ化物ガラス光導波路用母材を線引してクラッ
ド部径 125μm、コア部径 2〜5 μmの光導波路を得
た。該光導波路を切断し、顕微鏡でコア部の偏心を測定
した。
EXAMPLES Hereinafter, experimental examples of the present invention will be described in detail. 20
A ZBLAN-based fluoride glass doped with 00 ppm Pr, specifically PrF 3 and 8 mol% PbF 2 was prepared, and the ZBLAN-based fluoride glass was melted and cast into a mold to have an outer diameter of
A 10 mm core rod was produced. The core rod was stretched in an inert gas, specifically, argon gas to prepare eight types of core rods having different shapes. Also 40m
ZBLAN-based fluoride glass doped with ol% HfF 4 was produced, melted and cast into a rotating mold to produce an outer diameter of 10 m.
16 m pipe with inner diameter 3.5 mm and length 140 mm
This was made. The core rods with different shapes are inserted into the clad pipe, and these are heated to about 300 ° C in an inert gas, specifically, argon gas to be integrated, and then further stretched to form a clad portion. A rod for core part with a core was prepared. In order to secure the thickness of the clad part, the rod for the core part with the clad part and the rest of the pipe for the clad part are integrated and stretched in the same manner as the first time, and eight ZBLA
A base material for N-based fluoride glass optical waveguide was prepared. The ZB
A base material for a LAN-based fluoride glass optical waveguide was drawn to obtain an optical waveguide having a clad diameter of 125 μm and a core diameter of 2 to 5 μm. The optical waveguide was cut, and the eccentricity of the core portion was measured with a microscope.

【0010】表1に示すように、光導波路を作製する工
程において、テーパ状のフッ化物ガラスからなるロッド
とパイプを用いて一体化する場合に、ロッドの最大外径
をd1、最小外径をd2、パイプの内径を Dとして、これら
が 0≦(D-d1)≦0.2mm および d1≧d2≧(d1)/2 の関係を満たすとき、コア偏心を 0.2%以下とできるこ
とを見いだした。尚、コア部偏心が 0.2%以下であれば
接続損失は充分小さく実用化には何ら問題は生じない。
尚、前記実験では、クラッド部用パイプの挿入を2回行
っているが、クラッド部用のパイプの肉厚を厚くすれ
ば、1回の工程で行えることは言うまでも無い。
As shown in Table 1, in the process of manufacturing an optical waveguide, when a rod made of a tapered fluoride glass is integrated with a pipe by using a pipe, the maximum outer diameter of the rod is d1 and the minimum outer diameter is It was found that the core eccentricity can be 0.2% or less when d2 and D are the inner diameter of the pipe and they satisfy the relations of 0 ≦ (D-d1) ≦ 0.2 mm and d1 ≧ d2 ≧ (d1) / 2. If the eccentricity of the core part is 0.2% or less, the connection loss is sufficiently small and no problem occurs in practical use.
In the above experiment, the cladding pipe was inserted twice, but it goes without saying that if the cladding pipe is made thicker, it can be performed in one step.

【0011】[0011]

【表1】 ※1 パイプの外径(D) は10.0mm、内径3.5mm 。表中の
d1はロッド最大径、d2は最小径、また 1式は 0≦(D-d1)
≦0.2 (mm)、 2式はd1≧d2≧(d1)/2である。 ※2 番号1、5、6が本発明の実施例、他は比較例で
ある。
[Table 1] * 1 The outer diameter (D) of the pipe is 10.0 mm and the inner diameter is 3.5 mm. In the table
d1 is the maximum diameter of the rod, d2 is the minimum diameter, and 1 formula is 0 ≦ (D-d1)
≦ 0.2 (mm), Formula 2 is d1 ≧ d2 ≧ (d1) / 2. * 2 Numbers 1, 5 and 6 are examples of the present invention, and others are comparative examples.

【0012】[0012]

【発明の効果】本発明によれば、光導波路を作製する工
程においてフッ化物ガラスからなるロッドとパイプを加
熱・一体化する場合に、テーパ型のロッドの最大外径を
d1、最小外径をd2、パイプの内径を Dとしてこれらが、
0≦(D-d1)≦ 0.2mmおよびd1≧d2≧(d1)/2の関係を満た
すことを特徴とするフッ化物ガラス光導波路の製造方法
によって、コア部偏心の小さいすなわち、接続損失の小
さな光増幅用フッ化物ガラス光導波路を得ることができ
る。
According to the present invention, when the rod made of fluoride glass and the pipe are heated and integrated in the process of manufacturing the optical waveguide, the maximum outer diameter of the taper type rod is set.
Let d1, minimum outer diameter be d2, pipe inner diameter be D,
0 ≦ (D-d1) ≦ 0.2 mm and d1 ≧ d2 ≧ (d1) / 2 are satisfied by the manufacturing method of the fluoride glass optical waveguide, the eccentricity of the core is small, that is, the connection loss is small. A fluoride glass optical waveguide for optical amplification can be obtained.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/00 376 B 7036−2K 6/12 N 9018−2K 6/16 7036−2K Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI Technical display location G02B 6/00 376 B 7036-2K 6/12 N 9018-2K 6/16 7036-2K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ化物ガラス光導波路を製造する方法
において、フッ化物ガラスからなるロッドをフッ化物ガ
ラスからなるパイプに挿入して一体化する際に、前記ロ
ッドの最大外径をd1、最小外径をd2、前記パイプの内径
を Dとすると、d1、d2、 Dが 0≦(D-d1)≦ 0.2mmおよび
d1≧d2≧(d1)/2の関係を満たすようにすることを特徴と
するフッ化物ガラス光導波路の製造方法。
1. A method for producing a fluoride glass optical waveguide, wherein when a rod made of fluoride glass is inserted into a pipe made of fluoride glass and integrated, a maximum outer diameter of the rod is d1 and a minimum outer diameter is If the diameter is d2 and the inner diameter of the pipe is D, then d1, d2 and D are 0 ≦ (D-d1) ≦ 0.2 mm and
A method of manufacturing a fluoride glass optical waveguide, characterized by satisfying a relationship of d1 ≧ d2 ≧ (d1) / 2.
JP24028892A 1992-09-09 1992-09-09 Production of fluoride glass optical waveguide Pending JPH0692665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24028892A JPH0692665A (en) 1992-09-09 1992-09-09 Production of fluoride glass optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24028892A JPH0692665A (en) 1992-09-09 1992-09-09 Production of fluoride glass optical waveguide

Publications (1)

Publication Number Publication Date
JPH0692665A true JPH0692665A (en) 1994-04-05

Family

ID=17057254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24028892A Pending JPH0692665A (en) 1992-09-09 1992-09-09 Production of fluoride glass optical waveguide

Country Status (1)

Country Link
JP (1) JPH0692665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035494A1 (en) * 2002-10-15 2004-04-29 Mitsubishi Cable Industries, Ltd. Optical fiber mother material producing method, optical fiber mother material, optical fiber, optical fiber mother material producing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035494A1 (en) * 2002-10-15 2004-04-29 Mitsubishi Cable Industries, Ltd. Optical fiber mother material producing method, optical fiber mother material, optical fiber, optical fiber mother material producing device

Similar Documents

Publication Publication Date Title
JP3386460B2 (en) Waveguide structure with laser characteristics
JP2002510273A (en) Composition for optical waveguide article and method of making striatum with continuous coating
JPH09159846A (en) Rare earth element added multicore fiber and its production
JP3730775B2 (en) Tellurite glass, optical amplifier and light source using the tellurite glass
JPWO2013038794A1 (en) Optical fiber, optical fiber laser and optical fiber amplifier, and optical fiber manufacturing method
US5338607A (en) 1.3 micrometer-band amplifying optical fiber preform
CA2341713A1 (en) Methods and apparatus for producing optical fiber
JP2830617B2 (en) Rare earth element-doped multi-core fiber and method for producing the same
AU719124B2 (en) A method of manufacturing a monomode optical fiber, and an optical amplifier using such a fiber
US6628883B2 (en) Silica glass composition with lasing properties, an optical waveguide and a method of amplifying optical signals
JPH0692665A (en) Production of fluoride glass optical waveguide
AU682490B2 (en) Light guide for optical fibre amplifiers for the wavelength range around 1300 NM
JPH0990143A (en) Production of multicore fiber
US6587633B2 (en) Active optical fibre doped with rare earth elements
Wang et al. All-glass high NA Yb-doped double-clad laser fibres made by outside-vapour deposition
JP2001102661A (en) Optical amplifying glass fiber
US5695880A (en) Lead-containing fluoride glass, optical fiber and process for producing it
JP2972366B2 (en) Partial erbium-doped optical fiber coupler and method of manufacturing the same
JP2618544B2 (en) Optical fiber connection method
JPH11199260A (en) Production of preform of constant polarization optical fiber
JP3220821B2 (en) Method for manufacturing single mode optical fiber
JPH03287236A (en) Optical fiber component
JP3315786B2 (en) Optical amplifier type optical fiber
JP3108210B2 (en) Fluoride glass optical waveguide
NiiZeki Single mode fiber at zero-dispersion wavelength