JP2830617B2 - Rare earth element-doped multi-core fiber and method for producing the same - Google Patents

Rare earth element-doped multi-core fiber and method for producing the same

Info

Publication number
JP2830617B2
JP2830617B2 JP4157919A JP15791992A JP2830617B2 JP 2830617 B2 JP2830617 B2 JP 2830617B2 JP 4157919 A JP4157919 A JP 4157919A JP 15791992 A JP15791992 A JP 15791992A JP 2830617 B2 JP2830617 B2 JP 2830617B2
Authority
JP
Japan
Prior art keywords
core
earth element
rare
rare earth
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4157919A
Other languages
Japanese (ja)
Other versions
JPH05345632A (en
Inventor
克之 井本
弘之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP4157919A priority Critical patent/JP2830617B2/en
Publication of JPH05345632A publication Critical patent/JPH05345632A/en
Application granted granted Critical
Publication of JP2830617B2 publication Critical patent/JP2830617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コアよりも低屈折率の
クラッド内に、Er、Ndなどの希土類元素と窒素とを
含んだコアを複数個設けた希土類元素添加マルチコアフ
ァイバ及びその製造方法に係り、特に、大電力増幅用フ
ァイバに好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth element-doped multi-core fiber in which a plurality of cores containing a rare earth element such as Er and Nd and nitrogen are provided in a cladding having a lower refractive index than the core and a method of manufacturing the same. In particular, it is suitable for a high power amplification fiber.

【0002】[0002]

【従来の技術】近年、光ファイバのコア内にEr(エル
ビウム)、Nd(ネオジム)、Pr(プラセオジム)な
どの希土類元素を添加し、添加した希土類元素に固有の
吸収特性をもつ励起光を光ファイバに励起することによ
って、信号光を増幅する光ファイバ増幅器の研究開発が
活発化してきた。
2. Description of the Related Art In recent years, rare-earth elements such as Er (erbium), Nd (neodymium), and Pr (praseodymium) have been added to the core of an optical fiber, and excitation light having an absorption characteristic inherent to the added rare-earth element has been generated. Research and development of an optical fiber amplifier that amplifies signal light by exciting the fiber has been activated.

【0003】図12は、従来の光ファイバ増幅器の構成
例を示したものである。これは、波長1.5μm帯の信
号光を矢印20、21に示すようにErを添加した光フ
ァイバ22のコア内を伝搬させると共に、その途中から
光方向性結合器23を介して、波長1.47μm(ある
いは0.98μm)の励起用半導体レーザ24を駆動回
路25で駆動して、その励起光も光ファイバ22に伝搬
させることにより、反転分布状態を実現し、それにより
上記信号光を数百倍から1万倍程度に増幅する作用をも
ったものである。なお、出力側の方向性結合器は増幅さ
れた信号光の中に含まれる励起用半導体レーザの光を除
去する機能をもっている。
FIG. 12 shows a configuration example of a conventional optical fiber amplifier. This is because the signal light in the 1.5 μm wavelength band propagates through the core of the optical fiber 22 doped with Er as shown by arrows 20 and 21, and from the middle thereof via the optical directional coupler 23 to the wavelength 1. A driving circuit 25 drives a .47 μm (or 0.98 μm) pumping semiconductor laser 24, and the pumping light also propagates through the optical fiber 22, thereby realizing a population inversion state. It has the effect of amplifying it by a factor of about 100 to 10,000. The directional coupler on the output side has a function of removing the light of the pumping semiconductor laser included in the amplified signal light.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光ファイバ増幅器には次のような解決しなければならな
い課題が残されている。
However, the conventional optical fiber amplifier has the following problems to be solved.

【0005】(1)クラッド内に1個のコアしか埋め込
まれていなかったので、コア内へ入射する信号光の電力
が+10dBm以上になると、コア内のErによる濃度
消光、およびコ・オペレイティブコンバージョン(co=o
perative conversion )のため、増幅度が急激に低下し
てくる。このため出力側に大きな光電力を得ることが難
しい。
(1) Since only one core is buried in the cladding, when the power of the signal light incident on the core becomes +10 dBm or more, concentration quenching due to Er in the core and co-operative conversion (Co = o
Because of the perative conversion, the amplification drops sharply. Therefore, it is difficult to obtain a large optical power at the output side.

【0006】(2)従って、信号光を数十以上に分配す
るいわゆる分配システムを実現することが難しい。
(2) Therefore, it is difficult to realize a so-called distribution system for distributing signal light to several tens or more.

【0007】(3)コア径が小さいことと、コアとクラ
ッドとの屈折率差が小さいため、およびEr添加量を上
記理由により高濃度に添加できないため、コア内へ入射
した励起光は増幅器用として効率よく寄与せず、かなり
の励起光が出力側の光方向性結合器より排出され、不経
済である。
(3) Since the core diameter is small, the refractive index difference between the core and the clad is small, and the amount of Er cannot be added at a high concentration for the above-mentioned reason, the pump light incident into the core is used for the amplifier. Does not contribute efficiently, and considerable pumping light is emitted from the optical directional coupler on the output side, which is uneconomical.

【0008】そこで、このような問題点を解決する一つ
の方法として、本発明者は、希土類元素を含んだコアを
クラッド内に複数個埋め込んだ希土類元素添加マルチコ
アファイバを提案し、その製造方法として上記光ファイ
バを多数本束ねて石英ガラス管内に入れ、このガラス管
を加熱溶融しながら光ファイバに線引する工程を少なく
とも1回行う方法を先に提案しているが(特願平4−9
6618号明細書)、上記線引工程を繰り返すと、従来
の光ファイバ増幅器用光ファイバでは、コア内の屈折率
制御用添加物であるGe、P、Ti、Alなどが拡散し
てしまい、コアとクラッドとの屈折率差を大きくとれな
いことが分かった。この低屈折率差は励起光のコア内へ
の閉じ込めを悪くし、結果的に大電力増幅を不可能にし
てしまうことも分かった。このため、本提案によっても
未だ上記(1)〜(3)の課題解決手段としては十分と
はいえなかった。
Therefore, as one method for solving such a problem, the present inventors have proposed a rare-earth element-doped multi-core fiber in which a plurality of cores containing a rare-earth element are embedded in a cladding. A method has been previously proposed in which a number of the above optical fibers are bundled and placed in a quartz glass tube, and a step of drawing the optical fiber while heating and melting the glass tube at least once is disclosed in Japanese Patent Application No. 4-9 / 1990.
Repeating the drawing step described above, in a conventional optical fiber for an optical fiber amplifier, Ge, P, Ti, Al, etc., which are refractive index control additives in the core, diffuse, and It was found that the refractive index difference between the cladding and the cladding could not be made large. It has also been found that this low refractive index difference makes the confinement of the pump light in the core worse, and consequently makes high power amplification impossible. For this reason, even with this proposal, it cannot be said that the means for solving the problems (1) to (3) are still sufficient.

【0009】また、これ以外の付随的問題として、比屈
折率差を大きく取るために、コア内にGe、P、Ti、
Alなどの屈折率制御用添加物を入れても、比屈折率差
Δを1%以上に大きくすることは難しく、またコアとク
ラッドとの熱膨張係数の差も大きくなり、光ファイバ内
に応力が残留し、損失増大や機械的クラックの発生など
の欠点が生ずることも分かった。
[0009] As another incidental problem, Ge, P, Ti, and the like are provided in the core in order to obtain a large relative refractive index difference.
Even if a refractive index control additive such as Al is added, it is difficult to increase the relative refractive index difference Δ to 1% or more, and the difference in the coefficient of thermal expansion between the core and the clad increases. It was also found that defects such as increased loss and mechanical cracks occurred.

【0010】本発明の目的は、前記した従来技術の欠点
を解消し、電力増幅が行え、結果的に電力伝送及び分配
伝送システムを実現できると共に、励起光を効率良く使
える希土類元素添加マルチコアファイバ及びその製造方
法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, perform power amplification, and consequently realize a power transmission and distribution system, and use a rare earth element-doped multi-core fiber that can efficiently use pump light. It is to provide a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】第1の発明は、屈折率n
c11つのクラッド内に、希土類元素と数アトミック%
から数十アトミック%の含有量の窒素とを含んだクラッ
ドよりも高い屈折率nw のコアを複数個設けた希土類元
素添加マルチコアファイバである。
According to a first aspect of the present invention, a refractive index n
Rare earth elements and several atomic% in one clad of c1
Cladding which contains a nitrogen of a few tens of atomic percent of the content from
This is a rare-earth element-doped multi-core fiber provided with a plurality of cores having a refractive index n w higher than the core.

【0012】第2の発明は、希土類元素と数アトミック
%から数十アトミック%の含有量の窒素とを含んだ屈折
率nw のコアの外周をこれよりも低屈折率nc2の被覆
用クラッドで被覆し、この被覆用クラッドで被覆した屈
折率nw のコアを、これよりも低屈折率nc1のクラッ
ド内に複数個設けてなると共に、前記複数個の被覆用ク
ラッドは互いに溶融されてなる希土類元素添加マルチコ
アファイバである。
The second invention relates to rare earth elements and a few atomic atoms.
Coated with coating cladding low had refractive index n c2 than this outer periphery of the core of the refractive index n w containing nitrogen dozens atomic% content from%, the refractive index coated with this coating cladding the core of n w, a plurality together formed by providing in the cladding of the low had refractive index n c1 than this, the plurality of coating click
Ladd is a rare-earth-doped multi-core fiber fused together .

【0013】第3の発明は、第1または第2の発明にお
いて、クラッド内にその軟化点温度を低下させる添加物
を含有させたものである。
According to a third aspect, in the first or second aspect, an additive for lowering the softening point is contained in the clad.

【0014】第4の発明は、第1から第3の発明におい
て、コアとして、希土類元素とAl2 3 とを含んだS
iOx y を用いたものである。
According to a fourth aspect of the present invention, in the first to third aspects, the core contains a rare earth element and Al 2 O 3 containing S 2 O 3 .
iO x N y is used.

【0015】第5の発明は、第1から第4の発明におい
て、希土類元素添加マルチコアファイバの長手方向に沿
って、その外径が太い径から始ってテーパ状に細くなり
伝搬モードを結合させた細径部を経て、再びテーパ状に
太くなって終わるように構成したものである。
According to a fifth aspect, in the first to fourth aspects, the outer diameter of the rare-earth-doped multi-core fiber starts from a large diameter and narrows in a tapered shape along the longitudinal direction to couple the propagation modes. It is configured so that it passes through the small diameter portion and then ends up again in a tapered shape.

【0016】第6の発明は、第1から第4の発明におい
て、希土類元素添加マルチコアファイバの長手方向に沿
ってその外径が伝搬モードを結合させた細径部からテー
パ状に単調に太くなっていくように構成されたものであ
る。
In a sixth aspect based on the first to fourth aspects, the outer diameter of the rare-earth element-doped multi-core fiber monotonically increases in a tapered manner from the small-diameter portion where the propagation mode is coupled along the longitudinal direction. It is configured to go.

【0017】第7の発明は、コアとなるSiO2 の多孔
質母材を形成する工程と、多孔質母材を希土類元素を含
む溶液中に液浸して多孔質母材中に希土類元素を所定濃
度添加させ、乾燥する工程と、乾燥した多孔質母材をN
3 ガスを含む雰囲気下で加熱透明化する工程と、透明
化した母材外周を、SiO2 の軟化点温度を低下させる
添加物を含有したクラッドとなるSiO2 材で覆う工程
と、SiO2 材で覆った母材を加熱溶融して光ファイバ
に線引する工程と、光ファイバを束にして石英系ガラス
管内に挿入し、ガラス管を加熱溶融しながら光ファイバ
に線引する工程を少なくとも1回行うようにした希土類
元素添加マルチコアファイバの製造方法である。
According to a seventh aspect of the present invention, there is provided a step of forming a porous base material of SiO 2 serving as a core, and immersing the porous base material in a solution containing a rare earth element so that a predetermined amount of the rare earth element is contained in the porous base material. Concentration and drying; and drying the dried porous base material with N
And heating transparent in an atmosphere containing and H 3 gas, a transparent and preform periphery, a step of covering with SiO 2 material as a cladding containing the additive to lower the softening point temperature of SiO 2, SiO 2 At least a step of heating and melting the base material covered with the material and drawing the optical fiber, and a step of inserting the optical fibers in a bundle into a silica glass tube and drawing the optical fiber while heating and melting the glass tube. This is a method for manufacturing a rare-earth element-doped multi-core fiber that is performed once.

【0018】第8の発明は、第7の発明において、多孔
質母材をNH3 ガスを含む雰囲気下で加熱透明化する際
に、He、Cl2 などのガスを少なくとも1種添加した
ものである。
According to an eighth aspect, in the seventh aspect, at least one kind of gas such as He or Cl 2 is added when the porous base material is heated and made transparent in an atmosphere containing NH 3 gas. is there.

【0019】[0019]

【作用】第1及び第2の発明のように、複数個設けたコ
アの個数をN個とすると、クラッド内のコアの数量が従
来に比べてN倍に増えており、しかも希土類元素の添加
量もN倍に増え、かつそれぞれのコア内に均一に添加さ
れる。従って、信号光の電力が+10dBm以上になっ
ても増幅度の急激な低下はなく、大きく増幅された光電
力を出力側に容易に得ることができる。またコア材料と
して窒素を含んでいるので、コアの屈折率を広範囲に制
御でき、このためクラッドに屈折率制御用添加物を入れ
ることにより、比屈折率差Δを1%以上に大きくでき
る。特に第4の発明のように窒素の添加されたSiOx
y を用いると、数アトミック%〜数十アトミック%の
窒素の添加量により、屈折率(波長0.63μmでの
値)を1.465から1.70の範囲で制御することが
できる。これにより、励起光をコア内に効率良く閉じ込
めて伝搬させることができ、比屈折率差Δも10%程度
まで大きくできるため、結果的に大電力増幅を実現する
ことができる。なお、一例として、窒素添加量が28ア
トミック%の場合、コア屈折率は1.543となる。ま
た、窒素添加量が10アトミック%の場合、コア屈折率
は1.510、20アトミック%の場合、コア屈折率は
1.556、5アトミック%の場合、コア屈折率は1.
500となる。
When the number of cores provided is N as in the first and second inventions, the number of cores in the cladding is increased N times as compared with the conventional one, and the addition of rare earth elements The amount is also increased by a factor of N and is evenly added in each core. Therefore, even if the power of the signal light becomes +10 dBm or more, the amplification degree does not decrease sharply, and a large amplified optical power can be easily obtained on the output side. In addition, since nitrogen is contained as a core material, the refractive index of the core can be controlled in a wide range. Therefore, by adding a refractive index control additive to the cladding, the relative refractive index difference Δ can be increased to 1% or more. In particular, SiO x to which nitrogen is added as in the fourth invention.
When Ny is used, the refractive index (value at a wavelength of 0.63 μm) can be controlled in the range of 1.465 to 1.70 by the addition amount of nitrogen of several atomic% to several tens atomic%. As a result, the pumping light can be efficiently confined and propagated in the core, and the relative refractive index difference Δ can be increased to about 10%. As a result, high power amplification can be realized. As an example, when the nitrogen addition amount is 28 atomic%, the core refractive index is 1.543. When the nitrogen addition amount is 10 atomic%, the core refractive index is 1.510, when the atomic ratio is 20 atomic%, the core refractive index is 1.556, and when the atomic atomic ratio is 5 atomic%, the core refractive index is 1.
500.

【0020】また第3の発明のように、コアの外周のク
ラッドの軟化点温度をコアのそれよりも低く、好ましく
はかなり低くすると、光ファイバに線引する際、例えば
第7の発明の方法により、石英系ガラス管内に上記光フ
ァイバを束にして挿入し、加熱溶融しながら光ファイバ
に線引する際、それぞれのコアの形状の変形が少なく、
クラッド同士が容易に溶け合って、クラッド内にそれぞ
れ円形に近いコアを均等に埋め込んだ希土類元素添加マ
ルチコアファイバを得ることができる。これにより、偏
光依存性の少ない光ファイバを得ることができる。
When the softening point temperature of the cladding on the outer periphery of the core is lower than that of the core, and preferably considerably lower, as in the third invention, when the optical fiber is drawn, for example, the method of the seventh invention is used. Thereby, when the optical fibers are bundled and inserted into a quartz glass tube, and when the optical fibers are drawn while being heated and melted, the deformation of the shape of each core is small,
The claddings are easily fused with each other, and a rare-earth-element-doped multi-core fiber in which the respective cores each having a substantially circular shape are evenly embedded in the cladding can be obtained. Thereby, an optical fiber with little polarization dependence can be obtained.

【0021】また第5から第6の発明のように、クラッ
ド内に窒素と希土類元素の添加されたコアが複数個埋め
込まれているマルチコアファイバにテーパをもたせる
と、コア個数と同じ数の光信号を共通増幅する機能と、
同数の光信号を均一に混合する機能とをもたせることが
でき、しかも、大電力増幅が実現できるので、光信号を
数十以上に分配するいわゆる分配システムが可能とな
る。
As in the fifth and sixth aspects of the present invention, when a multi-core fiber in which a plurality of cores doped with nitrogen and a rare earth element are embedded in the cladding is tapered, the same number of optical signals as the number of cores are obtained. Function to amplify the
Since a function of uniformly mixing the same number of optical signals can be provided, and high power amplification can be realized, a so-called distribution system for distributing optical signals to several tens or more is possible.

【0022】また、マルチコアファイバを製造するに当
って、コアに希土類元素をふくませた従来のものでは光
ファイバに線引する工程を何回か繰り返した場合、コア
内にGe、P、Ti、Al等の屈折率制御用添加物が含
まれていると容易に拡散し、コアの屈折率を低下させる
ことになるが、第7の発明のように多孔質母材をNH3
ガスを含む雰囲気下で加熱透明化して、希土類元素を含
んだSiOx y のコア、すなわち希土類元素と窒素と
を含んだコアとすると、何回も光ファイバにする線引工
程を繰り返しても屈折率の変化がほとんど生じないとい
う特徴がある。このSiOx y の熱膨張係数はSiO
2 に近い値であるので、光ファイバ内への応力の残留が
少なく、これによる損失増大や機械的クラックの発生等
の問題がない。また、SiOx y の軟化点温度はSi
2 と同程度であるので、光ファイバ作製時の形状変形
がほとんどなく、ほぼ円形状を保ったマルチコアファイ
バを作ることができる。これは偏光依存性の少ない特性
を実現する上で有利である。
Further, in manufacturing a multi-core fiber, in the case of a conventional one in which a rare earth element is included in the core, when the step of drawing the optical fiber is repeated several times, Ge, P, Ti, When a refractive index control additive such as Al is contained, the additive easily diffuses and lowers the refractive index of the core. However, as in the seventh invention, the porous base material is made of NH 3.
When the core is made of SiO x N y containing a rare earth element, that is, a core containing a rare earth element and nitrogen, which is made transparent by heating under an atmosphere containing a gas, even if the drawing step of making an optical fiber is repeated many times, There is a feature that almost no change in the refractive index occurs. The thermal expansion coefficient of this SiO x N y is SiO
Since the value is close to 2 , the residual stress in the optical fiber is small, and there is no problem such as an increase in loss and generation of a mechanical crack. The softening point temperature of SiO x N y is Si
Since it is about the same as O 2 , it is possible to produce a multi-core fiber which has almost no shape deformation at the time of producing an optical fiber and maintains a substantially circular shape. This is advantageous in realizing characteristics with little polarization dependence.

【0023】また、第8の発明のように、多孔質母材を
NH3 ガスを含む雰囲気下で加熱透明化する際に、H
e、Cl2 などのガスを少なくとも1種添加すると、窒
素及び希土類元素の含有と透明化の促進が図れる。
When the transparent base material is heated and transparentized in an atmosphere containing NH 3 gas as in the eighth invention, H
When at least one kind of gas such as e and Cl 2 is added, the content of nitrogen and rare earth elements and the promotion of transparency can be promoted.

【0024】[0024]

【実施例】図1に本発明の第1の実施例を示す。これは
低屈折率nc1のクラッド3内に希土類元素と窒素とを含
んだ高屈折率nw (nw >nc1)のコア2が49個埋め
込まれた希土類元素添加マルチコアファイバ1を示して
いる。図1(A)は、そのファイバ1の正面図、図1
(B)はそのファイバ1の側面図すなわち端面図を示し
たものである。コア2は希土類元素を含んだSiOx
y が用いられ、その窒素の含有量は数アトミック%から
数十アトミック%の範囲が好ましい。この範囲内である
と屈折率(波長0.63μmでの値)を1.465から
1.70の範囲で制御することができるからであり、こ
の範囲を超えると酸素が不足し、Si34 に近づくこ
とになり、SiO2 系組成との組成の違いが大きくな
り、物理的性質(熱膨張係数、軟化点温度など)の差が
大きくなり好ましくないからである。
FIG. 1 shows a first embodiment of the present invention. This shows a rare-earth element-doped multi-core fiber 1 in which 49 high-refractive-index n w (n w > n c1 ) cores 2 containing a rare-earth element and nitrogen are embedded in a clad 3 having a low refractive index n c1. I have. FIG. 1A is a front view of the fiber 1 and FIG.
(B) shows a side view, that is, an end view of the fiber 1. The core 2 is made of SiO x N containing a rare earth element.
y is used, and its nitrogen content is preferably in the range of several atomic% to several tens atomic%. The range refractive index as the (value at a wavelength of 0.63 .mu.m) is because it is possible to control in the range of 1.465 1.70, the oxygen is insufficient exceeds this range, Si 3 N This is because it approaches 4 , and the difference in composition from the SiO 2 composition becomes large, and the difference in physical properties (thermal expansion coefficient, softening point temperature, etc.) becomes large, which is not preferable.

【0025】コア2の屈折率を1.465から1.70
の範囲に制御することができる結果、クラッド3にSi
2 、あるいはSiO2 にB、F、P、Geなどの軟化
点温度を低下させる添加物を少なくとも1種含んだもの
を用いると、コア2とクラッド3との比屈折率差Δは1
%以上、10%程度まで高Δ化を図ることができる。希
土類元素としてはEr以外に、Nd、Pr、Sm、T
m、Yb、Ho、Ceなどを少なくとも1種含んだもの
を用いることができる。なお、コア2内には希土類元素
を高濃度に添加したときに生じる濃度消光およびコ・オ
ペレイティブコンバージョンによる増幅度の低下を抑圧
するためにAlないしAl2 3 を添加してもよい。
The refractive index of the core 2 is changed from 1.465 to 1.70.
As a result, the cladding 3
When O 2 or SiO 2 containing at least one additive such as B, F, P, Ge or the like that lowers the softening point temperature is used, the relative refractive index difference Δ between the core 2 and the clad 3 becomes 1
% To about 10%. As rare earth elements, besides Er, Nd, Pr, Sm, T
A material containing at least one of m, Yb, Ho, Ce and the like can be used. In addition, Al or Al 2 O 3 may be added to the core 2 in order to suppress concentration quenching and a decrease in amplification degree due to co-operative conversion caused when a rare earth element is added at a high concentration.

【0026】また、コア2の直径aは、シングルモード
伝送の場合、規格化周波数Vの定義式を満足するように
選定される。すなわち、 V={(2πanw )/λ}(2Δ)1/2 <2.405 (1) ただし、λ:伝送する信号光の波長 通常、aは0.数μmから数μmの範囲が好ましい値で
ある。マルチモード伝送の場合にはV>2.405にな
ることからaはさらに大きい値(数μm〜数十μm)が
選ばれる。
The diameter a of the core 2 is selected so as to satisfy the definition of the standardized frequency V in the case of single mode transmission. That is, V = {(2πan w ) / λ} (2Δ) 1/2 <2.405 (1) where λ is the wavelength of the signal light to be transmitted. A range of several μm to several μm is a preferable value. In the case of multi-mode transmission, since V> 2.405, a is selected to be a larger value (several μm to several tens μm).

【0027】図2は本発明の第2の実施例を示したもの
である。これは図1の場合に比し、希土類元素と窒素と
を添加したコア2のサイズを大きくしてクラッド3内に
おける上記コア2の面積を広くすることにより、信号光
及び励起光を多量に伝搬させ、大電力伝送を行わせるよ
うにしたものである。
FIG. 2 shows a second embodiment of the present invention. Compared to the case of FIG. 1, the size of the core 2 to which the rare earth element and nitrogen are added is increased to increase the area of the core 2 in the cladding 3 so that a large amount of signal light and pump light are propagated. Thus, high power transmission is performed.

【0028】図3は本発明の第3の実施例を示したもの
である。これは屈折率nc1クラッド3内の希土類元素添
加コア2の外周に屈折率nc2(nc2<nw 、nc2>nc1
あるいはnc2≦nc1)の被覆用クラッド4を設けた構造
である。nc2>nc1あるいはnc2≦nc1のように屈折率
の関係を選定することにより、コア2内への光の閉じ込
めを強めると共に(nc1>nc2)、被覆用クラッド4と
クラッド3との界面不整による散乱損失の低減を図って
いる(nc1<nc2)。この被覆用クラッド4の材質はS
iO2 にB、F、P、Geなどの軟化点温度を低下させ
る添加物を少なくとも1種含んだものを用いる。
FIG. 3 shows a third embodiment of the present invention. This is because the refractive index n c2 (n c2 <n w , n c2 > n c1) is formed on the outer periphery of the rare earth element-added core 2 in the refractive index n c1 clad 3.
Alternatively, it is a structure in which the cladding 4 for coating is set such that n c2 ≦ n c1 ). By selecting a refractive index relationship such that n c2 > n c1 or n c2 ≦ n c1 , the confinement of light in the core 2 is enhanced (n c1 > n c2 ), and the cladding 4 and the cladding 3 are coated. To reduce the scattering loss due to the interface irregularity with ( c1 < nc2 ). The material of the coating cladding 4 is S
iO 2 containing at least one additive such as B, F, P, Ge or the like that lowers the softening point temperature is used.

【0029】図4は本発明の第4の実施例を示したもの
である。これは被覆用クラッド4の厚みを薄くし、希土
類元素添加コア2の直径を大きくすることにより、信号
光および励起光をより多く上記コア2内に伝搬させるよ
うにしたものである。その結果、さらに大電力増幅を高
めたものである。
FIG. 4 shows a fourth embodiment of the present invention. This is to reduce the thickness of the coating cladding 4 and increase the diameter of the rare-earth element-added core 2 so that more signal light and pumping light propagate through the core 2. As a result, high power amplification is further enhanced.

【0030】図5は本発明の第5の実施例を示したもの
である。これは希土類元素と窒素とを含んだコア2をク
ラッド3の中央部付近に集中させて分布するようにした
ものである。このように希土類元素と窒素とを含んだコ
ア2をクラッド3の中央部付近に集中させて分布するよ
うにしておくと、通常の光ファイバとの接続が容易とな
る。例えば、クラッド3の直径を125μmとし、希土
類元素と窒素添加のコア2の集中している領域14を外
径10μm近くになるようにしておけば、通常のシング
ルモード光ファイバ(外径125μm、コア系10μ
m)へ効率良く結合させることができる。
FIG. 5 shows a fifth embodiment of the present invention. This is such that a core 2 containing a rare earth element and nitrogen is concentrated and distributed near the center of the clad 3. If the core 2 containing the rare earth element and nitrogen is concentrated and distributed near the center of the clad 3 in this manner, connection with a normal optical fiber becomes easy. For example, if the diameter of the cladding 3 is 125 μm and the region 14 where the rare earth element and the nitrogen-added core 2 are concentrated is made to have an outer diameter of about 10 μm, a normal single mode optical fiber (125 μm in outer diameter, System 10μ
m) can be efficiently combined.

【0031】図6は本発明のマルチコアテーパ型光ファ
イバ5にテーパを付けて細径部で伝搬モードを結合させ
た実施例を示したものである。これもクラッド3内に、
窒素と希土類元素の添加されたコア2が複数個埋め込ま
れている。このマルチコアテーパ型光ファイバ5は、そ
の長手方向に沿って大径からテーパ状に細くなり細径部
を経て再びテーパ状に大径となっており、光スターカプ
ラ間を接続するために使う。後述するように、このマル
チコアテーパ型光ファイバ5は、その入力側光ファイバ
端にn対1の光スターカプラを接続し、その出力側光フ
ァイバ端に1対m(n≠m)の光スターカプラを接続
し、コア2の数に対応したn個の光信号を入力側のn対
1の光スターカプラで合波してこのマルチコアテーパ型
光ファイバ5内を増幅しながら伝搬させ、出力側の1対
mの光スターカプラで上記光信号をm分配する場合に使
う。すなわち、このマルチコアテーパ型光ファイバ5は
n個の光信号を共通増幅する機能とn個の光信号を均一
に混合する機能とをもっている。
FIG. 6 shows an embodiment in which the multi-core tapered optical fiber 5 of the present invention is tapered to couple a propagation mode at a small diameter portion. This is also in the cladding 3,
A plurality of cores 2 to which nitrogen and rare earth elements are added are embedded. The multi-core tapered optical fiber 5 is tapered from a large diameter to a tapered shape along a longitudinal direction, and has a large diameter again through a small diameter portion, and is used to connect between optical star couplers. As will be described later, the multi-core tapered optical fiber 5 has an input-side optical fiber end connected to an n-to-1 optical star coupler, and an output-side optical fiber end connected to a 1-to-m (n ≠ m) optical star. A coupler is connected, and n optical signals corresponding to the number of cores 2 are multiplexed by an n-to-1 optical star coupler on the input side, and propagated while amplifying in the multi-core tapered optical fiber 5, and output on the output side. This is used when the above optical signal is distributed to m by the 1: m optical star coupler. That is, the multi-core tapered optical fiber 5 has a function of commonly amplifying n optical signals and a function of uniformly mixing n optical signals.

【0032】図7も本発明のマルチコアテーパ型光ファ
イバ6の別の実施例を示したものである。クラッド3
(3′)内に4個のコア2(2′)が埋め込まれ、それ
ぞれのコア2、2′内には窒素と希土類元素が添加され
ている。この光ファイバ6は図示例では左側から右側に
向って(すなわち、光の入力側から出力側に向って)形
状がテーパ状に大きくなっている。この光ファイバ6も
光の増幅、分配用部品として使うと好適である。
FIG. 7 also shows another embodiment of the multi-core tapered optical fiber 6 of the present invention. Cladding 3
Four cores 2 (2 ') are embedded in (3'), and nitrogen and a rare earth element are added in each of the cores 2, 2 '. In the illustrated example, the optical fiber 6 has a tapered shape from left to right (that is, from the light input side to the output side). This optical fiber 6 is also preferably used as a component for amplifying and distributing light.

【0033】図8は先に説明した光スターカプラと図7
のマルチコアテーパ型光ファイバ6(図6のマルチコア
テーパ型光ファイバ5でもよい)とを接続した光分配回
路である。すなわち、マルチコアテーパ型光ファイバ6
の入力側にはn対1光スターカプラ28がつながれ、出
力側には1対m光スターカプラ29が接続された構造で
ある。ここで、nはmよりも小さく選ばれる。
FIG. 8 shows the optical star coupler described above and FIG.
Is an optical distribution circuit connected to the multi-core tapered optical fiber 6 (or the multi-core tapered optical fiber 5 in FIG. 6). That is, the multi-core tapered optical fiber 6
Has an n-to-1 optical star coupler 28 connected to its input side, and a 1-to-m optical star coupler 29 connected to its output side. Here, n is selected to be smaller than m.

【0034】次に、図9に上述した希土類元素添加マル
チコアファイバの単位コアを構成する光ファイバの製造
方法の実施例を示す。これは大別して4つの工程(A)
〜(D)からなる。
Next, FIG. 9 shows an embodiment of a method of manufacturing an optical fiber constituting a unit core of the rare earth element-doped multi-core fiber described above. This is roughly divided into four steps (A)
To (D).

【0035】(A)は多孔質母材7を形成する工程であ
る。これはよく知られたVAD法による多孔質母材7の
形成工程である。つまり、出発材10を軸を中心にして
周方向(矢印12方向)に回転させつつ、軸方向(矢印
11方向)に引き上げ、その出発材10の先端に火炎加
水分解バーナ8の火炎9を吹きつけて多孔質母材7を成
長させる方法である。火炎加水分解バーナ8はSiCl
4 の蒸気をArガスで搬送して酸水素の火炎中に送り込
み、火炎中で加水分解反応を起こさせ、スート状の微粒
子を発生させるものである。
(A) is a step of forming the porous preform 7. This is a step of forming the porous preform 7 by the well-known VAD method. That is, while rotating the starting material 10 in the circumferential direction (the direction of the arrow 12) around the axis, it is pulled up in the axial direction (the direction of the arrow 11), and the flame 9 of the flame hydrolysis burner 8 is blown to the tip of the starting material 10. In this method, the porous base material 7 is grown. The flame hydrolysis burner 8 is made of SiCl
The steam of No. 4 is transported by Ar gas and sent into the oxyhydrogen flame, causing a hydrolysis reaction in the flame to generate soot-like fine particles.

【0036】(B)は、多孔質母材7を形成後、この母
材7をガラス管14内に入れ、HeとNH3 とErCl
3 のガスを流しながら電気炉13で加熱、透明化を行
う。矢印151から矢印152方向へ流すHeガスは母
材中へNとErを容易に含有させるための補助ガスとし
て、また多孔質母材の透明化を促進させるガスとして用
いる。この母材中への窒素及びErの添加量は、NH3
及びErCl3 のガス濃度、加熱時間(通常、1〜5時
間)、加熱温度(1300〜1450℃)によって調節
することができる。この透明化は電気炉13内に保持し
て行う方法でもよく、また電気炉13内を軸方向に所望
速度で移動させる、いわゆるゾーンメルティング法で行
ってもよい。
(B) shows that after forming the porous preform 7, the preform 7 is put into a glass tube 14, and He, NH 3 and ErCl
Heating and transparency are performed in the electric furnace 13 while flowing the gas of No. 3 . The He gas flowing from the arrow 151 to the arrow 152 is used as an auxiliary gas for easily containing N and Er in the base material and as a gas for promoting the transparency of the porous base material. The amounts of nitrogen and Er added to the base material were NH 3
And the concentration of ErCl 3 gas, heating time (normally 1 to 5 hours), and heating temperature (1300 to 1450 ° C.). This transparency may be carried out by holding the inside of the electric furnace 13 or by a so-called zone melting method in which the inside of the electric furnace 13 is moved at a desired speed in the axial direction.

【0037】(C)は、(B)によって得たコア用透明
母材17の外周にそれよりも低屈折率のクラッド材16
を被覆する工程を実施する。このクラッド材16の形成
方法は、火炎加水分解法、CVD法、コーティング法な
どを用いることができる。
(C) shows the outer periphery of the core transparent base material 17 obtained in (B), the cladding material 16 having a lower refractive index than the outer periphery.
Is carried out. As a method for forming the clad material 16, a flame hydrolysis method, a CVD method, a coating method, or the like can be used.

【0038】最後に(D)に示すように、この光ファイ
バ母材26を電気炉18内に矢印20で示すように一定
速度で送り込み、溶融したガラス繊維を矢印21方向に
引き出して巻取ドラム19に巻き取ることにより、希土
類元素添加光ファイバ50を得る方法である。
Finally, as shown in (D), the optical fiber preform 26 is fed into the electric furnace 18 at a constant speed as shown by the arrow 20, and the molten glass fiber is drawn out in the direction of the arrow 21 to take up the winding drum. This is a method of obtaining the rare-earth-element-doped optical fiber 50 by winding the optical fiber 50 into a rare earth element.

【0039】図10は本発明の窒素と希土類元素の添加
された光ファイバ1の製造方法の実施例を示したもので
ある。図9の製造方法と異なる点は、希土類元素をイオ
ンとして添加する点である。すなわち、(A)の工程で
多孔質母材作製後、この多孔質母材7を、希土類元素を
含んだ溶液23の充填された容器22内に液浸する工程
(B)を設けた点である。希土類元素を含んだ溶液23
としては、例えば、アルコール溶液にErCl3 を溶か
した溶液を用いる。希土類元素としては、Er、Nd、
Yb、Ho、Sm、Tm、Ce、Prなど少なくとも1
種含んだものを用いる。希土類元素の濃度は、アルコー
ル溶液とErCl3 液との混合比を調節することによっ
て制御することができる。また多孔質母材7中へのEr
の含浸量は溶液23の温度、濃度、含浸時間などによっ
て調節することができる。
FIG. 10 shows an embodiment of a method for manufacturing an optical fiber 1 to which nitrogen and a rare earth element are added according to the present invention. The difference from the manufacturing method of FIG. 9 is that rare earth elements are added as ions. That is, after the porous base material is prepared in the step (A), a step (B) of immersing the porous base material 7 in the container 22 filled with the solution 23 containing the rare earth element is provided. is there. Solution containing rare earth element 23
For example, a solution obtained by dissolving ErCl3 in an alcohol solution is used. As rare earth elements, Er, Nd,
At least one of Yb, Ho, Sm, Tm, Ce, Pr, etc.
Use seed-containing material. The concentration of the rare earth element can be controlled by adjusting the mixing ratio between the alcohol solution and the ErCl 3 solution. Er in the porous base material 7
Can be adjusted by the temperature, concentration, impregnation time and the like of the solution 23.

【0040】図11は、図9、図10の方法によって作
製した希土類元素添加光ファイバ50から本発明のマル
チコアファイバ4を製造する方法の実施例を示したもの
である。図9及び図10の方法によって作製した光ファ
イバ50を束にして石英ガラス管25内に入れ、この石
英ガラス管25を電気炉18内に一定速度で挿入し、溶
融されたガラス繊維を巻取ドラム19によって巻き取る
ことにより、マルチコアファイバ1を製造する。ここ
で、マルチコアファイバ母材24は次の2つの方法があ
るが、いずれで作ってもよい。
FIG. 11 shows an embodiment of a method for manufacturing the multi-core fiber 4 of the present invention from the rare-earth-element-doped optical fiber 50 manufactured by the method shown in FIGS. The optical fibers 50 produced by the method shown in FIGS. 9 and 10 are bundled and put into a quartz glass tube 25, and the quartz glass tube 25 is inserted into the electric furnace 18 at a constant speed, and the molten glass fiber is taken up. The multi-core fiber 1 is manufactured by winding by the drum 19. Here, the multi-core fiber preform 24 can be made by any of the following two methods.

【0041】まず第1の方法は、石英ガラス管25内に
光ファイバ50の束を入れ、石英ガラス管25を加熱す
ることによって石英ガラス管25と光ファイバ50の束
を溶着して母材24とする方法である。第2の方法は、
石英ガラス管25内に光ファイバ50の束を入れた状態
で溶着していないものを母材24とする方法である。図
11の方法によって得たマルチコアファイバ1の束を再
度、石英ガラス管内に入れ、図11の方法により、線引
する方法を複数回繰り返すと、それまでクラスタ状に含
有されているErが超微繊維状、あるいは原子レベルで
コア内に均一に含有することになる。その結果、大電力
増幅用光ファイバ増幅器を実現することができる。
First, in the first method, a bundle of optical fibers 50 is placed in a quartz glass tube 25, and the quartz glass tube 25 is heated to fuse the bundle of the quartz glass tube 25 and the optical fibers 50 to form a base material 24. It is a method. The second method is
This is a method in which a bundle of optical fibers 50 in a quartz glass tube 25 that is not welded is used as the base material 24. The bundle of the multi-core fiber 1 obtained by the method of FIG. 11 is again put into the quartz glass tube, and the drawing method is repeated a plurality of times by the method of FIG. It will be uniformly contained in the core at the fibrous or atomic level. As a result, an optical fiber amplifier for high power amplification can be realized.

【0042】[0042]

【発明の効果】本発明によれば次のような効果を有す
る。
According to the present invention, the following effects can be obtained.

【0043】(1)請求項1または2に記載の希土類元
素添加マルチコアファイバによれば、クラッド内のコア
を複数化したので、大電力増幅用光ファイバとして用い
ることができる。しかもコアに希土類元素の他に窒素を
含ませることにより、コアとクラッドとの比屈折率差を
大きくすることができるので、励起光のコア内への閉じ
込め効率が向上し、より大きな電力増幅が可能となる。
(1) According to the rare earth element-doped multi-core fiber according to the first or second aspect, since the core in the clad is made plural, it can be used as an optical fiber for high power amplification. Moreover, by including nitrogen in the core in addition to the rare earth element, the relative refractive index difference between the core and the clad can be increased, so that the efficiency of confining the pump light in the core is improved, and a larger power amplification is achieved. It becomes possible.

【0044】(2)請求項3に記載の希土類元素添加マ
ルチコアファイバによれば、軟化点温度を低下させる添
加物をクラッド内に含有させたので、光ファイバに線引
する際、コア形状の変形が少なく、クラッド同士が容易
に溶け合って、クラッド内にそれぞれ円形に近いコアを
均等に埋め込んだ希土類元素添加マルチコアファイバを
得ることができる。
(2) According to the rare earth element-doped multi-core fiber according to the third aspect, since the additive for lowering the softening point temperature is contained in the cladding, the core shape is deformed when drawing into the optical fiber. And the claddings are easily melted together to obtain a rare earth element-doped multi-core fiber in which each of the claddings has a substantially circular shape and is uniformly embedded in the cladding.

【0045】(3)請求項4に記載の希土類元素添加マ
ルチコアファイバによれば、コアの主成分材料としてS
iOx y を用いているので、光ファイバ作製時の屈折
率の低下が極めて少なくコアの屈折率を大きくできる。
このため、励起光をコア内に効率良く閉じ込めて伝搬さ
せることができる。また、SiOx y の軟化点温度は
SiO2 と同程度であるので、ほぼ円形状を保ったマル
チコアファイバを作ることができる。これにより、偏光
依存性の少ない光ファイバを実現することができる。ま
た、コア内にAl2 3 を含ませたので、希土類元素を
高濃度に添加したときに生じる濃度消光およびコ・オペ
レイティブコンバージョンによる増幅度の低下を抑圧す
ることができる。
(3) According to the rare earth element-doped multi-core fiber according to the fourth aspect, S is used as a main component material of the core.
Since iO x N y is used, the refractive index of the core is extremely small when the optical fiber is manufactured, and the refractive index of the core can be increased.
Therefore, the pump light can be efficiently confined and propagated in the core. Further, since the softening point temperature of SiO x N y is almost the same as that of SiO 2 , a multi-core fiber having a substantially circular shape can be produced. Thereby, an optical fiber with little polarization dependence can be realized. In addition, since Al 2 O 3 is contained in the core, it is possible to suppress a decrease in amplification caused by concentration quenching and co-operative conversion caused when a rare earth element is added at a high concentration.

【0046】(4)請求項5または6に記載の希土類元
素添加マルチコアファイバによれば、コアが複数個埋め
込まれているマルチコアファイバをテーパ状として伝搬
モードを結合させているため、コア個数と同じ数の光信
号を共通増幅する機能と、同数の光信号を均一に混合す
る機能とをもたせることができる。しかも、大電力増幅
器として用いることができることから、信号光を数十以
上に分配する、いわゆる多分配システムを実現すること
ができ、経済的なシステムを構築することができる。
(4) According to the rare earth element-doped multi-core fiber according to the fifth or sixth aspect, since the multi-core fiber having a plurality of embedded cores is tapered to couple the propagation modes, the number of cores is the same as the number of cores. A function of commonly amplifying a number of optical signals and a function of uniformly mixing the same number of optical signals can be provided. Moreover, since it can be used as a large power amplifier, a so-called multi-distribution system that distributes signal light to several tens or more can be realized, and an economical system can be constructed.

【0047】(5)請求項7に記載の希土類元素添加マ
ルチコアファイバの製造方法によれば、多孔質母材をN
3 ガスを含む雰囲気下で加熱透明化して、希土類元素
を含んだSiOx y のコアとすると、光ファイバにす
る線引工程を何回繰り返しても屈折率の変化がほとんど
生じない。従って、線引工程の繰り返しにより、希土類
元素を超微繊維状あるいは原子レベルでコア内に均一に
含有させることができ、大電力増幅、大電力伝送が可能
となる。また、SiOx y の熱膨張係数はSiO2
近い値であるので、光ファイバ内への応力の残留が少な
く、これによる損失増大や機械的クラックの発生等の問
題がない。しかもSiOx y の軟化点温度はSiO2
と同程度であるので、光ファイバ作製時の形状変形がほ
とんどなく、ほぼ円形状を保ったマルチコアファイバを
作ることができる。
(5) According to the method for producing a rare earth element-doped multi-core fiber according to claim 7, the porous preform is made of N
When the core is made of SiO x N y containing a rare earth element by being heated and made transparent under an atmosphere containing H 3 gas, the refractive index hardly changes even if the drawing step of forming an optical fiber is repeated many times. Therefore, by repeating the drawing process, the rare earth element can be uniformly contained in the core in the form of ultrafine fibers or at the atomic level, and high power amplification and high power transmission can be achieved. Further, since the coefficient of thermal expansion of SiO x N y is close to that of SiO 2 , there is little residual stress in the optical fiber, and there is no problem such as an increase in loss and generation of mechanical cracks. Moreover, the softening point temperature of SiO x N y is SiO 2
Therefore, a multi-core fiber having substantially a circular shape can be produced with almost no deformation at the time of producing the optical fiber.

【0048】(6)請求項8に記載の希土類元素添加マ
ルチコアファイバの製造方法によれば、多孔質母材をN
3 ガスを含む雰囲気下で加熱透明化する際に、He、
Cl2 などのガスを少なくとも1種添加するようにした
ので、窒素及び希土類元素の含有と透明化の促進を図る
ことができる。
(6) According to the method for manufacturing a rare earth element-doped multi-core fiber according to claim 8, the porous preform is made of N
When heating and clearing in an atmosphere containing H 3 gas, He,
Since at least one gas such as Cl 2 is added, the content of nitrogen and rare earth elements and the promotion of transparency can be promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による希土類元素添加マルチコ
アファイバの正面図及び側面図。
FIG. 1 is a front view and a side view of a rare earth element-doped multi-core fiber according to an embodiment of the present invention.

【図2】本発明の実施例によるコア径を大きくした希土
類元素添加マルチコアファイバの正面図及び側面図。
FIG. 2 is a front view and a side view of a rare-earth element-doped multi-core fiber having a large core diameter according to an embodiment of the present invention.

【図3】本発明の実施例によるコアを被覆した希土類元
素添加マルチコアファイバの正面図及び側面図。
FIG. 3 is a front view and a side view of a rare earth element-doped multi-core fiber coated with a core according to an embodiment of the present invention.

【図4】本発明の実施例による被覆されるコア径を大き
くした希土類元素添加マルチコアファイバの正面図及び
側面図。
FIG. 4 is a front view and a side view of a rare-earth-element-doped multi-core fiber having an enlarged core diameter according to an embodiment of the present invention.

【図5】本発明の実施例によるコアを中心部に集めた希
土類元素添加マルチコアファイバの正面図及び側面図。
FIG. 5 is a front view and a side view of a rare-earth-element-doped multi-core fiber in which a core is collected at the center according to an embodiment of the present invention.

【図6】本発明の実施例による中央が細径化した希土類
元素添加テーパ型マルチコアファイバの正面図及び側面
図。
FIG. 6 is a front view and a side view of a rare-earth-element-doped tapered multicore fiber having a reduced diameter at the center according to an embodiment of the present invention.

【図7】本発明の実施例による一端が細径化したテーパ
状の希土類元素添加テーパ型マルチコアファイバの正面
図及び両側面図。
FIG. 7 is a front view and a side view of a tapered rare earth element-doped tapered multi-core fiber having a tapered end at one end according to an embodiment of the present invention.

【図8】本発明の実施例によるマルチコアテーパ型光フ
ァイバを用いた光分配回路の正面図。
FIG. 8 is a front view of an optical distribution circuit using a multi-core tapered optical fiber according to an embodiment of the present invention.

【図9】本発明の実施例による希土類元素添加マルチコ
アファイバの製造方法の工程図。
FIG. 9 is a process chart of a method for manufacturing a rare earth element-doped multi-core fiber according to an embodiment of the present invention.

【図10】本発明の実施例による液浸工程を加えた希土
類元素添加マルチコアファイバの製造方法の工程図。
FIG. 10 is a process chart of a method for manufacturing a rare-earth-element-doped multi-core fiber to which a liquid immersion step is added according to an embodiment of the present invention.

【図11】本発明の実施例による光ファイバ束を石英ガ
ラス管内に入れて線引するマルチコアファイバの製造方
法の説明図。
FIG. 11 is an explanatory diagram of a method for manufacturing a multi-core fiber for drawing an optical fiber bundle in a quartz glass tube according to an embodiment of the present invention.

【図12】従来例の光ファイバ増幅器の正面図。FIG. 12 is a front view of a conventional optical fiber amplifier.

【符号の説明】[Explanation of symbols]

1 希土類元素添加マルチコアファイバ 2 窒素と希土類イオンの添加されたコア 2′ 窒素と希土類イオンの添加されたコア 3 クラッド 3′ クラッド 5 マルチコアテーパ型光ファイバ 6 マルチコアテーパ型光ファイバ 7 多孔質母材 8 バーナ 9 火炎 10 出発材 11 引上げ方向 12 回転方向 13 電気炉 14 ガラス管 151 He、NH3 、ErCl3 16 クラッド材 17 透明化したコア材 18 電気炉 19 巻取ドラム 20 光ファイバ母材挿入方向 21 光ファイバ線引方向 22 容器 23 希土類元素を含んだ溶液 24 マルチコア光ファイバ母材 25 石英ガラス管 26 光ファイバ母材 28 n対1光スターカプラ 29 1対m光スターカプラ 50 光ファイバREFERENCE SIGNS LIST 1 rare earth element-doped multi-core fiber 2 core doped with nitrogen and rare earth ions 2 ′ core doped with nitrogen and rare earth ions 3 clad 3 ′ clad 5 multi-core tapered optical fiber 6 multi-core tapered optical fiber 7 porous preform 8 Burner 9 Flame 10 Starting material 11 Pulling direction 12 Rotation direction 13 Electric furnace 14 Glass tube 151 He, NH 3 , ErCl 3 16 Cladding material 17 Transparent core material 18 Electric furnace 19 Winding drum 20 Optical fiber preform insertion direction 21 Drawing direction of optical fiber 22 Container 23 Solution containing rare earth element 24 Multicore optical fiber preform 25 Quartz glass tube 26 Optical fiber preform 28 n to 1 optical star coupler 29 1 to m optical star coupler 50 Optical fiber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−188401(JP,A) 特開 昭50−87339(JP,A) 特開 昭56−54239(JP,A) 特開 昭62−59535(JP,A) 特開 昭63−21231(JP,A) 特開 平4−50139(JP,A) 特開 平1−93707(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 37/012──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-188401 (JP, A) JP-A-50-87339 (JP, A) JP-A-56-54239 (JP, A) JP-A-62 59535 (JP, A) JP-A-63-21231 (JP, A) JP-A-4-50139 (JP, A) JP-A-1-93707 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03B 37/012

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】屈折率nc11つのクラッド内に、希土類
元素と数アトミック%から数十アトミック%の含有量の
窒素とを含んだクラッドよりも高い屈折率nw のコアを
複数個設けたことを特徴とする希土類元素添加マルチコ
アファイバ。
To 1. A within a cladding of refractive index n c1, rare earth element and a high core refractive index n w than the cladding containing several tens atomic percent content <br/> nitrogen several atomic% A multi-core fiber doped with a rare earth element.
【請求項2】希土類元素と数アトミック%から数十アト
ミック%の含有量の窒素とを含んだ屈折率nw のコアの
外周をこれよりも低い屈折率nc2の被覆用クラッドで被
覆し、この被覆用クラッドで被覆した屈折率nw のコア
を、これよりも低い屈折率nc1のクラッド内に複数個設
てなると共に、前記複数個の被覆用クラッドは互いに
溶融されてなることを特徴とする希土類元素添加マルチ
コアファイバ。
2. The rare earth element and several atomic% to several tens atomic atom
The outer periphery of a core having a refractive index of n w containing nitrogen having a content of mic% is coated with a cladding for coating having a lower refractive index of n c2 , and the core having a refractive index of n w covered with the cladding for coating is coated. A plurality of claddings having a lower refractive index n c1 , and the plurality of coating claddings are mutually
A rare earth element-doped multi-core fiber characterized by being melted .
【請求項3】上記クラッド内にその軟化点温度を低下さ
せる添加物を含有させたことを特徴とする請求項1また
は2に記載の希土類元素添加マルチコアファイバ。
3. The rare-earth element-doped multi-core fiber according to claim 1, wherein an additive for lowering the softening point temperature is contained in the cladding.
【請求項4】上記コアとして希土類元素とAl2 3
を含んだSiOx y を用いたことを特徴とする請求項
1ないし3のいずれかに記載の希土類元素マルチコアフ
ァイバ。
4. The rare-earth element multi-core fiber according to claim 1, wherein said core is made of SiO x N y containing a rare-earth element and Al 2 O 3 .
【請求項5】上記希土類元素添加マルチコアファイバの
長手方向に沿ってその外径が太い径からテーパ状に細く
なり伝搬モードを結合させた細径部を経て、再びテーパ
状に太くなるように構成された請求項1ないし4のいず
れかに記載の希土類元素添加マルチコアファイバ。
5. The structure in which the outer diameter of the rare-earth element-doped multi-core fiber is tapered from a large diameter to a tapered shape along a longitudinal direction, and then becomes a tapered shape again through a small-diameter portion coupled with a propagation mode. The rare-earth-element-doped multi-core fiber according to claim 1.
【請求項6】上記希土類元素添加マルチコアファイバの
長手方向に沿ってその外径が伝搬モードを結合させた細
径部からテーパ状に太くなっているように構成された請
求項1ないし4のいずれかに記載の希土類元素添加マル
チコアファイバ。
6. The optical fiber according to claim 1, wherein the outer diameter of the rare-earth-element-doped multi-core fiber is tapered and increased from the small-diameter portion where the propagation mode is coupled along the longitudinal direction. A rare-earth element-doped multi-core fiber according to any one of the above.
【請求項7】コアとなるSiO2 の多孔質母材を形成す
る工程と、上記多孔質母材を希土類元素を含む溶液中に
液浸して上記多孔質母材中に希土類元素を所定濃度添加
させ、乾燥する工程と、乾燥した多孔質母材をNH3
スを含む雰囲気下で加熱透明化する工程と、この透明化
した母材外周を、SiO2 の軟化点温度を低下させる添
加物を含有したクラッドとなるSiO2 材で覆う工程
と、このSiO2 材で覆われた母材を加熱溶融して光フ
ァイバに線引する工程と、この線引された光ファイバを
束にして石英系ガラス管内に挿入し、このガラス管を加
熱溶融しながら光ファイバに線引する工程を少なくとも
1回行うことを特徴とする希土類元素添加マルチコアフ
ァイバの製造方法。
7. A step of forming a porous base material of SiO 2 serving as a core, and immersing the porous base material in a solution containing a rare earth element and adding a predetermined concentration of a rare earth element to the porous base material. And heating the transparent porous base material in an atmosphere containing NH 3 gas to make it transparent, and adding an additive that lowers the softening point temperature of SiO 2 to the periphery of the transparent base material. A step of covering with a SiO 2 material serving as a clad containing the same, a step of heating and melting the base material covered with the SiO 2 material to draw an optical fiber, and a step of bundling the drawn optical fiber into a quartz-based optical fiber. A method for producing a rare-earth element-doped multi-core fiber, comprising inserting a glass tube into an optical fiber while heating and melting the glass tube at least once.
【請求項8】上記多孔質母材をNH3 ガスを含む雰囲気
下で加熱透明化する際に、He、Cl2 などのガスを少
なくとも1種添加したことを特徴とする請求項7に記載
の希土類元素添加マルチコアファイバの製造方法。
8. The method according to claim 7, wherein at least one kind of gas such as He or Cl 2 is added when the porous base material is heated and made transparent in an atmosphere containing NH 3 gas. A method for producing a rare earth element-doped multi-core fiber.
JP4157919A 1992-06-17 1992-06-17 Rare earth element-doped multi-core fiber and method for producing the same Expired - Fee Related JP2830617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4157919A JP2830617B2 (en) 1992-06-17 1992-06-17 Rare earth element-doped multi-core fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157919A JP2830617B2 (en) 1992-06-17 1992-06-17 Rare earth element-doped multi-core fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05345632A JPH05345632A (en) 1993-12-27
JP2830617B2 true JP2830617B2 (en) 1998-12-02

Family

ID=15660331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157919A Expired - Fee Related JP2830617B2 (en) 1992-06-17 1992-06-17 Rare earth element-doped multi-core fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2830617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377384B2 (en) 2017-01-19 2022-07-05 University Of Bath Method of making an imaging fibre apparatus and optical fibre apparatus with different core

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816097B2 (en) * 1994-07-27 1998-10-27 日立電線株式会社 Rare earth element-doped multi-core optical fiber, method for manufacturing the same, and optical amplifier using the optical fiber
JPH09139534A (en) * 1995-11-13 1997-05-27 Hitachi Cable Ltd Rare earth element doped fiber amplifier
JP3439892B2 (en) * 1995-12-11 2003-08-25 日立電線株式会社 Rare earth element-doped multi-core fiber and method for producing the same
GB2310506B (en) * 1996-02-22 2000-10-25 Hitachi Cable Rare earth element-doped multiple-core optical fiber and optical systems using them
DE19881950B4 (en) 1997-02-07 2005-12-29 Asahi Kasei Kabushiki Kaisha Multi-core plastic optical fiber for optical signal transmission
JP2001044537A (en) * 1999-07-29 2001-02-16 Hoya Corp Optical medium, manufacture thereof, laser light generator, and optical amplifier
JP3889746B2 (en) * 2004-01-15 2007-03-07 株式会社ジェイテクト Optical fiber manufacturing method
US7280730B2 (en) 2004-01-16 2007-10-09 Imra America, Inc. Large core holey fibers
JP4990796B2 (en) 2004-12-30 2012-08-01 イムラ アメリカ インコーポレイテッド Photonic bandgap fiber
US7787729B2 (en) 2005-05-20 2010-08-31 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
US7450813B2 (en) 2006-09-20 2008-11-11 Imra America, Inc. Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
EP2201415B1 (en) 2007-09-26 2019-07-03 Imra America, Inc. Glass large-core optical fibers
CN102239434B (en) 2008-12-04 2014-11-26 Imra美国公司 Highly rare-earth-doped optical fibers for fiber lasers and amplifiers
WO2010120958A1 (en) * 2009-04-14 2010-10-21 Ofs Fitel, Llc Fiber based laser combiners
WO2014132990A1 (en) * 2013-02-26 2014-09-04 古河電気工業株式会社 Optical-fiber-bundle structure, rare-earth-doped multi-core fiber, connection structure therefor, method for exciting rare-earth-doped multi-core fibers, and multi-core-optical-fiber amplifier
WO2015080831A1 (en) * 2013-11-26 2015-06-04 Ipg Photonics Corporation Optical fiber with mosaic fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1450123A (en) * 1973-11-27 1976-09-22 Post Office Doped vitreous silica
JPS5654239A (en) * 1979-10-04 1981-05-14 Nippon Telegr & Teleph Corp <Ntt> Preparation of optical transmission glass preform
JPH0667765B2 (en) * 1985-09-06 1994-08-31 日本電信電話株式会社 Quartz glass manufacturing method and manufacturing apparatus
JPS6321231A (en) * 1986-07-16 1988-01-28 Hitachi Cable Ltd Image guide
JPH0193707A (en) * 1987-10-06 1989-04-12 Fujitsu Ltd Optical fiber coupler
JPH03188401A (en) * 1989-12-19 1991-08-16 Sumitomo Electric Ind Ltd Quartz-based image fiber
JPH0450139A (en) * 1990-06-15 1992-02-19 Mitsubishi Cable Ind Ltd Optical fiber for amplification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377384B2 (en) 2017-01-19 2022-07-05 University Of Bath Method of making an imaging fibre apparatus and optical fibre apparatus with different core
US11577986B2 (en) 2017-01-19 2023-02-14 University Of Bath Method of making an imaging fibre apparatus and optial fibre apparatus with different core

Also Published As

Publication number Publication date
JPH05345632A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
JP2830617B2 (en) Rare earth element-doped multi-core fiber and method for producing the same
JP3439892B2 (en) Rare earth element-doped multi-core fiber and method for producing the same
US8213758B2 (en) Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
US6687445B2 (en) Double-clad optical fiber for lasers and amplifiers
US5491581A (en) Rare earth doped optical fibre amplifiers
WO2013038794A1 (en) Optical fiber, optical fiber laser, optical fiber amplifier, and method for producing optical fiber
JPH07109920B2 (en) Communication system with erbium-doped optical fiber
WO2007035131A2 (en) Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
JPH0843644A (en) Rare earth element-doped multicore fiber, its production and optical amplifier using that optical fiber
KR100433909B1 (en) Amplifying optical fiber and method for fabricating the same
US8494013B2 (en) Photodarkening resistant optical fibers and fiber lasers incorporating the same
JP2979329B2 (en) Optical amplification fiber
JPH06216441A (en) Fiber for optical amplifier and amplifier
JPH06216440A (en) Multicore fiber with rare earth element added
JP2753426B2 (en) Method for manufacturing high input optical fiber and preform thereof
JP2972366B2 (en) Partial erbium-doped optical fiber coupler and method of manufacturing the same
JP2749686B2 (en) Silica optical fiber
JP2007149766A (en) Photonic band gap fiber
JP3860647B2 (en) Rare earth element-doped optical fiber and manufacturing method thereof, and optical fiber amplifier using the rare earth element doped optical fiber
JP7496100B2 (en) Rare earth doped optical fiber
JPH0843668A (en) Multicore optical fiber containing rare earth element, its production and optical amplifier formed by utilizing the same
JPH03287236A (en) Optical fiber component
JPH0239456B2 (en)
JPH04285030A (en) Rare-earth element-added optical fiber and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees