JPH095541A - Production of multicore optical fiber preform - Google Patents

Production of multicore optical fiber preform

Info

Publication number
JPH095541A
JPH095541A JP7154472A JP15447295A JPH095541A JP H095541 A JPH095541 A JP H095541A JP 7154472 A JP7154472 A JP 7154472A JP 15447295 A JP15447295 A JP 15447295A JP H095541 A JPH095541 A JP H095541A
Authority
JP
Japan
Prior art keywords
core
soot
quartz
optical fiber
regular polygonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7154472A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Atsushi Abe
淳 阿部
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Hitachi Cable Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Hitachi Cable Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7154472A priority Critical patent/JPH095541A/en
Publication of JPH095541A publication Critical patent/JPH095541A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To eliminate the positional deviation of a core, to suppress the generation of bubbles to improve yield and to stabilize the shape of the core to prevent the deformation by bundling and fixing a plurality of a core member using a regular polygonal quartz as a main raw material. CONSTITUTION: The plurality of the core member 2 using the regular polygonal quartz as the main raw material is bundled and fixed. A soot using quartz as a main raw material is deposited on the outer periphery of the core part and heated at a high temp. to vitrify and integrate the core material and the soot under VAD method. Since the core members 2 are regular polygonal and in closely contact with each other in the ridgelines to completely eliminate the gaps between core rods when plural numbers are bundled and fixed, bubbles are not generated there during integrating by heating and then the reduction of yield is prevented. The deformation of the core rod during integrating by heating is prevented and the disadvantage that the core in the resultant preform is deformed to make the cross section non-circular does not occur.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマルチコア光ファイバ母
材の製造方法、特には光通信の分野において利用される
マルチコア光ファイバ母材の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multicore optical fiber preform, and more particularly to a method for producing a multicore optical fiber preform used in the field of optical communication.

【0002】[0002]

【従来の技術】従来、コアが希土類元素を含有するガラ
スにより構成されている励起用光ファイバが光通信シス
テムの一部品として利用されている。光通信システムに
おいて、長距離伝送によって減衰した光信号の増幅は、
光信号を一旦電気信号に変換して電気的増幅をしたの
ち、再度光信号に変換する方法が実施されている。しか
しながら、このような方法では、高速性が求められる大
容量通信の中継には制限が有るうえ、システムが複雑に
なるといった問題点が有り、最近では光信号を電気信号
に変換することなく直接光信号を増幅することが出来る
光増幅器が利用されつつある。
2. Description of the Related Art Conventionally, a pumping optical fiber having a core made of glass containing a rare earth element has been used as a component of an optical communication system. In an optical communication system, amplification of an optical signal attenuated by long distance transmission is
A method of once converting an optical signal into an electric signal for electrical amplification and then converting the signal into an optical signal again is implemented. However, in such a method, there is a problem that the relay of large-capacity communication that requires high speed is limited and the system becomes complicated. Recently, the direct optical signal is converted without converting the optical signal into an electric signal. Optical amplifiers capable of amplifying signals are being used.

【0003】この、光増幅器はコアにEr、Nd、Pr
などの希土類元素を添加したもので、これは前記励起用
光ファイバに入射された励起光で活性元素が励起され、
その誘導放出によりそこを通過する信号光を直接増幅す
るものであり、近年その光増幅器の研究が活発化してい
る。光増幅器の主要構成部品としては、図4に示すよう
に、励起用光ファイバ11の他に、希土類元素を励起する
ための励起光源12、励起光源を駆動するための電源回
路、励起光源からの励起光13と信号光14を励起用光ファ
イバ11に入射させるための光合波器15、励起光13または
信号光14の反射光を除去するための光アイソレータ16、
17、増幅された信号光の中に含まれる励起光を除去する
ための光バンドパスフィルタ18などがあるが、このもの
は波長1.55μm帯の信号光14をErを添加した励起用光
ファイバ11のコア内を伝搬させると共に、光合波器15を
介して波長1.48μmまたは0.98μmの励起光源12を駆動
して励起光13も励起用光ファイバ11に伝搬させることに
より、信号光14を数百倍から一万倍程度に増幅して信号
光19を得るようにされている。
This optical amplifier has Er, Nd, Pr in the core.
With the addition of a rare earth element such as, the active element is excited by the excitation light incident on the excitation optical fiber,
The stimulated emission directly amplifies the signal light passing therethrough, and in recent years, research on the optical amplifier has become active. As shown in FIG. 4, the main components of the optical amplifier include, in addition to the pumping optical fiber 11, a pumping light source 12 for pumping a rare earth element, a power supply circuit for driving the pumping light source, and a pumping light source. An optical multiplexer 15 for making the pumping light 13 and the signal light 14 incident on the pumping optical fiber 11, an optical isolator 16 for removing the reflected light of the pumping light 13 or the signal light 14,
17, an optical bandpass filter 18 for removing the pumping light contained in the amplified signal light, and the like, which is a pumping optical fiber 11 in which Er is added to the signal light 14 having a wavelength of 1.55 μm band. Of the signal light 14 by propagating the pumping light source 12 having a wavelength of 1.48 μm or 0.98 μm through the optical multiplexer 15 and propagating the pumping light 13 to the pumping optical fiber 11 as well. The signal light 19 is obtained by amplifying the signal light 19 times to about 10,000 times.

【0004】また、これについては高速伝送ために、1
本のファイバ中に複数の波長の信号を送る波長多重伝送
方式が検討されているが、波長多重伝送方式に用いられ
る光増幅器は、増幅の波長特性が小さいものが求められ
ていることから、これにはコアにAl、P、B等の元素
を添加して波長依存性を小さくしたり、損失の波長依存
性のあるフィルターを増幅器の系内に挿入し、波長依存
性を補正する方法が検討されている。なお、一本のファ
イバ中に複数本のコアを持つマルチコアファイバは、帯
域特性が非常に小さいことから注目されており、このマ
ルチコアファイバの製造法としては、希土類元素を添加
したコア部と所定の量のクラッド部を有するコアロッド
を複数本、ジャケット管に入れ加熱合体させるジャケッ
ティング法によりプリフォームを作り、これを線引きす
る方法が用いられている。
In addition, in order to achieve high speed transmission, 1
A wavelength division multiplex transmission system that sends signals of multiple wavelengths into the fiber has been studied, but this is because the optical amplifier used in the wavelength multiplex transmission system is required to have a small amplification wavelength characteristic. In order to reduce the wavelength dependence by adding elements such as Al, P and B to the core, or to insert a filter with wavelength dependence of loss into the amplifier system, the method of correcting the wavelength dependence is examined. Has been done. In addition, a multi-core fiber having a plurality of cores in one fiber is drawing attention because it has a very small band characteristic, and as a method for manufacturing this multi-core fiber, a rare earth element-added core part and a predetermined part are used. A method of making a preform by a jacketing method in which a plurality of core rods having a certain amount of clad portion are put in a jacket tube and heated and combined, and then drawn is used.

【0005】[0005]

【発明が解決しようとする課題】しかし、このジャケッ
ティング法には、コアロッドとクラッド管を加熱合体さ
せる時、従来法では図3(a)に示したようにこのコア
ロッド3が円形のものとされており、このコアロッドが
管内を動くので長手方向にコアの配置がずれるという不
利が生じ、このコアロッドの複数本を束ねてマルチコア
を形成すると、このコアロッド間に隙間が生じ、これが
原因で泡が発生して歩留りが悪くなり、さらには加熱合
体中にコアロッドとクラック管が変形するし、出来上っ
たプリフォーム中のコアも変形し、図3(b)に示した
ように断面が円形でなくなるという問題点が発生する。
However, in this jacketing method, when the core rod and the clad tube are heated and combined, the core rod 3 is circular as shown in FIG. 3 (a) in the conventional method. Since this core rod moves in the pipe, there is a disadvantage that the core is displaced in the longitudinal direction, and when multiple core rods are bundled to form a multi-core, a gap is created between the core rods, which causes bubbles. And the yield deteriorates, and further, the core rod and the crack tube are deformed during heating and coalescence, and the core in the finished preform is also deformed, so that the cross section is not circular as shown in FIG. 3 (b). The problem occurs.

【0006】[0006]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決したマルチコア光ファイバ母材の製造
方法に関するもので、これは正多角形からなる石英を主
原料とするコア部材を複数本束ねて固定し、このコア部
分の外周にVAD法にて石英を主原料とするスートを堆
積後、これを高温度に加熱し、コア材とスートをガラス
化し一体化することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a multi-core optical fiber preform which solves the above disadvantages and problems, and it relates to a core member mainly composed of regular polygonal quartz. It is characterized by bundling and fixing a plurality of soot, and depositing a soot containing quartz as a main material on the outer periphery of the core portion by the VAD method, and heating the soot to a high temperature to vitrify the soot and the core material. To do.

【0007】すなわち、本発明者らは上記した従来法の
不利を解決したマルチコア光ファイバ母材の製造方法を
開発すべく種々検討した結果、このマルチコア光ファイ
バ母材を構成するコア部材を正多角形のものとすれば、
この複数本を束ねてマルチコアを固定したときに、これ
らがその稜線で緊密に結合し、このコア間に隙間に全く
存在しなくなるので、これをクラッド管に入れてもコア
ロッドが管内を動くことがなくなるし、このコアロッド
間に泡の発生することもなくなり、歩留りが悪化するこ
とがなくなるということを見出した。また、これについ
てはこのマルチコアにVAD法で石英系のスートを堆積
し、これを高温度に加熱してコア材とスートをガラス化
し、一体化すれば、この加熱合体中にこれらが変化した
り、出来上ったプリフォーム中のコアが変形し、断面が
円形でなくなるという問題点もなくなるということを確
認して本発明を完成させた。
That is, the inventors of the present invention have conducted various studies in order to develop a method for manufacturing a multicore optical fiber preform that solves the above-mentioned disadvantages of the conventional method. If it is a square one,
When these multiple cores are bundled and fixed to the multi-core, they are tightly coupled at their ridges and do not exist in the gap between the cores at all. It has been found out that bubbles disappear between the core rods and the yield does not deteriorate. Further, regarding this, if a quartz-based soot is deposited on this multi-core by the VAD method, and this is heated to a high temperature to vitrify the core material and the soot, and these are integrated, they change during this heating and coalescence. The present invention has been completed by confirming that the problem that the core in the completed preform is deformed and the cross section is not circular is eliminated.

【0008】[0008]

【作用】本発明によるマルチコア光ファイバ母材の製造
方法は前記したように、このコア部材を石英を主原料と
する正多角形のものとするものである。すなわち、本発
明ではこのコア部材2が図1に示したように正多角形の
ものとされているので、この複数本、例えば図1に示し
たようにこの7本を束ねて固定すると、これらはその稜
線で密接してこのコアロッド間に全く隙間がなくなるの
で、加熱合体した時にここに泡は発生せず、したがって
歩留りが悪くなることもなくなるという有利性が与えら
れる。
As described above, in the method for producing a multi-core optical fiber preform according to the present invention, the core member has a regular polygonal shape mainly made of quartz. That is, in the present invention, since the core member 2 has a regular polygonal shape as shown in FIG. 1, when a plurality of these, for example, the seven as shown in FIG. Since there is no gap between the core rods due to the close contact with their ridges, no bubbles are generated here when they are heat-merged, and therefore the yield is not deteriorated.

【0009】本発明ではこのようにして束ね固定したコ
ア部材の外周に図2に示したVAD法で四塩化けい素な
どの有機けい素化合物の火炎加水分解法で作られた石英
系のスートを堆積したのち、これらを高温度に加熱し、
このコア材とスートとをガラス化し、これらを一体化す
ることによってマルチコア光ファイバ母材とするのであ
るが、これによればこの加熱合体中にコアロッドが変形
することがなく、出来上ったプリフォーム中でコアが変
形し、断面が円形でなくなるという不利も発生しなくな
るという有利性が与えられる。なお、コア部材を束ね固
定する方法はセラミックス製の固定治具を用いて行うと
よい。
In the present invention, a silica-based soot made by the flame hydrolysis method of an organic silicon compound such as silicon tetrachloride by the VAD method shown in FIG. 2 is provided on the outer periphery of the core member thus bundled and fixed. After depositing, heating these to high temperature,
This core material and soot are vitrified, and these are integrated to form a multicore optical fiber preform. According to this, the core rod is not deformed during this heating and coalescence, and the finished product is completed. The advantage is given that the core is deformed during reforming and the disadvantage that the cross section is no longer circular does not occur. The method of bundling and fixing the core members may be performed by using a fixing jig made of ceramics.

【0010】ここに使用するコア部材はコアとその周り
をコアより屈折率の低いクラッド層で覆われてなるもの
で、コアは光増幅のために希土類元素、例えばEr、N
d、PrなどやAlを添加してもよく、またこれはそれ
を高屈折率のものとするためにGeをドープしたものと
してこのコア部材は外周をマイクログラインダーなどで
カットして正多角形のものとすればよい。なお、この正
多角形の形状は正三角形、正四角形、正六角形などのい
ずれでもよいが、工業的には図1に示したように正六角
形のものとすることがよい。
The core member used here is composed of a core and its surroundings covered with a clad layer having a refractive index lower than that of the core. The core is made of a rare earth element such as Er or N for optical amplification.
d, Pr, etc. or Al may be added, and this is Ge-doped in order to make it have a high refractive index, and this core member is cut into a regular polygonal shape by cutting the outer periphery with a micro grinder or the like. It should be one. The shape of the regular polygon may be a regular triangle, a regular quadrangle, a regular hexagon, or the like, but industrially it is preferable to use a regular hexagon as shown in FIG.

【0011】[0011]

【実施例】つぎに本発明の実施例を示す。 実施例 合成石英ガラスに希土類元素としてのErを400ppm、A
lを10,000ppm 添加し、Geをドープした、純石英に対
する最大屈折率差が 1.5%である外径5mmのコアの外周
を、合成石英ガラスからなるクラッドからなるコアで被
覆した太さが10mmφであるコア部材の外周をマイクログ
ラインダーでカットし、正六角形のものとした。
Next, examples of the present invention will be described. Example In a synthetic quartz glass, Er as a rare earth element is 400 ppm, A
l was added 10,000ppm, Ge-doped, the outer diameter of a core with a maximum refractive index difference of 1.5% with respect to pure quartz and having an outer diameter of 5mm was covered with a core made of a clad made of synthetic quartz glass and a thickness of 10mmφ. The outer periphery of a certain core member was cut with a micro grinder to form a regular hexagon.

【0012】ついで、この正六角形のコア部材を300mmL
のものとし、この7本を束ねてマルチコアとしたのち、
この片端を石英よりなる固定治具に固定し、VAD装置
にセットして、このコア部材の外周に石英を主原料とす
るスートを堆積し、これを焼結炉で焼結してスートをガ
ラス化し、これをコア部材と一体化したところ、マルチ
コア光ファイバ母材が得られたので、このものの光増幅
特性を図4の測定装置を用いてしらべたところ、良好な
結果が得られた。
Next, this regular hexagonal core member is attached to 300 mmL.
After bundling these seven to make a multi-core,
This one end is fixed to a fixing jig made of quartz, set in a VAD device, soot having quartz as a main raw material is deposited on the outer periphery of the core member, and the soot is sintered in a sintering furnace to make the soot into a glass. Then, this was integrated with the core member to obtain a multicore optical fiber preform. Therefore, when the optical amplification characteristics of this were examined using the measuring apparatus of FIG. 4, good results were obtained.

【0013】[0013]

【発明の効果】本発明はマルチコア光ファイバ母材の製
造方法に関するものであり、これによれば各コアロッド
を所定の位置に固定できるので、コアの位置がずれるこ
とがなくなり、泡の発生も抑えられるので歩留りが向上
し、さらにはコアの形状が安定するので、変形すること
ないマルチコア光ファイバが得られるという有利性が与
えられる。
Industrial Applicability The present invention relates to a method for manufacturing a multi-core optical fiber preform, in which each core rod can be fixed at a predetermined position, so that the position of the core does not shift and the generation of bubbles is suppressed. As a result, the yield is improved, and the shape of the core is stabilized, which provides the advantage that a multicore optical fiber that is not deformed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるマルチコアの横断面図を示した
ものである。
FIG. 1 shows a cross-sectional view of a multicore according to the present invention.

【図2】本発明で使用されるVAD法によるスート発生
器の縦断面図を示したものである。
FIG. 2 is a vertical sectional view of a soot generator according to the VAD method used in the present invention.

【図3】(a)は従来法により作られたマルチコア光フ
ァイバの横断面図、(b)はジャケッティング後にその
コアが変形したマルチコア光ファイバの横断面図を示し
たものである。
3A is a cross-sectional view of a multicore optical fiber manufactured by a conventional method, and FIG. 3B is a cross-sectional view of a multicore optical fiber whose core is deformed after jacketing.

【図4】従来公知の光増幅器の主要部品構成の縦断面図
を示したものである。
FIG. 4 is a vertical cross-sectional view of a main component configuration of a conventionally known optical amplifier.

【符号の説明】[Explanation of symbols]

1…マルチコア 2…正多角形コア部材 3…円形コア材 4…変形コア材 11…励起用光ファイバ 12…励起光源 13…励起光 14,19…信号光 15…光合波器 16,17…光アイソレーター 18…光バンドパスフィルター 1 ... Multi-core 2 ... Regular polygonal core member 3 ... Circular core material 4 ... Deformed core material 11 ... Excitation optical fiber 12 ... Excitation light source 13 ... Excitation light 14, 19 ... Signal light 15 ... Optical multiplexer 16, 17 ... Optical Isolator 18 ... Optical bandpass filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神屋 和雄 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Kamiya 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正多角形からなる石英を主原料とするコ
ア部材を複数本束ねて固定し、このコア部材の外周にV
AD法にて石英を主原料とするスートを堆積後、これを
高温度に加熱し、コア材とスートをガラス化し一体化す
ることを特徴とするマルチコア光ファイバ母材の製造方
法。
1. A plurality of core members made of quartz having a regular polygonal shape as a main raw material are bundled and fixed, and V is attached to the outer periphery of the core members.
A method for producing a multi-core optical fiber preform, comprising depositing a soot containing quartz as a main material by an AD method, heating the soot at a high temperature, and vitrifying and integrating the core material and the soot.
JP7154472A 1995-06-21 1995-06-21 Production of multicore optical fiber preform Pending JPH095541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7154472A JPH095541A (en) 1995-06-21 1995-06-21 Production of multicore optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7154472A JPH095541A (en) 1995-06-21 1995-06-21 Production of multicore optical fiber preform

Publications (1)

Publication Number Publication Date
JPH095541A true JPH095541A (en) 1997-01-10

Family

ID=15585004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7154472A Pending JPH095541A (en) 1995-06-21 1995-06-21 Production of multicore optical fiber preform

Country Status (1)

Country Link
JP (1) JPH095541A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058719A (en) * 2016-10-04 2018-04-12 株式会社フジクラ Manufacturing method of base material for multi-core fiber and manufacturing method of multi-core fiber using the same
JP2020125227A (en) * 2019-02-04 2020-08-20 株式会社フジクラ Method for manufacturing rod assembly for forming multi-core optical fiber, method for manufacturing multi-core optical fiber preform using the same and method for manufacturing multi-core optical fiber
US11385401B2 (en) 2019-12-04 2022-07-12 Alcon Inc. Multi-core optical fiber with reduced bubble formation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058719A (en) * 2016-10-04 2018-04-12 株式会社フジクラ Manufacturing method of base material for multi-core fiber and manufacturing method of multi-core fiber using the same
JP2020125227A (en) * 2019-02-04 2020-08-20 株式会社フジクラ Method for manufacturing rod assembly for forming multi-core optical fiber, method for manufacturing multi-core optical fiber preform using the same and method for manufacturing multi-core optical fiber
US11385401B2 (en) 2019-12-04 2022-07-12 Alcon Inc. Multi-core optical fiber with reduced bubble formation

Similar Documents

Publication Publication Date Title
JP2634725B2 (en) Device comprising silica-based optical fiber and method for producing silica-based optical fiber
EP0434237B1 (en) Method of producing optical fiber, and fiber produced by the method
CN101164000B (en) Optical fiber fabrication
EP1927167B1 (en) Method of fabrication an amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm
EP2131454A1 (en) Multi-core fiber for optical pumping device and method of manufacturing the same, optical pumping device, fiber laser, and fiber amplifier
EP0637762A1 (en) Polarized wave holding optical fiber, production method therefor, connection method therefor, optical amplifier, laser oscillator and polarized wave holding optical fiber coupler
WO2013038794A1 (en) Optical fiber, optical fiber laser, optical fiber amplifier, and method for producing optical fiber
EP1236059A2 (en) Photonic crystal fibre guiding a first mode and a pump beam
GB2308203A (en) Rare earth element doped multiple core optic fibre
NZ299758A (en) Optical fibre with stress relieving layer between core and cladding: relative values of thermal coefficients of expansion of layers
CN1347511A (en) Distributed resonant ring fiber filter
JP2008009390A (en) Fiber for guiding signal light and exciting light, fiber bundle and their manufacturing method, fiber amplifier, and fiber laser
JP2830617B2 (en) Rare earth element-doped multi-core fiber and method for producing the same
CN102782963B (en) Amplifying optical fiber and optical fiber amplifier using same
JP2979329B2 (en) Optical amplification fiber
US20090181842A1 (en) Polarization-maintaining optical fiber and method for manufacturing the same
JP5384679B2 (en) Method for manufacturing optical fiber preform and optical fiber preform
JPH095541A (en) Production of multicore optical fiber preform
JPH0990143A (en) Production of multicore fiber
JP2002277669A (en) Double clad fiber and its manufacturing method
EP1090887B1 (en) Optical fibre, optical fibre preform and method for producing the preform having a deformed first clad
US11424590B2 (en) Moderately multimodal amplifying fibre
KR100782475B1 (en) The Method of Optical Fiber and Optical Fiber thereof
JP2017525127A (en) Polarization-maintaining large mode area gain fiber with elliptical cladding layer
JPH095540A (en) Rare earth element added multicore optical fiber preform and its production