JPH0692661A - Apparatus for producing jacket tube for optical fiber - Google Patents

Apparatus for producing jacket tube for optical fiber

Info

Publication number
JPH0692661A
JPH0692661A JP23941392A JP23941392A JPH0692661A JP H0692661 A JPH0692661 A JP H0692661A JP 23941392 A JP23941392 A JP 23941392A JP 23941392 A JP23941392 A JP 23941392A JP H0692661 A JPH0692661 A JP H0692661A
Authority
JP
Japan
Prior art keywords
mold
jacket tube
electric furnace
optical fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23941392A
Other languages
Japanese (ja)
Other versions
JP2784385B2 (en
Inventor
Yukio Terunuma
幸雄 照沼
Teruhisa Kanamori
照寿 金森
Yasutake Oishi
泰丈 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23941392A priority Critical patent/JP2784385B2/en
Publication of JPH0692661A publication Critical patent/JPH0692661A/en
Application granted granted Critical
Publication of JP2784385B2 publication Critical patent/JP2784385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01271Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by centrifuging

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide an apparatus for producing a high-quality jacket tube free from contamination and crystal and useful for the production of an optical fiber having low transmission loss and high core diameter flexibility. CONSTITUTION:This production apparatus is provided with a holding means to hold a mold 2 and/or an electric furnace 1 in horizontal or vertical posture, a means to retreat the electric furnace 1 from the circumference of the mold 2 after preheating the mold 2, a means 3 for pouring molten glass 4 into a vertically held preheated mold 2 through a pouring port 2A placed immediately above the mold and a means for tilting the mold 2 from the vertical state B to the horizontal state D by rotating the mold with a rotating means 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ用ジャケッ
ト管の製造装置に関し、特にコア径を制御するために光
ファイバの母材をジャケット延伸またはジャケット線引
きするのに用いられる多成分ガラスの光ファイバ用ジャ
ケット管の製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing an optical fiber jacket tube, and more particularly to an optical fiber for a multi-component glass used for jacket drawing or jacket drawing of a base material of an optical fiber for controlling a core diameter. The present invention relates to an apparatus for manufacturing a fiber jacket tube.

【0002】[0002]

【従来の技術】光ファイバにおいてそのコア径の制御が
可能な製造装置として、コア母材にクラッドと同一組成
のジャケット管を被覆し、線引きを行うロッド・インチ
ューブ法やコア・クラッド構造を有する母材にジャケッ
ト管を被覆した上延伸するジャケット延伸法(特開平4
−31333号)およびジャケット線引き法などが適用
されてきた。
2. Description of the Related Art As a manufacturing apparatus capable of controlling the core diameter of an optical fiber, it has a rod-in-tube method or a core-clad structure in which a core base material is coated with a jacket tube having the same composition as that of a clad and is drawn. A jacket stretching method in which a base material is coated with a jacket tube and then stretched (Japanese Patent Application Laid-Open No. HEI 4)
No. 31333) and the jacket wire drawing method have been applied.

【0003】また、上記方法に適用されるジャケット管
の製造装置としては、一般に市販されている酸化物ガラ
ス管のように主としてるつぼ内で原料を溶融し、るつぼ
底面の孔からガラス融液を下方に流出させつつ、るつぼ
の中心軸上に設けたダイスにより中空のガラス管を得る
ようにしたものが用いられている。
Further, as a jacket tube manufacturing apparatus applied to the above method, the raw material is mainly melted in a crucible like a commercially available oxide glass tube, and the glass melt is lowered from a hole in the bottom of the crucible. A hollow glass tube is obtained by using a die provided on the central axis of the crucible while allowing the glass tube to flow out.

【0004】一方、低融点が特色である多成分ガラス、
特にフッ化物ガラスのファイバ用の製造装置としては、
溶融したガラス原料を中空の鋳型に注入して作製したガ
ラスロッドの中心部に孔を開けてパイプ状とする方式が
用いられてきた。
On the other hand, a multi-component glass characterized by a low melting point,
In particular, as a manufacturing device for fibers of fluoride glass,
A method has been used in which a molten glass raw material is poured into a hollow mold to form a glass rod by making a hole in the center of the glass rod to form a pipe.

【0005】[0005]

【発明が解決しようとする課題】ところで光ファイバの
損失要因の一つに散乱損失があり、これらは主として光
ファイバ中に形成され勝ちな微結晶によるものである。
特にコア母材に直接クラッドとなるジャケット管を被覆
してファイバ化するロッドイン・チューブ法では、コア
母材の表面あるいは一方のジャケット管内面の傷や塵が
そのままコア・クラッド界面に残留し散乱要因となる。
また、このような傷や塵が結晶核となり延伸,線引き時
の熱処理によって結晶成長し損失値を増大させる。
By the way, one of the loss factors of an optical fiber is a scattering loss, which is mainly due to microcrystals which are easily formed in the optical fiber.
In particular, in the rod-in-tube method in which the core base material is directly coated with a cladding tube to form a fiber, the scratches and dust on the surface of the core base material or on the inner surface of one of the jacket tubes remain at the core-clad interface and scatter. It becomes a factor.
In addition, such scratches and dust serve as crystal nuclei to grow crystals by heat treatment during drawing and drawing, thereby increasing the loss value.

【0006】さらにまた、コア・クラッド構造を有する
母材にジャケット管を被覆した場合においても、単一モ
ード光ファイバでは光出力がコア径の数倍に広がり、上
記傷や塵等が損失値の増大要因となる。
Furthermore, even when a jacket tube is coated on a base material having a core / clad structure, the optical output of the single-mode optical fiber spreads to several times the core diameter, and the scratches, dust, and the like have loss values. It becomes a factor of increase.

【0007】そこで、これら傷や塵を除去する手段とし
て、酸化物ガラス特に石英ガラス系ではフッ酸で洗浄
後、酸水素炎を用いて融点付近まで加熱する火炎研磨法
が用いられてきた。そしてこのような工程により0.2
dB/kmと損失限界値が達成されるまでに傷や塵を除
去することができる。しかし、一方の石英系を凌ぐ低損
失が期待されているフッ化物ガラスでは、上記石英ガラ
ス系と同様な火炎研磨法を用いて加熱するとガラスが結
晶化し易く、特にガラス表面でこのような結晶化が顕著
となるために、上記の火炎研磨法が適用できないという
問題がある。
Therefore, as a means for removing these scratches and dust, a flame polishing method has been used in which oxide glass, particularly quartz glass, is washed with hydrofluoric acid and then heated to near the melting point using an oxyhydrogen flame. And by such a process, 0.2
Scratches and dust can be removed by the time the dB / km and loss thresholds are reached. However, in the case of fluoride glass, which is expected to have a low loss exceeding that of the quartz system, when the glass is heated by using the same flame polishing method as the above-mentioned quartz glass system, the glass is likely to crystallize, and particularly such a crystallized on the glass surface. Therefore, there is a problem that the above-mentioned flame polishing method cannot be applied.

【0008】また、他の手段として、オキシ塩化ジルコ
ニウム・塩酸水溶液を用いてエッチングするものもある
が、傷を完全に除去するまでには至らずむしろ損失値を
増大させる傾向があった。
As another means, there is a method of etching using an aqueous solution of zirconium oxychloride / hydrochloric acid, but this does not lead to complete removal of scratches, but rather tends to increase the loss value.

【0009】そこで、内壁に傷が生じないジャケット管
の製造装置として、ガラス融液を円筒状の中空鋳型に注
入した後、この鋳型を高速で回転させ遠心力により中空
円筒状のパイプを製造するローテイショナル・キャステ
ィング法(D.C.Tranet.al,Electr
on.Lett.vol.18,P.59,(198
2))によるものが提案され、内壁が比較的平滑なジャ
ケット管が製造されるようになった。
Therefore, as an apparatus for producing a jacket tube in which the inner wall is not damaged, a glass melt is poured into a cylindrical hollow mold, and the mold is rotated at high speed to produce a hollow cylindrical pipe by centrifugal force. Rotational casting method (DC Tranet. Al, Electr
on. Lett. vol. 18, P.I. 59, (198
According to 2)), a jacket pipe having a relatively smooth inner wall has been manufactured.

【0010】しかしながら、本装置による工程では、垂
直に立てた電気炉内で予加熱された鋳型を傾斜させて取
出した状態のままでガラス融液を注入するために、最初
に注入された融液が鋳型内壁の一部に付着して固化しそ
の後の融液注入により再加熱されることになる。そこ
で、この再加熱により鋳型内壁の一部に付着したガラス
が結晶化し、そのために製造されたジャケット管の一部
にかかる結晶が存在することになり、管全体にわたって
結晶のないものが得られないという欠点があった。
However, in the process using this apparatus, in order to inject the glass melt in a state in which the preheated mold is tilted and taken out in an electric furnace set upright, the first melt melt is injected. Will adhere to a part of the inner wall of the mold, solidify, and be reheated by the subsequent melt injection. Therefore, this reheating causes the glass adhering to a part of the inner wall of the mold to crystallize, and there will be crystals that affect a part of the jacket tube produced for that purpose, so that a crystal-free material cannot be obtained over the entire tube. There was a drawback.

【0011】また、フッ化物ガラスは空気中の水分と反
応し、吸収損失の原因となるOH基が生成しやすいため
に、不活性ガス雰囲気に保ったグローブボックス(密閉
容器)内にローテイショナル・キャスティング装置を設
置し、ガラス融液の注入,鋳型の回転等を行っている。
Further, since fluoride glass easily reacts with moisture in the air to generate an OH group which causes absorption loss, a rotational glass is kept in an inert gas atmosphere in a glove box (closed vessel). A casting device is installed to inject the glass melt and rotate the mold.

【0012】しかしながら、本例の場合は鋳型を高速で
回転させるため、駆動部から発生した粉塵が鋳型の融液
注入口から鋳型内に侵入し、ジャケット管内壁を汚染す
る。そして、このような汚染物が結晶発生核となりジャ
ケット延伸およびジャケット線引き時の加熱により結晶
が生成されて散乱損失値を増大させるという欠陥があっ
た。
However, in the case of this example, since the mold is rotated at a high speed, the dust generated from the driving unit enters the mold through the melt injection port of the mold and contaminates the inner wall of the jacket tube. Then, there is a defect that such a contaminant becomes a crystal generation nucleus and crystals are generated by heating during jacket stretching and jacket drawing to increase the scattering loss value.

【0013】さらにまた、ローテイショナル・キャステ
ィング装置ではガラス融液を入れた鋳型が高速で回転さ
せられるため、ガラス融液を多量に入れるようにして内
径の細いパイプを製造しようとしても、鋳型の融液注入
口からガラス融液が外部に飛び出して飛散してしまうた
めに注入口径より内径の細いジャケット管の製造ができ
ないという欠点があった。
Furthermore, since the mold containing the glass melt is rotated at a high speed in the rotation casting device, even if an attempt is made to produce a pipe having a small inner diameter by containing a large amount of the glass melt, the mold melts. There is a drawback that a jacket tube having an inner diameter smaller than that of the injection port cannot be manufactured because the glass melt flows out of the liquid injection port and is scattered.

【0014】本発明の目的は、上記欠点を解決し、低損
失でかつコア径を自在に制御できる光ファイバの製造に
かかわる汚染や結晶のない良質なジャケット管を得るた
めの光ファイバ用ジャケット管の製造装置を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned drawbacks and to obtain a high-quality jacket tube which is free from contamination and crystals, which is involved in the manufacture of an optical fiber having a low loss and capable of freely controlling the core diameter. Is to provide a manufacturing apparatus of.

【0015】[0015]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は円筒状の鋳型にガラス融液を注入し、前
記鋳型を予加熱した状態に保って回転させることにより
その遠心力で中空のガラスジャケット管の成形が可能な
光ファイバ用ジャケット管の製造装置において、前記鋳
型および/または該鋳型を予加熱する電気炉を水平ない
し垂直に保持する保持手段と、前記電気炉を前記鋳型の
予加熱後該鋳型の周りから退避させる退避手段と、前記
電気炉を退避させたあとの前記鋳型を垂直に保ちつつ、
当該鋳型の口が絞られている直上の注入口から前記ガラ
ス融液を注入する注入手段と、該ガラス融液が注入され
た前記鋳型を回転させる回転手段および該鋳型を回転さ
せながら前記垂直の状態から前記水平の状態に傾倒させ
る傾倒手段とを具備したことを特徴とするものである。
In order to achieve the above object, the present invention uses a centrifugal force by injecting a glass melt into a cylindrical mold and rotating the mold while keeping it preheated. In an apparatus for manufacturing an optical fiber jacket tube capable of forming a hollow glass jacket tube, holding means for holding the mold and / or an electric furnace for preheating the mold horizontally or vertically, and the electric furnace for holding the mold. While holding the retreating means for retreating from around the mold after preheating and the mold after retreating the electric furnace,
Injection means for injecting the glass melt from an injection port directly above the mouth of the mold is narrowed, rotating means for rotating the mold in which the glass melt is injected, and the vertical means while rotating the mold. And a tilting means for tilting from a state to the horizontal state.

【0016】さらに本発明の好ましき形態は、上記の手
段に加えて、前記鋳型はガラス融液の注入後蓋部材によ
って前記注入口が閉塞されることを特徴とするものであ
る。
Further, in a preferred form of the present invention, in addition to the above-mentioned means, the mold is characterized in that the injection port is closed by a lid member after the glass melt is injected.

【0017】[0017]

【作用】本発明によれば、鋳型および/または電気炉を
保持手段により水平ないし垂直の状態に保って予加熱し
た上、電気炉を退避手段により前記鋳型の周りから退避
させるようになし、予加熱された鋳型を垂直に保った状
態でその直上注入口からガラス融液を注入する。そして
注入の終った鋳型の注入口を望ましくはそのまま蓋によ
って閉鎖した上、鋳型を回転手段によって回転させなが
ら、傾倒手段によってこれを水平に傾倒させ、回転によ
る遠心力でガラス融液を鋳型の周囲壁に均等に分散させ
てそのまま内外面が平滑で、かつごみや結晶のないジャ
ケット管を得ることができるものである。
According to the present invention, the mold and / or the electric furnace are preheated by the holding means in a horizontal or vertical state, and then the electric furnace is retracted from around the mold by the retracting means. With the heated mold kept vertical, the glass melt is injected directly above the injection port. Then, after closing the injection port of the mold after the injection, preferably by directly closing the lid with the lid, while rotating the mold by the rotating means, tilt it horizontally by the tilting means and rotate the glass melt around the mold by centrifugal force. It is possible to obtain a jacket tube which is evenly dispersed on the wall and has a smooth inner and outer surface and is free of dust and crystals.

【0018】[0018]

【実施例】以下に、図面に基づいて本発明の実施例を詳
細かつ具体的に説明する。
Embodiments of the present invention will be described in detail and specifically below with reference to the drawings.

【0019】図1は本発明の一実施例を示す。ここで、
1は予加熱用の電気炉、2はるつぼ3からガラス融液4
の注入が可能な鋳型、5は鋳型2の融液注入口2Aを密
封可能な蓋、6は鋳型2を回転自在に保持すると共に、
自体も鋳型2と同時に起倒自在な鋳型回転駆動用のモー
タである。なお、電気炉1は鋳型2の図中矢印Aで示す
方向の移動を許容するために、例えばその半径方向に分
離可能なように構成してあり、一方、鋳型2の方も後述
するようにして成形されるジャケット管7を取出し可能
なように、本例の場合、縦方向に3分割可能に形成され
ている。
FIG. 1 shows an embodiment of the present invention. here,
1 is an electric furnace for preheating, 2 is a crucible 3 to a glass melt 4
, 5 is a lid that can seal the melt injection port 2A of the mold 2, and 6 is a mold that holds the mold 2 rotatably,
The motor itself is also a motor for driving the mold rotation that can be tilted up and down together with the mold 2. The electric furnace 1 is configured to be separable in the radial direction, for example, in order to allow the mold 2 to move in the direction indicated by the arrow A in the figure, while the mold 2 is also described later. In the case of this example, the jacket tube 7 formed by molding is formed so as to be vertically separable into three parts.

【0020】このように構成したジャケット管の製造装
置においては、まず、図1の右側に示すように、電気炉
1および鋳型2をほぼ水平方向に倒した状態にして鋳型
2を予加熱する。そして、所定の温度にまで予加熱され
たならば、電気炉1を鋳型2の矢印Aで示す引き起し動
作の妨げとならないように分離した後、予加熱された鋳
型2をガラス融液4の注入位置(B)にまで引き起す。
ついで、るつぼ3内で溶融した状態に保たれるガラス融
液4を鋳型2の融液注入口2Aから図示のようにして注
入した後、その注入口2Aを蓋5で閉鎖し、モータ6に
より高速回転させながら閉鎖された鋳型2を矢印Cで示
すようにして(D)で示す水平位置にまで傾倒する。な
お、この位置(D)においてもモータ6により鋳型2を
継続してその軸まわりに高速回転させ、その遠心力によ
りガラス融液4を鋳型内面に向けて均等に放散させるこ
とにより中空状のジャケット管7を形成することができ
る。よって、このあと、冷却を待って鋳型を分割し、固
化したジャケット管を取出せばよい。
In the jacket tube manufacturing apparatus thus constructed, first, as shown on the right side of FIG. 1, the electric furnace 1 and the mold 2 are laid down substantially horizontally to preheat the mold 2. Then, if preheated to a predetermined temperature, the electric furnace 1 is separated so as not to hinder the raising operation shown by the arrow A of the mold 2, and then the preheated mold 2 is separated into the glass melt 4 Up to the injection position (B).
Then, the glass melt 4 kept in a molten state in the crucible 3 is injected from the melt injection port 2A of the mold 2 as shown in the figure, and then the injection port 2A is closed by the lid 5 and the motor 6 is used. While rotating at high speed, the closed mold 2 is tilted to the horizontal position shown in (D) as shown by arrow C. Even at this position (D), the mold 6 is continuously rotated at a high speed by the motor 6 around its axis, and the glass melt 4 is evenly diffused toward the inner surface of the mold by its centrifugal force, thereby forming a hollow jacket. The tube 7 can be formed. Therefore, after this, after cooling, the mold may be divided and the solidified jacket tube may be taken out.

【0021】以下に、かかるジャケット管製造装置を用
いて多成分系光ファイバ形成のために行ったフッ化物ガ
ラスによるジャケット管製造の実施例について述べるこ
ととする。
An example of manufacturing a jacket tube made of fluoride glass for forming a multi-component optical fiber using the jacket tube manufacturing apparatus will be described below.

【0022】製造実験例1 組成が47.5%ZrF4 −23.5%BaF2 −2.
5%LaF3 −2%YF3 −4.5%AlF3 −20%
NaF(モル分率%)になるように総量で98gのフッ
化物を秤量し、これを20gのNH4 F・HFと共に金
のるつぼ3に入れて、アルゴンガス雰囲気で400℃3
時間加熱し、フッ素化処理を行った後850℃で1.5
時間保持して溶融した後700℃に降温させた状態に保
たせた。次に、グローブボックス内に収容した図1に示
す装置に対し、ボックス内を窒素ガスで充分置換した
後、電気炉1により200℃に加熱しておいた黄銅製の
円筒状中空鋳型2を電気炉1を開けて(B)に示す状態
に直立させた。そして、この鋳型2の上部の注入口2A
から上述の温度でガラス融液4を注入し、直ちに蓋5に
より鋳型2の融液注入口2Aを閉蓋密封した上、この鋳
型2を鋳型回転用モータ6により2000rpmで回転
させながら水平に寝かせ3分間保った後、室温まで徐冷
した。
Production Experimental Example 1 Composition was 47.5% ZrF 4 -23.5% BaF 2 -2.
5% LaF 3 -2% YF 3 -4.5% AlF 3 -20%
A total amount of 98 g of fluoride was weighed so as to be NaF (mol fraction%), and this was put in a gold crucible 3 together with 20 g of NH 4 F.HF, and 400 ° C. in an argon gas atmosphere.
1.5 hours at 850 ° C after heating and fluorination
After being held for a period of time to be melted, the temperature was lowered to 700 ° C. and kept. Next, with respect to the apparatus shown in FIG. 1 housed in the glove box, after the inside of the box was sufficiently replaced with nitrogen gas, the brass cylindrical hollow mold 2 heated to 200 ° C. in the electric furnace 1 was electrically operated. The furnace 1 was opened and it was made to stand upright in the state shown in (B). And the injection port 2A on the upper part of this mold 2
Then, the glass melt 4 is injected at the above temperature, the melt injection port 2A of the mold 2 is immediately closed and sealed by the lid 5, and the mold 2 is laid horizontally while rotating it at 2000 rpm by the mold rotation motor 6. After being kept for 3 minutes, it was gradually cooled to room temperature.

【0023】かくして外形15mmφ,内径7mmφ,
長さ140mmで下部に底を有するフッ化物ガラスの円
筒状ジャケット管7が得られ、同様にしてもう一本のジ
ャケット管を製造した。
Thus, the outer diameter is 15 mmφ, the inner diameter is 7 mmφ,
A cylindrical jacket tube 7 of fluoride glass having a length of 140 mm and a bottom at the bottom was obtained, and another jacket tube was manufactured in the same manner.

【0024】このフッ化物ジャケット管全体を顕微鏡を
用いて詳細に観察したが、内壁に傷や塵等、またガラス
中に結晶の発生は見られず、また、特に管内壁は平滑に
形成されていた。
The whole of the fluoride jacket tube was observed in detail with a microscope. No scratches, dust, etc. were observed on the inner wall, no crystals were found in the glass, and especially the inner wall of the tube was smooth. It was

【0025】さらにまた、上記とは別に、コア組成が4
9%ZrF4 −25%BaF2 −3.5%LaF3 −2
%YF3 −2.5%AlF3 −18%LiF(モル分率
%)、クラッド組成が47.5%ZrF4 −23.5%
BaF2 −2.5%LaF3−2%YF3 −4.5%A
lF3 −20%NaF(モル分率%)からなるコア・ク
ラッド構造を有する外径7mmφの母材をサクション・
キャスティング法(特開昭63−11535号公報参
照)により製造した。この母材の表面を研磨し、さらに
オキシ塩化ジルコニウム・塩酸水溶液中でエッチングし
て充分に乾燥した後、先に述べた円筒状のフッ化物ガラ
ス管(ジャケット管)内に挿入した。その後、真空ポン
プを用いてジャケット管内を減圧しながら外部よりゾー
ン加熱して軟化させ、母材とジャケット管を一体化しつ
つ延伸速度を変えながら、コア径が一定となるように延
伸した(以上、特開平4−31333号参照)。そして
外形がテーパー状に延伸された母材の外形が6.8mm
一定となるように研磨し、オキシ塩化ジルコニウム・塩
酸水溶液でエッチングし充分に乾燥した。この母材を先
に述べたもう一本のジャケット管に挿入し、さらにこの
ジャケット管外部にテフロンFEPパイプを被覆し、管
内部を減圧しながらゾーン加熱しジャケット線引きを行
った。
Furthermore, apart from the above, the core composition is 4
9% ZrF 4 -25% BaF 2 -3.5% LaF 3 -2
% YF 3 -2.5% AlF 3 -18% LiF (mol fraction%), clad composition 47.5% ZrF 4 -23.5%
BaF 2 -2.5% LaF 3 -2% YF 3 -4.5% A
lF 3 Suction the preform outer diameter 7mmφ having a core-clad structure consisting of -20% NaF (molar fraction%)
It was produced by the casting method (see Japanese Patent Laid-Open No. 63-11535). The surface of this base material was polished, further etched in a zirconium oxychloride / hydrochloric acid aqueous solution and sufficiently dried, and then inserted into the cylindrical fluoride glass tube (jacket tube) described above. Then, while the jacket tube was decompressed using a vacuum pump, it was zone-heated from the outside to be softened, and while stretching the base material and the jacket tube while changing the stretching speed, the core diameter was stretched to be constant (above, See JP-A-4-31333). The outer shape of the base material stretched in a tapered shape is 6.8 mm.
It was polished to a constant level, etched with a zirconium oxychloride / hydrochloric acid aqueous solution, and sufficiently dried. This base material was inserted into the other jacket tube described above, the outside of this jacket tube was covered with a Teflon FEP pipe, and the jacket was drawn by zone heating while depressurizing the inside of the tube.

【0026】かくして長さが1km,外径125μm,
コア径10.3mmで比屈折率差が0.61%であり、
カットオフ2.2μmの単一モード光ファイバが得られ
た。この光ファイバの断面を顕微鏡で観察した結果、ジ
ャケット界面に結晶の発生や乱れは見られずまた平滑で
あった。この光ファイバの伝送損失特性を図2に示す。
この図に示すように最低損失値は波長2.55μmで
1.5dB/kmであり、本実施例によって得られたジ
ャケット管を用いることにより、2本のジャケット管に
かかわらず低損失な単一モード光ファイバを製造するこ
とができた。
Thus, the length is 1 km, the outer diameter is 125 μm,
With a core diameter of 10.3 mm and a relative refractive index difference of 0.61%,
A single mode optical fiber with a cutoff of 2.2 μm was obtained. As a result of observing the cross section of this optical fiber with a microscope, no crystal formation or disorder was observed at the jacket interface and it was smooth. The transmission loss characteristic of this optical fiber is shown in FIG.
As shown in this figure, the minimum loss value is 1.5 dB / km at a wavelength of 2.55 μm, and by using the jacket tube obtained in this example, a low loss single tube can be obtained regardless of two jacket tubes. A mode optical fiber could be manufactured.

【0027】図3は本発明による第2の実施例を示す。
本例は、鋳型2を(B)に示す直立状態に保持したまま
この位置で電気炉1により予加熱を可能とするもので、
従い、電気炉1により(B)の位置で鋳型2を取囲むよ
うにして予加熱した後、この図に矢印A′で示すように
して電気炉1を(B)の位置から移動退避させ、倒した
状態とすることができる。なお、本例の場合、鋳型回転
駆動用のモータ6とこれに回転自在に保持される鋳型2
とは共に(B)の位置から(D)の位置に回転状態のま
ま矢印C方向に移動可能であればよく、図1に示したよ
うに矢印A方向への移動の必要はない。
FIG. 3 shows a second embodiment according to the present invention.
In this example, preheating can be performed by the electric furnace 1 at this position while holding the mold 2 in the upright state shown in (B).
Therefore, after the mold 2 was preheated by the electric furnace 1 so as to surround the mold 2 at the position (B), the electric furnace 1 was moved and retracted from the position (B) as shown by an arrow A'in this figure, and was collapsed. It can be in a state. In the case of this example, the mold driving motor 6 and the mold 2 rotatably held by the motor 6 are used.
It suffices that both are movable from the position (B) to the position (D) in the direction of arrow C while being rotated, and it is not necessary to move in the direction of arrow A as shown in FIG.

【0028】このように構成したジャケット管の製造装
置を用いて先に製造実験例1のところで示したと同様の
手順により用意した金のるつぼ3を用いて直立状態に保
たれる鋳型2内にガラス融液4を注入したが、この場
合、鋳型2の予加熱は電気炉1を(B)の位置に保つこ
とで行った。なお、そのあとの手順については製造実験
例1にならって実施した。
Using the jacket tube manufacturing apparatus constructed as described above, the glass is placed in the mold 2 which is kept upright by using the gold crucible 3 prepared by the same procedure as described in the manufacturing experiment example 1 above. Although the melt 4 was injected, in this case, the preheating of the mold 2 was performed by keeping the electric furnace 1 at the position (B). The subsequent procedure was carried out according to Production Experimental Example 1.

【0029】かくして得られたジャケット管7の形状お
よび寸法は上記製造実験例1と同一であり、この管全体
を顕微鏡を用いて観察したが内壁に傷,塵等また結晶の
発生は見られず実験例1と同等のジャケット管が製造で
きた。このジャケット管を用いて実験例1と同一手法で
光ファイバを製造し伝送損失特性を測定したが図2と同
等であった。
The jacket tube 7 thus obtained had the same shape and dimensions as those in the above-mentioned Production Experimental Example 1, and the entire tube was observed with a microscope, but no scratches, dust or other crystals were observed on the inner wall. A jacket tube equivalent to that of Experimental Example 1 could be manufactured. Using this jacket tube, an optical fiber was manufactured by the same method as in Experimental Example 1 and the transmission loss characteristics were measured, but it was the same as in FIG.

【0030】図4は本発明による第3の実施例を示す。
本例は、(B)の位置で鋳型2の周りに直立状態に保た
れる電気炉1を水平方向に移動可能としたものである。
8はその移動軌条8Aを有する移動台、9は電気炉1を
鉛直方向に支持する支持棒、10は支持棒9を移動軌条
8Aに固定するための固定ねじであり、なお電気炉1は
鋳型2を予加熱後(B)の位置から矢印Eで示すように
して図示の位置に移動されるが、その際に鋳型2と干渉
しないようにするために電気炉1自体が縦方向に沿って
2つの開放分割されるように構成されている。その他の
構成についてはこれまでに述べてきた実施例と変わらな
いのでその説明を省略する。
FIG. 4 shows a third embodiment according to the present invention.
In this example, the electric furnace 1 which is kept upright around the mold 2 at the position (B) is movable in the horizontal direction.
8 is a moving table having the moving rail 8A, 9 is a support rod for vertically supporting the electric furnace 1, 10 is a fixing screw for fixing the supporting rod 9 to the moving rail 8A, and the electric furnace 1 is a mold. 2 is moved from the position after preheating (B) to the position shown in the figure as shown by the arrow E, but in order to prevent it from interfering with the mold 2, the electric furnace 1 itself is moved along the longitudinal direction. It is configured to be divided into two open parts. The rest of the configuration is the same as in the above-described embodiments, so the description thereof is omitted.

【0031】このように構成したジャケット管の製造装
置を用いて製造実験を行った。なお、本例の場合、鋳型
2の電気炉1による予加熱を(B)の位置で行った点は
第2実施例について行った実験例の場合と同様である。
また、得られたジャケット管を用いて製造した光ファイ
バの伝送損失特性を測定したが、図2に示したと同様の
結果が得られた。
A manufacturing experiment was carried out using the jacket tube manufacturing apparatus thus configured. In the case of this example, the preheating of the mold 2 by the electric furnace 1 at the position (B) is the same as in the case of the experimental example carried out for the second embodiment.
Further, the transmission loss characteristic of the optical fiber manufactured by using the obtained jacket tube was measured, and the same result as shown in FIG. 2 was obtained.

【0032】図5は本発明による第4の実施例を示す。
本例は、電気炉1を鋳型2の直立状態に保たれる位置
(B)から支持棒9に沿って矢印Fで示すように直上方
向に移動可能としたもので、10は電気炉1を支持棒9
に固定するための固定ねじである。なお、その他の基本
的構成についてはこれまでに述べてきた実施例と変わら
ない。
FIG. 5 shows a fourth embodiment according to the present invention.
In this example, the electric furnace 1 is movable from a position (B) in which the mold 2 is held in the upright state along the support rod 9 in a direct upward direction as shown by an arrow F. Support rod 9
It is a fixing screw for fixing to. Note that the other basic configurations are the same as those of the embodiments described above.

【0033】このように構成したジャケット管の製造装
置による製造手順については、鋳型2の予加熱後、電気
炉1を矢印Fの方向に引上げてるつぼ3からのガラス融
液4注入に妨げとならないようにすること以外、これま
でに述べたところと変らず、また、本実施例による製造
装置を用いて実験として製造したジャケット管、および
そのジャケット管を用いて製造した光ファイバの特性に
ついても、上述の製造実験例1で得られたと同様の成績
を保持することができた。
Regarding the manufacturing procedure by the manufacturing apparatus of the jacket tube thus constructed, after preheating the mold 2, the injection of the glass melt 4 from the crucible 3 pulling up the electric furnace 1 in the direction of the arrow F is not hindered. Other than the above, it is the same as described above, and the characteristics of the jacket tube manufactured as an experiment using the manufacturing apparatus according to this example, and the characteristics of the optical fiber manufactured using the jacket tube, It was possible to maintain the same results as those obtained in the above-mentioned manufacturing experiment example 1.

【0034】その他の製造実験例 製造実験例1のジャケット管作製時と同一の組成で原料
の総量100g秤量し、20gのNH4 F・HFと共に
金るつぼ3に保持し、実験例1と同様に溶融した。その
後のキャスティング動作も実験例1にならって実施し、
内径が5mmφのジャケット管が得られた。さらに、同
一組成の原料の総量を102gとして上記の手順で製造
した管の内径は3mmφであった。
Other Manufacturing Experiment Examples A total of 100 g of raw materials having the same composition as in the production of the jacket tube of Manufacturing Experiment Example 1 was weighed and held in the metal crucible 3 together with 20 g of NH 4 F.HF, and the same as in Experiment Example 1. Melted Subsequent casting operations were also performed following Experimental Example 1,
A jacket tube having an inner diameter of 5 mmφ was obtained. Further, the inner diameter of the tube manufactured by the above procedure was 3 mmφ, with the total amount of raw materials having the same composition being 102 g.

【0035】[0035]

【発明の効果】以上説明してきたように、本発明によれ
ば、鋳型および/または該鋳型を予加熱する電気炉を水
平ないし垂直に保持する保持手段と、前記電気炉を前記
鋳型の予加熱後該鋳型の周りから退避させる退避手段
と、前記電気炉を退避させたあとの前記鋳型を垂直に保
ちつつ、当該鋳型の口が絞られている直上の注入口から
前記ガラス融液を注入する注入手段と、該ガラス融液が
注入された前記鋳型を回転させる回転手段および該鋳型
を回転させながら前記垂直の状態から前記水平の状態に
傾倒させる傾倒手段とを具備したので、ガラス融液を鋳
型に注入する際に、鋳型内壁の一部分にこの融液が接す
るようなことがなく、融液が下部より順に満たされた
上、ジャケット管全体にわたり結晶発生を抑えた良質な
ジャケット管が得られる。また、本発明によって、ごみ
や傷のために管内が汚染されることもなく、良質なジャ
ケット管を提供することができるので、低損失で長尺な
光ファイバの製造に貢献することができる。
As described above, according to the present invention, holding means for holding the mold and / or the electric furnace for preheating the mold horizontally or vertically, and the electric furnace for preheating the mold. After that, the retracting means for retracting from around the mold and the mold after the electric furnace is retracted are kept vertical, and the glass melt is injected from the injection port directly above where the mouth of the mold is narrowed. Injecting means, a rotating means for rotating the mold into which the glass melt has been injected, and a tilting means for tilting the mold from the vertical state to the horizontal state while rotating the mold are used. When pouring into the mold, the melt did not come into contact with a part of the inner wall of the mold, and the melt was filled in order from the bottom, and a high-quality jacket tube with suppressed crystal formation over the entire jacket tube was obtained. . Further, according to the present invention, a good quality jacket tube can be provided without being contaminated in the tube due to dust or scratches, which can contribute to the production of a long optical fiber with low loss.

【0036】さらにまた、ガラス融液の量を制御するこ
とで本装置により自在な内径の設定が可能なジャケット
管を製造することができる。
Furthermore, by controlling the amount of the glass melt, it is possible to manufacture a jacket tube whose inner diameter can be freely set by this apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例によるジャケット管の製造装
置の構成をその動作と共に示す図である。
FIG. 1 is a diagram showing the configuration of a jacket pipe manufacturing apparatus according to a first embodiment of the present invention together with its operation.

【図2】第1実施例を用いて製造したジャケット管によ
るフッ化物単一モード光ファイバの伝送損失を示す特性
曲線図である。
FIG. 2 is a characteristic curve diagram showing transmission loss of a fluoride single mode optical fiber by a jacket tube manufactured by using the first embodiment.

【図3】本発明第2実施例によるジャケット管の製造装
置の構成をその動作と共に示す図である。
FIG. 3 is a diagram showing the configuration of a jacket pipe manufacturing apparatus according to a second embodiment of the present invention together with its operation.

【図4】本発明第3実施例によるジャケット管の製造装
置の構成をその動作と共に示す図である。
FIG. 4 is a diagram showing the configuration of a jacket pipe manufacturing apparatus according to a third embodiment of the present invention together with its operation.

【図5】本発明第4実施例によるジャケット管の製造装
置の構成をその動作と共に示す図である。
FIG. 5 is a diagram showing the construction of a jacket pipe manufacturing apparatus according to a fourth embodiment of the present invention together with its operation.

【符号の説明】[Explanation of symbols]

1 電気炉 2 鋳型 2A 注入口 3 るつぼ 4 ガラス融液 5 蓋 6 (鋳型回転用)モータ 7 ジャケット管 8 移動台 9 支持棒 10 固定ねじ 1 Electric Furnace 2 Mold 2A Injection Port 3 Crucible 4 Glass Melt 5 Lid 6 Motor (for Mold Rotation) Motor 7 Jacket Tube 8 Moving Stand 9 Support Rod 10 Fixing Screw

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の鋳型にガラス融液を注入し、前
記鋳型を予加熱した状態に保って回転させることにより
その遠心力で中空のガラスジャケット管の成形が可能な
光ファイバ用ジャケット管の製造装置において、 前記鋳型および/または該鋳型を予加熱する電気炉を水
平ないし垂直に保持する保持手段と、 前記電気炉を前記鋳型の予加熱後該鋳型の周りから退避
させる退避手段と、 前記電気炉を退避させたあとの前記鋳型を垂直に保ちつ
つ、当該鋳型の口が絞られている直上の注入口から前記
ガラス融液を注入する注入手段と、 該ガラス融液が注入された前記鋳型を回転させる回転手
段および該鋳型を回転させながら前記垂直の状態から前
記水平の状態に傾倒させる傾倒手段とを具備したことを
特徴とする光ファイバ用ジャケット管の製造装置。
1. An optical fiber jacket tube capable of forming a hollow glass jacket tube by centrifugal force by pouring a glass melt into a cylindrical mold and rotating the mold while keeping the mold preheated. In the manufacturing apparatus of, the holding means for holding the mold and / or the electric furnace for preheating the mold horizontally or vertically, and the retreating means for retracting the electric furnace from around the mold after preheating the mold, An injection means for injecting the glass melt from an injection port directly above where the mouth of the mold is narrowed while keeping the mold vertical after the electric furnace is retracted, and the glass melt was injected. An optical fiber jacket tube, comprising: rotating means for rotating the mold; and tilting means for tilting the mold from the vertical state to the horizontal state while rotating the mold. Forming apparatus.
【請求項2】 前記鋳型は前記ガラス融液の注入後蓋部
材によって前記注入口が閉塞されることを特徴とする請
求項1に記載の光ファイバ用ジャケット管の製造装置。
2. The apparatus for manufacturing an optical fiber jacket tube according to claim 1, wherein the casting port is closed by a lid member after the casting of the glass melt.
JP23941392A 1992-09-08 1992-09-08 Equipment for manufacturing jacket tubes for optical fibers Expired - Lifetime JP2784385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23941392A JP2784385B2 (en) 1992-09-08 1992-09-08 Equipment for manufacturing jacket tubes for optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23941392A JP2784385B2 (en) 1992-09-08 1992-09-08 Equipment for manufacturing jacket tubes for optical fibers

Publications (2)

Publication Number Publication Date
JPH0692661A true JPH0692661A (en) 1994-04-05
JP2784385B2 JP2784385B2 (en) 1998-08-06

Family

ID=17044409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23941392A Expired - Lifetime JP2784385B2 (en) 1992-09-08 1992-09-08 Equipment for manufacturing jacket tubes for optical fibers

Country Status (1)

Country Link
JP (1) JP2784385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677206A (en) * 2022-11-14 2023-02-03 中国计量大学 Preparation device and preparation method of cladding sleeve for optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677206A (en) * 2022-11-14 2023-02-03 中国计量大学 Preparation device and preparation method of cladding sleeve for optical fiber preform
CN115677206B (en) * 2022-11-14 2024-02-02 中国计量大学 Preparation device and preparation method of cladding sleeve for optical fiber preform

Also Published As

Publication number Publication date
JP2784385B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JPH0583494B2 (en)
JPH068187B2 (en) Fluorine glass optical fiber and optical element manufacturing method
US5656058A (en) Apparatus for inserting a core fiber into a partially molten cladding glass to form an optical fiber preform
US5160521A (en) Method for making optical fiber preforms
JP2637889B2 (en) Method for producing cylindrical member made of glass, especially fluorine glass
JPH04270129A (en) Method and device for manufacture of glass preform
US5055120A (en) Fluoride glass fibers with reduced defects
US5679127A (en) Apparatus for drawing glass from a containment vessel to make optical fiber preforms
JP2784385B2 (en) Equipment for manufacturing jacket tubes for optical fibers
JPS62288127A (en) Manufacture of mother material for drawing glass fiber
JP2694860B2 (en) Method for manufacturing fluoride glass preform
JPH01192736A (en) Production of preform for fluoride glass fiber and apparatus therefor
WO2002036507A2 (en) Chalcogenide glass tubing fabrication
USH1259H (en) Large fluoride glass preform fabrication
JPH10101356A (en) Production of fluoride glass optical fiber preform
JPS6321232A (en) Production of perform for optical fiber
JP3376422B2 (en) Glass jacket tube manufacturing apparatus and optical fiber manufacturing method
KR100390329B1 (en) Method of manufacturing an optical fiber
JPS6272537A (en) Production of high-purity quartz glass
JPS6217033A (en) Production of base material for fluoride glass fiber and its device
JPH0583495B2 (en)
JP2556569B2 (en) Method for manufacturing base material for fluoride glass fiber
JPS596821B2 (en) Method for manufacturing multicomponent glass fiber
JPH054831A (en) Production of infrared-transmitting optical fiber preform
JPS6251214B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15