JPH0692631A - Production of hemihydrate gypsum - Google Patents

Production of hemihydrate gypsum

Info

Publication number
JPH0692631A
JPH0692631A JP26416192A JP26416192A JPH0692631A JP H0692631 A JPH0692631 A JP H0692631A JP 26416192 A JP26416192 A JP 26416192A JP 26416192 A JP26416192 A JP 26416192A JP H0692631 A JPH0692631 A JP H0692631A
Authority
JP
Japan
Prior art keywords
gypsum
hemihydrate gypsum
amount
acid
hemihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26416192A
Other languages
Japanese (ja)
Inventor
Yasuo Arai
康夫 荒井
Takashi Yasue
任 安江
Yoshiyuki Kojima
芳行 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP26416192A priority Critical patent/JPH0692631A/en
Publication of JPH0692631A publication Critical patent/JPH0692631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To provide a method for producing alpha type hemihydrate gypsum, continuous fibrous alpha type hemihydrate gypsum and beta type hemihydrate gypsum in which various uses with low energy consumption have been proposed. CONSTITUTION:This method for producing hemihydrate gypsum is composed of a step for heating sulfuric acid and a calcium compound. Continuous fibrous alphatype hemihydrate gypsum, a type hemihydrate gypsum or beta type hemihydrate gypsum is selectively obtained by regulating the amount of the calcium compound or further, as necessary, the amount of the acid so as to provide the molar ratio of (the theoretical amount of the produced hemihydrate gypsum)/(the amount of gypsum soluble in the reactional solution) within a prescribed range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半水石膏の製造方法に
関するものであり、詳しくはカルシウム化合物と硫酸を
所定条件で反応させる場合に、(半水石膏の理論的な生
成量)/(反応溶液に溶け得る石膏量)のモル比が所定の
範囲となるようにカルシウム化合物の使用量を調整する
ことで、更には必要に応じて酸の使用量を調整すること
で、様々な利用方法が提案されている長繊維α型半水石
膏、α型半水石膏またはβ型半水石膏を低エネルギー消
費量で選択的に得る方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing hemihydrate gypsum, and more specifically, when a calcium compound and sulfuric acid are reacted under predetermined conditions, (theoretical amount of hemihydrate gypsum) / ( By adjusting the amount of calcium compound used so that the molar ratio of the amount of gypsum that can be dissolved in the reaction solution) falls within a predetermined range, and further by adjusting the amount of acid used as necessary, various usage methods are possible. The present invention relates to a method for selectively obtaining long-fiber α-type hemihydrate gypsum, α-type hemihydrate gypsum or β-type hemihydrate gypsum with low energy consumption.

【0002】[0002]

【従来の技術】近年、硫酸は、工業製品に様々な特性を
付与する目的で大量に用いられているが、その一方で、
大量の廃硫酸が副産し処理されている。また、火力発電
所等での排煙脱硫装置には、亜硫酸ガスの酸化工程が組
み込まれており、ここからは硫酸が得られる。従って、
様々な産業から副産される硫酸の有効利用技術は、資源
の有効利用及び環境保全の観点からも有用な技術である
と言えよう(例えば特開昭52−71397号公報、特公昭56−
41316号公報)。
2. Description of the Related Art Recently, sulfuric acid has been used in large quantities for the purpose of imparting various properties to industrial products.
A large amount of waste sulfuric acid is by-produced and processed. Further, a flue gas desulfurization device in a thermal power plant or the like has a built-in oxidation process of sulfurous acid gas, from which sulfuric acid can be obtained. Therefore,
It can be said that the effective utilization technology of sulfuric acid produced as a by-product from various industries is a useful technology from the viewpoint of effective utilization of resources and environmental conservation (for example, Japanese Patent Laid-Open No. 52-71397 and Japanese Patent Publication No. 56-
41316).

【0003】半水石膏には、α型及びβ型の形態が知ら
れている。α型半水石膏は、水熱条件及び添加剤の特定
で、長繊維化、柱状化及び塊状化が可能であり、それぞ
れの形状特性を生かして、プラスチック等の有機高分子
成形体の補強繊維、軽量石膏硬化体及び高強度石膏硬化
体の製造に用いる水和硬化性材料等として幅広い用途が
提案されてきた。しかしながら、二水石膏から半水石膏
を製造することは、低温で水和させ安定化した二水石膏
を、再度高温高圧条件下で処理することを意味し、副産
される硫酸から直接半水石膏を製造する方法に比較し
て、製造エネルギーのロスは必然的に多くなる。また、
常圧中でα型半水石膏を製造する方法がいくつか提案さ
れているものの、それらは二水石膏を酸に溶解し、製造
条件を制御することでα型半水石膏を得るものがほとん
どであり、これらも前述の点から硫酸とカルシウム化合
物との反応で直接半水石膏を得る方法に比較して、トー
タルエネルギー消費量からみて不利である。一方、β型
半水石膏は、石膏ボード等の原料として大量に消費され
ているが、その一部には、排煙脱硫及び廃硫酸の中和処
理で得られる二水石膏の焼成物が使用されている。従っ
て、従来法によるβ型半水石膏の製造では、二水石膏の
焼成に伴うエネルギーの消費が避けられない。
[0003] Hemihydrate gypsum is known to have α-type and β-type forms. α-type hemihydrate gypsum can be made into long fibers, columnar shapes and agglomerates depending on hydrothermal conditions and additives, and by utilizing their respective shape characteristics, reinforcing fibers for molded organic polymers such as plastics. A wide range of applications have been proposed as hydration curable materials used for the production of light-weight gypsum hardened products and high-strength gypsum hardened products. However, producing hemihydrate gypsum from dihydrate gypsum means treating dihydrate gypsum hydrated and stabilized at a low temperature again under high temperature and high pressure conditions. Compared to the method of producing gypsum, the loss of production energy is inevitably high. Also,
Although several methods for producing α-type hemihydrate gypsum under normal pressure have been proposed, most of them obtain α-type hemihydrate gypsum by dissolving dihydrate gypsum in acid and controlling the production conditions. However, these are also disadvantageous in terms of total energy consumption compared to the method of directly obtaining hemihydrate gypsum by the reaction of sulfuric acid and calcium compound from the above-mentioned point. On the other hand, β-type hemihydrate gypsum is consumed in large quantities as a raw material for gypsum boards, etc., but part of it is a fired product of gypsum dihydrate obtained by flue gas desulfurization and waste sulfuric acid neutralization. Has been done. Therefore, in the production of β-type hemihydrate gypsum by the conventional method, energy consumption associated with the firing of dihydrate gypsum is unavoidable.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、様々
な用途が提案されているα型半水石膏及び長繊維α型半
水石膏を低エネルギー消費量で製造する方法並びに従来
一旦二水石膏を合成し、これを焼成することにより得ら
れていたβ型半水石膏を、排煙脱硫工程から直接製造す
る方法並びに廃棄される硫酸の中和処理工程から有用な
半水石膏を直接製造する方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing α-type hemihydrate gypsum and long-fiber α-type hemihydrate gypsum, which have been proposed for various uses, with a low energy consumption, and a conventional method of once dihydrate. A method of directly producing β-type hemihydrate gypsum, which was obtained by synthesizing gypsum and calcining it, and directly producing useful hemihydrate gypsum, from the flue gas desulfurization process and the waste sulfuric acid neutralization process To provide a way to do.

【0005】[0005]

【課題を解決するための手段】即ち、本発明に係る半水
石膏の製造方法は、硫酸とカルシウム化合物とを加熱す
ることからなる半水石膏の製造方法であって、(半水石
膏の理論的な生成量)/(反応溶液に溶け得る石膏量)の
モル比が所定の範囲となるように、カルシウム化合物あ
るいは更に必要に応じて酸の使用量を調節することによ
り、長繊維α型半水石膏、α型半水石膏またはβ型半水
石膏を選択的に得ることを特徴とする。
That is, a method for producing hemihydrate gypsum according to the present invention is a method for producing hemihydrate gypsum, which comprises heating sulfuric acid and a calcium compound. The amount of calcium compound or, if necessary, the amount of acid used, is adjusted so that the molar ratio of (amount of production) / (amount of gypsum that can be dissolved in the reaction solution) falls within a predetermined range. It is characterized by selectively obtaining water gypsum, α-type hemihydrate gypsum or β-type hemihydrate gypsum.

【0006】[0006]

【作用】以下、本発明に係る半水石膏の製造方法につい
て詳述する。本発明者らは、加熱しながら硫酸とカルシ
ウム化合物を反応させ、半水石膏を製造する際、α型及
びβ型半水石膏をそれぞれ選択的に製造するために様々
な検討を行った結果、(半水石膏の理論的な生成量)/
(反応溶液に溶け得る石膏量)のモル比が析出する半水石
膏の形態を決定することを見出した。
The operation of the hemihydrate gypsum according to the present invention will be described in detail below. The present inventors reacted sulfuric acid and a calcium compound while heating, when producing hemihydrate gypsum, as a result of various studies to selectively produce α-type and β-type hemihydrate gypsum, respectively, (Theoretical amount of hemihydrate gypsum) /
It has been found that the molar ratio of (amount of gypsum that can be dissolved in the reaction solution) determines the morphology of precipitated hemihydrate gypsum.

【0007】反応溶液に溶け得る石膏量(以下、「石膏
の溶解度」と記載する)は、共存する酸の濃度によって
変化する。石膏の溶解度を高めるような酸としては、カ
ルシウム化合物と反応して硫酸カルシウムよりも溶解度
の低い塩を生成せず、かつ石膏の溶解度を高めるもので
あればいずれのものでもよく、例えば硝酸、塩酸及び硫
酸等を使用することができる。なお、例えば塩酸あるい
は硝酸水溶液中での石膏の溶解度は、100±2℃にお
いて図1のようになる。
The amount of gypsum that can be dissolved in the reaction solution (hereinafter referred to as "solubility of gypsum") varies depending on the concentration of coexisting acid. As the acid for increasing the solubility of gypsum, any acid may be used as long as it does not form a salt having a solubility lower than that of calcium sulfate by reacting with a calcium compound and enhances the solubility of gypsum, for example, nitric acid or hydrochloric acid. And sulfuric acid can be used. The solubility of gypsum in hydrochloric acid or nitric acid aqueous solution is as shown in FIG. 1 at 100 ± 2 ° C.

【0008】また、硫酸とカルシウム化合物を反応させ
ると、半水石膏と酸あるいは水を生成する。カルシウム
化合物として、例えば硝酸カルシウム及び塩化カルシウ
ムを用いて説明を行うと、
When sulfuric acid and a calcium compound are reacted, hemihydrate gypsum and acid or water are produced. As a calcium compound, for example, using calcium nitrate and calcium chloride,

【化1】H2SO4+CaCl2+1/2H2O→CaSO4・1/2H2O↓+2HCl[Chemical 1] H 2 SO 4 + CaCl 2 + 1 / 2H 2 O → CaSO 4 · 1 / 2H 2 O ↓ + 2HCl

【化2】 H2SO4+Ca(NO3)2+1/2H20→CaSO4・1/2H2O↓+2HNO3 のようになる。この時、生成する酸の濃度は、半水石膏
の生成量によって決定され、即ち、反応に用いた硫酸あ
るいはカルシウム化合物の量によって決定されること
と、硫酸とカルシウム化合物の反応から半水石膏を生成
する反応は、理論的には当量反応であることが判る。
## STR2 ## is as H 2 SO 4 + Ca (NO 3) 2 + 1 / 2H 2 0 → CaSO 4 · 1 / 2H 2 O ↓ + 2HNO 3. At this time, the concentration of the acid produced is determined by the amount of hemihydrate gypsum produced, that is, by the amount of sulfuric acid or calcium compound used in the reaction, and the reaction of sulfuric acid and calcium compound removes hemihydrate gypsum. It can be seen that the reaction to be generated is theoretically an equivalent reaction.

【0009】そこで、上記の反応において、(半水石膏
の理論的な生成量)/(反応溶液に溶け得る石膏量=石膏
の溶解度)のモル比が所定の範囲となるようにカルシウ
ム化合物の使用量を調節し、あるいは更に必要に応じて
酸の添加量を調整したところ、生成する半水石膏の形態
の制御が可能となることを発見したのである。言い替え
るならば、本発明者らは、加熱した硫酸と各種の酸の混
合溶液を調製し、加えたカルシウム化合物の添加量、理
論的な半水石膏の生成量、酸の添加と石膏の溶解度変化
による半水石膏の形態変化等を詳細に比較、検討した結
果、石膏の溶解度と半水石膏の理論的な生成量の比が1
を超え、1.45未満となる場合にα型半水石膏を選択
的に、1.45以上となる場合はβ型半水石膏が生成す
ることを見出したのである。
Therefore, in the above reaction, use of a calcium compound so that the molar ratio of (theoretical amount of gypsum hemihydrate) / (amount of gypsum soluble in the reaction solution = solubility of gypsum) falls within a predetermined range. It was discovered that the form of hemihydrate gypsum produced can be controlled by adjusting the amount, or further adjusting the amount of acid added as necessary. In other words, the present inventors prepared a mixed solution of heated sulfuric acid and various acids, and added amount of calcium compound added, theoretical amount of hemihydrate gypsum produced, addition of acid and solubility change of gypsum. As a result of detailed comparison and examination of morphological changes of hemihydrate gypsum, the ratio between the solubility of gypsum and the theoretical production amount of hemihydrate gypsum was 1
It has been found that α-type hemihydrate gypsum is selectively produced when it exceeds 1, and is less than 1.45, and β-type hemihydrate gypsum is produced when it is 1.45 or more.

【0010】なお、(半水石膏の理論的な生成量)/(反
応溶液に溶け得る石膏量=石膏の溶解度)のモル比が1.
45から2付近ではα型半水石膏とβ型半水石膏の混合
物が生成されるので、目的に応じて該モル比を選択する
必要がある。
The molar ratio of (theoretical amount of hemihydrate gypsum) / (amount of gypsum soluble in the reaction solution = solubility of gypsum) is 1.
Since a mixture of α-type hemihydrate gypsum and β-type hemihydrate gypsum is formed in the vicinity of 45 to 2, it is necessary to select the molar ratio according to the purpose.

【0011】本発明において、石膏の溶解度を高めるよ
うな酸には、公知の技術に基づく酸、例えば前述の硝
酸、塩酸、硫酸等が使用可能であるが、これら以外の酸
に対しても、各温度において、酸の濃度とその濃度にお
ける石膏の溶解度を測定し、この結果、この酸に石膏の
溶解度を高める効果が認められるならば、この酸が本発
明に適用可能であることは容易に類推される。
In the present invention, as the acid for increasing the solubility of gypsum, an acid based on a known technique such as the above-mentioned nitric acid, hydrochloric acid, sulfuric acid or the like can be used, but also for acids other than these, At each temperature, the concentration of the acid and the solubility of gypsum at that concentration were measured, and as a result, if the effect of increasing the solubility of gypsum in this acid is recognized, it is easy to apply this acid to the present invention. By analogy.

【0012】本発明において、難溶性カルシウム化合物
である半水石膏の形状の制御には、析出工程における反
応溶液濃度を操作する方法を用いた。本発明者らは、よ
り長繊維のα型半水石膏を製造する方法について鋭意研
究を重ねた結果、石膏の溶解度、ここでは硫酸と反応す
るカルシウム化合物の濃度及び必要に応じて更に石膏の
溶解度を高めるような酸を調整して加えることによっ
て、(半水石膏の理論的な生成量)/(反応溶液に溶け得
る石膏量=石膏の溶解度)のモル比が1を超え、1.3未
満になる場合に、長さ500μm以上の長繊維のα型半
水石膏が容易に製造されることを見出した。
In the present invention, the method of controlling the concentration of the reaction solution in the precipitation step was used to control the shape of the hemihydrate gypsum, which is a poorly soluble calcium compound. The present inventors have conducted extensive studies on a method for producing longer-fiber α-type hemihydrate gypsum, and as a result, the solubility of gypsum, here, the concentration of a calcium compound that reacts with sulfuric acid and, if necessary, the solubility of gypsum further. By adjusting and adding an acid that enhances, the molar ratio of (theoretical amount of hemihydrate gypsum) / (amount of gypsum that can be dissolved in the reaction solution = solubility of gypsum) exceeds 1 and is less than 1.3. It has been found that a long fiber α-type hemihydrate gypsum having a length of 500 μm or more can be easily produced.

【0013】なお、このモル比を限りなく1に近付ける
ことで、更にこの繊維は長くなり、約1500μm、ア
スペクト比150以上もの結晶長をもつ長繊維α型半水
石膏が得られることを確認したのである。
It was confirmed that by bringing the molar ratio as close to 1 as possible, the fiber was further lengthened, and a long fiber α-type hemihydrate gypsum having a crystal length of about 1500 μm and an aspect ratio of 150 or more was obtained. Of.

【0014】また、モル比が1.3以上、1.45未満の
範囲での生成物は、繊維状あるいは塊状のα型半水石膏
であるが、繊維状生成物は500μm未満、アスペクト
比も100以下の結晶がほとんどであり、従来知られて
いるような方法を用いて製造した繊維状α型半水石膏と
同程度の繊維であった。従って、割合短い繊維長をもつ
α型半水石膏を製造する場合、あるいは塊状のα型半水
石膏を製造する場合は、石膏の溶解度を調整することが
好ましい。
The product having a molar ratio of 1.3 or more and less than 1.45 is a fibrous or lumpy α-type hemihydrate gypsum, but the fibrous product is less than 500 μm and has an aspect ratio. Most of the crystals were 100 or less, and the fibers were about the same as the fibrous α-type hemihydrate gypsum produced by the conventionally known method. Therefore, when producing α-type hemihydrate gypsum having a relatively short fiber length, or when producing agglomerated α-type hemihydrate gypsum, it is preferable to adjust the solubility of gypsum.

【0015】ところで、硫酸とカルシウム化合物を加熱
状態で反応させ、半水石膏を製造する時、反応後に酸が
生成する場合、更に、この酸が石膏の溶解度を高めるよ
うな酸である場合は、生成する半水石膏が溶解してしま
うのではないかという懸念があった。このため、従来の
方法では、収量の増加をめざすには、その反応溶液に溶
け得る石膏の溶解量を多くするような酸の添加は矛盾し
た考え方であった。しかし、本発明者らは、石膏の生成
反応機構に、溶解−析出プロセスが大きく関与している
という推考のもとに、本発明につながる詳細なる研究、
検討を行った結果、加熱しながら硫酸とカルシウム化合
物の反応により半水石膏を製造する場合では、その反
応系に石膏の溶解度を高めるような酸を添加したとして
も、各濃度での酸に溶け得る石膏の溶解量には限度が有
り、その酸の各濃度における石膏の溶解量以上に半水
石膏が生成するようにカルシウム化合物と酸の添加量を
調整することによって、収量の減少は回避可能であり、
更に、(半水石膏の理論的な生成量)/(反応溶液に溶
け得る石膏量=石膏の溶解度)のモル比が1を超えるよ
うにカルシウム化合物の添加量を調整することによっ
て、石膏の溶解度に対して常に一定のモル比の半水石膏
が製造できるため、酸の濃度を調整して石膏の溶解度を
増加させても、その一方で収量の増加が可能である、と
いうことに気が付いたのである。また、いずれにせよ
水溶性カルシウム化合物と硫酸の反応から石膏を製造す
る場合は、半水石膏と同時に酸も生成することにより、
石膏の溶解は必然的に起こる現象であり、この状態を有
利に利用することで、半水石膏の形態を調整することが
可能ではなかろうか、という考えに至った。その推考の
もと、鋭意研究を重ねた結果、加熱しながら溶液中で硫
酸とカルシウム化合物を反応させることでは従来不可能
であった半水石膏の形態の制御、即ち、本発明に係るα
型半水石膏、長繊維α型半水石膏及びβ型半水石膏の選
択的な製造が可能となったのである。
By the way, when a hemihydrate gypsum is produced by reacting sulfuric acid with a calcium compound in a heated state, when an acid is produced after the reaction, and when the acid is an acid which enhances the solubility of gypsum, There was a concern that the generated hemihydrate gypsum would dissolve. Therefore, in the conventional method, the addition of an acid that increases the amount of gypsum that can be dissolved in the reaction solution was a contradictory idea in order to increase the yield. However, the present inventors, on the assumption that the dissolution-precipitation process is greatly involved in the production reaction mechanism of gypsum, detailed research leading to the present invention,
As a result of the examination, when hemihydrate gypsum is produced by the reaction of sulfuric acid and a calcium compound while heating, even if an acid that increases the solubility of gypsum is added to the reaction system, it dissolves in the acid at each concentration. There is a limit to the amount of gypsum that can be obtained, and it is possible to avoid a decrease in yield by adjusting the amount of calcium compound and acid added so that hemihydrate gypsum is produced in excess of the amount of gypsum at each acid concentration. And
Furthermore, the solubility of gypsum is adjusted by adjusting the addition amount of the calcium compound so that the molar ratio of (theoretical amount of hemihydrate gypsum produced) / (amount of gypsum soluble in the reaction solution = solubility of gypsum) exceeds 1. However, since I can always manufacture a hemihydrate gypsum with a constant molar ratio, I realized that it is possible to increase the yield while adjusting the acid concentration to increase the solubility of gypsum. is there. Further, in any case, when producing gypsum from the reaction of a water-soluble calcium compound and sulfuric acid, by generating an acid at the same time with hemihydrate gypsum,
The dissolution of gypsum is a phenomenon that inevitably occurs, and we have come to the idea that it may be possible to adjust the morphology of hemihydrate gypsum by taking advantage of this state. Based on that assumption, as a result of repeated intensive research, control of the morphology of hemihydrate gypsum, which was not previously possible by reacting sulfuric acid and a calcium compound in a solution while heating, that is, α according to the present invention
It became possible to selectively produce type hemihydrate gypsum, long-fiber α-type hemihydrate gypsum, and β-type hemihydrate gypsum.

【0016】一般的に、純水中における半水石膏の安定
領域の下限温度は97℃であるとされている。一方、硫
酸、塩酸、硝酸等の酸が共存する場合、安定領域の下限
温度は低下するため、これらの酸を使用する本発明にお
いて、半水石膏の製造は75℃程度の比較的低温でも可
能となる。しかし、半水石膏の二水石膏への転移速度、
製造後の濾過及び乾燥等の処理工程を考慮すると、90
℃以上で製造することが好ましい。
Generally, the lower limit temperature of the stable region of hemihydrate gypsum in pure water is 97 ° C. On the other hand, when an acid such as sulfuric acid, hydrochloric acid or nitric acid coexists, the lower limit temperature of the stable region lowers. Therefore, in the present invention using these acids, hemihydrate gypsum can be produced at a relatively low temperature of about 75 ° C. Becomes However, the rate of transition of hemihydrate gypsum to dihydrate gypsum,
Considering the process steps such as filtration and drying after manufacturing, 90
It is preferable to manufacture at a temperature of not less than ° C.

【0017】また、半水石膏が無水石膏に転移する温度
は、水蒸気圧に依存し、大気圧中で150℃程度であ
る。また、反応溶液の沸騰現象等をも考慮すると、10
0℃以上での本発明の実施ではオートクレーブ等の水熱
合成装置を使用することが好ましいが、針状α型半水石
膏、α型半水石膏及びβ型半水石膏を選択的に直接得る
場合に、常圧条件下で比較的低温で行われることが更に
好ましいことは言うまでもない。
The temperature at which hemihydrate gypsum transforms into anhydrous gypsum depends on the water vapor pressure and is about 150 ° C. at atmospheric pressure. Also, considering the boiling phenomenon of the reaction solution, etc.
In the practice of the present invention at 0 ° C. or higher, it is preferable to use a hydrothermal synthesizer such as an autoclave, but needle-like α-type hemihydrate gypsum, α-type hemihydrate gypsum and β-type hemihydrate gypsum are selectively obtained directly. Needless to say, in this case, it is more preferable to carry out the treatment at a relatively low temperature under normal pressure conditions.

【0018】なお、本発明に使用するカルシウム化合物
は特に限定されるものではなく、硫酸と反応して石膏を
生成するものであればいずれのものでも使用できる。
The calcium compound used in the present invention is not particularly limited, and any compound that reacts with sulfuric acid to form gypsum can be used.

【0019】[0019]

【実施例】【Example】

実施例1 反応溶液に溶け得る石膏の量と、半水石膏の理論的な生
成量の比が1.05となるようにカルシウム化合物と石
膏の溶解度を高める酸の添加量を調整し、長繊維α型半
水石膏を製造した。装置には、還流管及び温度計を設置
した200cm3三つ口フラスコを用いた。これに0.0
3モルの硫酸を含む水溶液を50cm3添加し、マント
ルヒーターを用いて98℃に保持した。また、突沸を防
止するため、三つ口フラスコ内部には、少量の沸騰石を
入れた。これに、カルシウム化合物として、0.03モ
ルの塩化カルシウムを含む98℃の水溶液を50cm3
加えて120分間保持することにより合成反応を行っ
た。また、硫酸及び塩化カルシウム水溶液には、石膏の
溶解度を高めるような酸として、それぞれ0.02モル
の塩酸を添加しておいた。この時、半水石膏の理論的な
生成量は0.03モル、硫酸と塩化カルシウムの反応に
よって生成する塩酸量は0.06モル、反応直後の溶液
中に存在する塩酸量は0.10モルである。この反応溶
液、即ち0.10モルの塩酸を含む100cm3の水溶液
に溶け得る石膏量は0.0286モルであった。従っ
て、石膏の溶解量に対する半水石膏の理論的生成量のモ
ル比は1.05に調節されたことになる。反応によって
析出した半水石膏は、ガラスフィルターにより吸引濾過
し、熱水及びメタノールで洗浄した後、結晶の表面に付
着した水をアセトンで脱水し固定した。これを45℃で
乾燥し、半水石膏を得た。この半水石膏は、熱分析の結
果、図2に示すように200℃付近に著しい発熱ピーク
を示すものであった。また、得られた長繊維α型半水石
膏の結晶構造を示す顕微鏡写真を図3に示す。この顕微
鏡写真からもわかるように、長さ1500μm以上、ア
スペクト比150以上の長繊維であった。
Example 1 The amount of gypsum that can be dissolved in the reaction solution and the theoretical production amount of hemihydrate gypsum were adjusted to 1.05, and the addition amount of the calcium compound and the acid that enhances the solubility of gypsum was adjusted to obtain long fibers. An α-type hemihydrate gypsum was produced. The apparatus used was a 200 cm 3 three-necked flask equipped with a reflux tube and a thermometer. 0.0 to this
An aqueous solution containing 3 mol of sulfuric acid was added in an amount of 50 cm 3, and the temperature was kept at 98 ° C using a mantle heater. Further, in order to prevent bumping, a small amount of boiling stone was put inside the three-necked flask. 50 cm 3 of an aqueous solution of 98 ° C. containing 0.03 mol of calcium chloride was added as a calcium compound.
In addition, the synthesis reaction was performed by holding for 120 minutes. Further, 0.02 mol of hydrochloric acid was added to each of the sulfuric acid and calcium chloride aqueous solutions as an acid for increasing the solubility of gypsum. At this time, the theoretical amount of hemihydrate gypsum was 0.03 mol, the amount of hydrochloric acid generated by the reaction of sulfuric acid and calcium chloride was 0.06 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction was 0.10 mol. Is. The amount of gypsum that could be dissolved in this reaction solution, that is, 100 cm 3 of an aqueous solution containing 0.10 mol of hydrochloric acid was 0.0286 mol. Therefore, the molar ratio of the theoretical production amount of hemihydrate gypsum to the dissolved amount of gypsum was adjusted to 1.05. The hemihydrate gypsum deposited by the reaction was suction-filtered with a glass filter, washed with hot water and methanol, and then the water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. As a result of thermal analysis, this hemihydrate gypsum showed a remarkable exothermic peak near 200 ° C. as shown in FIG. A micrograph showing the crystal structure of the obtained long-fiber α-type hemihydrate gypsum is shown in FIG. As can be seen from this micrograph, the long fibers had a length of 1500 μm or more and an aspect ratio of 150 or more.

【0020】実施例2 反応溶液に溶け得る石膏量と、半水石膏の理論的な生成
量のモル比が1.36となるようにカルシウム化合物と
石膏の溶解度を高める酸の添加量を調整し、α型半水石
膏を製造した。使用する装置、添加する水溶液量、保持
時間及び温度は実施例1と同じにした。硫酸及び塩化カ
ルシウムの添加量はそれぞれ0.045モルとした。ま
た、硫酸及び塩化カルシウム水溶液には、石膏の溶解度
を高める酸として、それぞれに0.025モルの塩酸を
添加しておいた。この時、半水石膏の理論的な生成量は
0.045モル、硫酸と塩化カルシウムの反応によって
生成する塩酸量は0.9モル、反応直後の溶液中に存在
する塩酸量は0.14モルである。この反応溶液、即
ち、0.14モルの塩酸を含む100cm3の水溶液に溶
け得る石膏の量は0.0332モルであった。従って、
石膏の溶解量に対する半水石膏の理論的生成量のモル比
は1.36に調節されたことになる。反応によって析出
した半水石膏は、ガラスフィルターにより吸引濾過し、
熱水及びメタノールで洗浄した後、結晶の表面に付着し
た水をアセトンで脱水し固定した。これを45℃で乾燥
し、半水石膏を得た。この半水石膏は、熱分析の結果、
図2に示すように200℃付近に著しい発熱ピークを示
すことから、α型半水石膏であることが確認された。
Example 2 The addition amount of a calcium compound and an acid for increasing the solubility of gypsum was adjusted so that the molar ratio of the amount of gypsum that can be dissolved in the reaction solution to the theoretical amount of gypsum hemihydrate was 1.36. , Α-type hemihydrate gypsum was produced. The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.045 mol. Further, 0.025 mol of hydrochloric acid was added to each of the sulfuric acid and calcium chloride aqueous solutions as an acid for increasing the solubility of gypsum. At this time, the theoretical amount of hemihydrate gypsum produced was 0.045 mol, the amount of hydrochloric acid produced by the reaction of sulfuric acid and calcium chloride was 0.9 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction was 0.14 mol. Is. The amount of gypsum that could be dissolved in this reaction solution, that is, 100 cm 3 of an aqueous solution containing 0.14 mol of hydrochloric acid, was 0.0332 mol. Therefore,
The molar ratio of the theoretical amount of hemihydrate gypsum to the amount of dissolved gypsum was adjusted to 1.36. The hemihydrate gypsum precipitated by the reaction is suction filtered with a glass filter,
After washing with hot water and methanol, water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. This hemihydrate gypsum, as a result of thermal analysis,
As shown in FIG. 2, since a remarkable exothermic peak was shown at around 200 ° C., it was confirmed to be α-type hemihydrate gypsum.

【0021】実施例3 反応溶液に溶け得る石膏の量と、半水石膏の理論的な生
成量の比が1.48となるようにカルシウム化合物と石
膏の溶解度を高める酸の添加量を調整し、半水石膏を製
造した。使用する装置、添加する水溶液量、保持時間及
び温度は実施例1と同じにした。硫酸及び塩化カルシウ
ムの添加量はそれぞれ0.044モルとした。また、硫
酸及び塩化カルシウム水溶液には、石膏の溶解度を高め
る酸として、それぞれ0.016モルの塩酸を添加して
おいた。この時、半水石膏の理論的な生成量は0.04
4モル、硫酸と塩化カルシウムの反応によって生成する
塩酸量は0.088モル、反応直後の溶液中に存在する
塩酸量は1.12モルである。この反応溶液、即ち、0.
12モルの塩酸を含む100cm3の水溶液に溶け得る
石膏の量は0.0297モル/100cm3であるため、
石膏の溶解度に対する半水石膏の理論的生成量のモル比
は1.48に調節されたことになる。反応によって析出
した半水石膏は、ガラスフィルターにより吸引濾過し、
熱水及びメタノールで洗浄した後、結晶の表面に付着し
た水をアセトンで脱水し固定した。これを45℃で乾燥
し、半水石膏を得た。この半水石膏は、熱分析の結果、
図2に示すように200℃と340℃付近に発熱ピーク
をもち、α型半水石膏とβ型半水石膏の混合物であるこ
とが確認された。
Example 3 The amount of gypsum that can be dissolved in the reaction solution and the theoretical amount of gypsum hemihydrate formed are adjusted to 1.48 by adjusting the amount of the calcium compound and the acid that enhances the solubility of gypsum. , Manufactured hemihydrate gypsum. The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.044 mol. Further, 0.016 mol of hydrochloric acid was added to each of the sulfuric acid and calcium chloride aqueous solutions as an acid for increasing the solubility of gypsum. At this time, the theoretical amount of hemihydrate gypsum is 0.04.
4 mol, the amount of hydrochloric acid produced by the reaction of sulfuric acid and calcium chloride is 0.088 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction is 1.12 mol. This reaction solution, i.e.
Since the amount of gypsum that can be dissolved in 100 cm 3 of an aqueous solution containing 12 mol of hydrochloric acid is 0.0297 mol / 100 cm 3 ,
The molar ratio of the theoretical amount of hemihydrate gypsum to the solubility of gypsum was adjusted to 1.48. The hemihydrate gypsum precipitated by the reaction is suction filtered with a glass filter,
After washing with hot water and methanol, water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. This hemihydrate gypsum, as a result of thermal analysis,
As shown in FIG. 2, it had an exothermic peak at around 200 ° C. and 340 ° C., and was confirmed to be a mixture of α-type hemihydrate gypsum and β-type hemihydrate gypsum.

【0022】実施例4 反応溶液に溶け得る石膏量と半水石膏の理論的な生成量
の比が2.16となるようにカルシウム化合物と石膏の
溶解度を高める酸の添加量を調整し、β型半水石膏を製
造した。使用する装置、添加する水溶液量、保持時間及
び温度は実施例1と同じにした。硫酸及び塩化カルシウ
ムの添加量はそれぞれ0.080モルとした。また、硫
酸及び塩化カルシウム水溶液には、石膏の溶解度を高め
る酸として、それぞれ0.010モルの塩酸を添加して
おいた。この時、半水石膏の理論的な生成量は0.08
0モル、硫酸と塩化カルシウムの反応によって生成する
塩酸量は0.16モル、反応直後の溶液中に存在する塩
酸量は0.180モルである。この反応溶液、即ち、0.
180モルの塩酸を含む100cm3の水溶液に溶け得
る石膏量は0.037モル/100cm3であった。従っ
て、石膏の溶解度に対する半水石膏の理論的生成量のモ
ル比は2.16に調節されたことになる。反応によって
析出した半水石膏は、ガラスフィルターにより吸引濾過
し、熱水及びメタノールで洗浄した後、結晶の表面に付
着した水をアセトンで脱水し固定した。これを45℃で
乾燥し、半水石膏を得た。この半水石膏は、熱分析の結
果、図2に示すように340℃付近に発熱ピークを示す
β型半水石膏であった。
Example 4 The addition amount of the calcium compound and the acid for increasing the solubility of gypsum was adjusted so that the ratio of the amount of gypsum that can be dissolved in the reaction solution to the theoretical amount of gypsum hemihydrate was 2.16. Mold hemihydrate gypsum was produced. The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.080 mol. Further, 0.010 mol of hydrochloric acid was added to each of the sulfuric acid and calcium chloride aqueous solutions as an acid for increasing the solubility of gypsum. At this time, the theoretical amount of hemihydrate gypsum produced is 0.08.
0 mol, the amount of hydrochloric acid produced by the reaction of sulfuric acid and calcium chloride is 0.16 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction is 0.180 mol. This reaction solution, i.e.
The amount of gypsum that can be dissolved in 100 cm 3 of an aqueous solution containing 180 mol of hydrochloric acid was 0.037 mol / 100 cm 3 . Therefore, the molar ratio of the theoretical amount of hemihydrate gypsum to the solubility of gypsum was adjusted to 2.16. The hemihydrate gypsum deposited by the reaction was suction-filtered with a glass filter, washed with hot water and methanol, and then the water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. As a result of thermal analysis, this hemihydrate gypsum was β-type hemihydrate gypsum showing an exothermic peak at around 340 ° C. as shown in FIG.

【0023】実施例5 反応溶液に溶け得る石膏量と、半水石膏の理論的な生成
量のモル比が1.15となるようにカルシウム化合物の
添加量のみを調整して長繊維α型半水石膏を製造した。
使用する装置、添加する水溶液量、保持時間及び温度は
実施例1と同じにした。硫酸及び塩化カルシウムの添加
量はそれぞれ0.015モルとした。この場合、石膏の
溶解度を高めるような酸を添加していないため、溶液中
に溶け得る半水石膏量は、半水石膏と同時に生成する酸
の濃度のみに影響を受ける。この時、半水石膏の理論的
な生成量は0.015モル、硫酸と塩化カルシウムの反
応によって生成する塩酸量は0.030モル、反応直後
の溶液中に存在する塩酸量は0.030モルである。こ
の反応溶液、即ち、0.030モルの塩酸を含む100
cm3の水溶液に溶け得る石膏量は0.013モル/10
0cm3であった。従って、石膏の溶解度に対する半水
石膏の理論的生成量のモル比は1.15に調節されたこ
とになる。反応によって析出した半水石膏は、ガラスフ
ィルターにより吸引濾過し、熱水及びメタノールで洗浄
した後、結晶の表面に付着した水をアセトンで脱水し固
定した。これを45℃で乾燥し、半水石膏を得た。この
半水石膏は、熱分析の結果、200℃付近に発熱ピーク
を示すα型半水石膏であった。また、走査型電子顕微鏡
により、長さ520μm、アスペクト比130程度の長
繊維であることが確認された。
Example 5 Long-fiber α-type semi-prepared by adjusting only the amount of calcium compound added so that the molar ratio of the amount of gypsum that can be dissolved in the reaction solution to the theoretical amount of gypsum hemihydrate is 1.15. Water gypsum was produced.
The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.015 mol. In this case, since an acid that enhances the solubility of gypsum is not added, the amount of hemihydrate gypsum that can be dissolved in the solution is affected only by the concentration of the acid that is produced simultaneously with the hemihydrate gypsum. At this time, the theoretical amount of hemihydrate gypsum produced was 0.015 mol, the amount of hydrochloric acid produced by the reaction of sulfuric acid and calcium chloride was 0.030 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction was 0.030 mol. Is. The reaction solution, that is, 100 containing 0.030 mol of hydrochloric acid
The amount of gypsum that can be dissolved in a cm 3 aqueous solution is 0.013 mol / 10
It was 0 cm 3 . Therefore, the molar ratio of the theoretical amount of hemihydrate gypsum to the solubility of gypsum was adjusted to 1.15. The hemihydrate gypsum deposited by the reaction was suction-filtered with a glass filter, washed with hot water and methanol, and then the water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. As a result of thermal analysis, this hemihydrate gypsum was α-type hemihydrate gypsum showing an exothermic peak at around 200 ° C. In addition, it was confirmed by a scanning electron microscope that the fiber was a long fiber having a length of 520 μm and an aspect ratio of about 130.

【0024】実施例6 反応溶液に溶け得る石膏量と半水石膏の理論的な生成量
の比が1.33となるようにカルシウム化合物の添加量
のみを調整し、α型半水石膏を製造した。使用する装
置、添加する水溶液量、保持時間及び温度は実施例1と
同じにした。硫酸及び塩化カルシウムの添加量はそれぞ
れ0.020モルとした。この場合、石膏の溶解度を高
めるような酸を添加していないため、溶液中に溶け得る
半水石膏量は、半水石膏と同時に生成する酸の濃度のみ
に影響を受ける。この時、半水石膏の理論的な生成量は
0.020モル、硫酸と塩化カルシウムの反応によって
生成する塩酸量は0.040モル、反応直後の溶液中に
存在する塩酸量は0.040モルである。この反応溶
液、即ち、0.040モルの塩酸を含む100cm3の水
溶液に溶け得る石膏の量は0.015モル/100cm3
であった。従って、石膏の溶解度に対する半水石膏の理
論的生成量のモル比は1.33に調節されたことにな
る。反応によって析出した半水石膏は、ガラスフィルタ
ーにより吸引濾過し、熱水及びメタノールで洗浄した
後、結晶の表面に付着した水をアセトンで脱水し固定し
た。これを45℃で乾燥し、半水石膏を得た。この半水
石膏は、熱分析の結果、200℃付近に発熱ピークを示
すα型半水石膏であった。
Example 6 Production of α-type hemihydrate gypsum by adjusting only the amount of calcium compound added so that the ratio of the amount of gypsum that can be dissolved in the reaction solution to the theoretical amount of hemihydrate gypsum produced was 1.33. did. The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.020 mol. In this case, since an acid that enhances the solubility of gypsum is not added, the amount of hemihydrate gypsum that can be dissolved in the solution is affected only by the concentration of the acid that is produced simultaneously with the hemihydrate gypsum. At this time, the theoretical amount of hemihydrate gypsum produced was 0.020 mol, the amount of hydrochloric acid produced by the reaction of sulfuric acid and calcium chloride was 0.040 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction was 0.040 mol. Is. The amount of gypsum that can be dissolved in this reaction solution, that is, 100 cm 3 of an aqueous solution containing 0.040 mol of hydrochloric acid is 0.015 mol / 100 cm 3.
Met. Therefore, the molar ratio of the theoretical production amount of hemihydrate gypsum to the solubility of gypsum was adjusted to 1.33. The hemihydrate gypsum deposited by the reaction was suction-filtered with a glass filter, washed with hot water and methanol, and then the water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. As a result of thermal analysis, this hemihydrate gypsum was α-type hemihydrate gypsum showing an exothermic peak at around 200 ° C.

【0025】実施例7 反応溶液に溶け得る石膏量と半水石膏の理論的な生成量
の比が1.74となるようにカルシウム化合物の添加量
のみを調整し、半水石膏を製造した。使用する装置、添
加する水溶液量、保持時間及び温度は実施例1と同じに
した。硫酸及び塩化カルシウムの添加量はそれぞれ0.
040モルとした。この場合、石膏の溶解度を高めるよ
うな酸を添加していないため、溶液中に溶け得る半水石
膏量は、半水石膏と同時に生成する酸の濃度のみに影響
を受ける。この時、半水石膏の理論的な生成量は0.0
40モル、硫酸と塩化カルシウムの反応によって生成す
る塩酸量は0.080モル、反応直後の溶液中に存在す
る塩酸量は0.080モルである。この反応溶液、即
ち、0.080モルの塩酸を含む100cm3の水溶液に
溶け得る石膏の量は0.023モル/100cm3であっ
た。従って、石膏の溶解度に対する半水石膏の理論的生
成量のモル比は1.74に調節されたことになる。反応
によって析出した半水石膏は、ガラスフィルターにより
吸引濾過し、熱水及びメタノールで洗浄した後、結晶の
表面に付着した水をアセトンで脱水し固定した。これを
45℃で乾燥し、半水石膏を得た。この半水石膏は、熱
分析の結果、200℃付近と380℃付近に発熱ピース
をもち、α型半水石膏とβ型半水石膏の混合物であるこ
とが確認された。
Example 7 Hemihydrate gypsum was produced by adjusting only the amount of calcium compound added so that the ratio of the amount of gypsum that can be dissolved in the reaction solution to the theoretical amount of hemihydrate gypsum was 1.74. The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.
It was 040 mol. In this case, since an acid that enhances the solubility of gypsum is not added, the amount of hemihydrate gypsum that can be dissolved in the solution is affected only by the concentration of the acid that is produced simultaneously with the hemihydrate gypsum. At this time, the theoretical amount of hemihydrate gypsum is 0.0
40 mol, the amount of hydrochloric acid produced by the reaction of sulfuric acid and calcium chloride is 0.080 mol, and the amount of hydrochloric acid present in the solution immediately after the reaction is 0.080 mol. The amount of gypsum that could be dissolved in this reaction solution, that is, 100 cm 3 of an aqueous solution containing 0.080 mol of hydrochloric acid was 0.023 mol / 100 cm 3 . Therefore, the molar ratio of the theoretical production amount of hemihydrate gypsum to the solubility of gypsum was adjusted to 1.74. The hemihydrate gypsum deposited by the reaction was suction-filtered with a glass filter, washed with hot water and methanol, and then the water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. As a result of thermal analysis, this hemihydrate gypsum was found to be a mixture of α-type hemihydrate gypsum and β-type hemihydrate gypsum, having exothermic pieces at around 200 ° C and around 380 ° C.

【0026】実施例8 反応溶液に溶け得る石膏量と、半水石膏の理論的な生成
量のモル比が2.24となるようにカルシウム化合物の
添加量のみを調整してβ型半水石膏を製造した。使用す
る装置、添加する水溶液量、保持時間及び温度は実施例
1と同じにした。硫酸及び塩化カルシウムの添加量はそ
れぞれ0.08モルとした。この場合、石膏の溶解度を
高めるような酸を添加していないため、溶液中に溶け得
る半水石膏量は、半水石膏と同時に生成する酸の濃度の
みに影響を受ける。この時、半水石膏の理論的な生成量
は0.08モル/100cm3であるため、石膏の溶解度
に対する半水石膏の理論的生成量のモル比は2.24に
調節されたことになる。反応によって析出した半水石膏
は、ガラスフィルターにより吸引濾過し、熱水及びメタ
ノールで洗浄した後、結晶の表面に付着した水をアセト
ンで脱水し固定した。これを45℃で乾燥し、半水石膏
を得た。この半水石膏は熱分析の結果、β型半水石膏で
あった。
Example 8 β-type hemihydrate gypsum was prepared by adjusting only the addition amount of the calcium compound so that the molar ratio of the amount of gypsum that can be dissolved in the reaction solution and the theoretical amount of hemihydrate gypsum is 2.24. Was manufactured. The apparatus used, the amount of aqueous solution added, the holding time and the temperature were the same as in Example 1. The amounts of sulfuric acid and calcium chloride added were each 0.08 mol. In this case, since an acid that enhances the solubility of gypsum is not added, the amount of hemihydrate gypsum that can be dissolved in the solution is affected only by the concentration of the acid that is produced simultaneously with the hemihydrate gypsum. At this time, since the theoretical production amount of hemihydrate gypsum is 0.08 mol / 100 cm 3 , the molar ratio of the theoretical production amount of hemihydrate gypsum to the solubility of gypsum was adjusted to 2.24. . The hemihydrate gypsum deposited by the reaction was suction-filtered with a glass filter, washed with hot water and methanol, and then the water adhering to the surface of the crystal was dehydrated and fixed with acetone. This was dried at 45 ° C. to obtain hemihydrate gypsum. As a result of thermal analysis, this hemihydrate gypsum was β-type hemihydrate gypsum.

【0027】[0027]

【発明の効果】本発明の半水石膏の製造方法によれば、
カルシウム化合物と硫酸を所定条件で反応させる場合
に、(半水石膏の理論的な生成量)/(反応溶液に溶け得
る石膏量=石膏の溶解度)のモル比を所定の範囲となる
ようにカルシウム化合物の使用量を調整することで、更
には必要に応じて酸の使用量を調整することで、様々な
利用方法が提案されている長繊維α型半水石膏、α型半
水石膏またはβ型半水石膏を低エネルギー消費量で選択
的に製造することができる。
According to the method for producing hemihydrate gypsum of the present invention,
When reacting a calcium compound with sulfuric acid under prescribed conditions, the molar ratio of (theoretical amount of hemihydrate gypsum) / (amount of gypsum that can be dissolved in the reaction solution = solubility of gypsum) should be within the prescribed range. By adjusting the amount of the compound used, and further by adjusting the amount of the acid used as necessary, various utilization methods have been proposed for long-fiber α-type hemihydrate gypsum, α-type hemihydrate gypsum or β Mold hemihydrate gypsum can be selectively produced with low energy consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】100±2℃における塩酸または硝酸水溶液の
濃度と石膏の溶解度の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the concentration of hydrochloric acid or nitric acid aqueous solution at 100 ± 2 ° C. and the solubility of gypsum.

【図2】実施例で得られた半水石膏の熱分析結果を示す
グラフである。
FIG. 2 is a graph showing the thermal analysis results of hemihydrate gypsum obtained in the examples.

【図3】実施例1で得られた長繊維α型半水石膏の顕微
鏡写真である。
FIG. 3 is a micrograph of the long-fiber α-type hemihydrate gypsum obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安江 任 東京都杉並区大宮1−19−18 (72)発明者 小嶋 芳行 埼玉県蕨市塚越3−23−2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ren Yasue 1-19-18 Omiya, Suginami-ku, Tokyo (72) Inventor Yoshiyuki Kojima 3-23-2 Tsukagoshi, Warabi-shi, Saitama Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫酸とカルシウム化合物とを加熱するこ
とからなる半水石膏の製造方法であって、(半水石膏の
理論的な生成量)/(反応溶液に溶け得る石膏量)のモル
比が所定の範囲となるように、カルシウム化合物あるい
は更に必要に応じて酸の使用量を調節することにより、
長繊維α型半水石膏、α型半水石膏またはβ型半水石膏
を選択的に得ることを特徴とする半水石膏の製造方法。
1. A method for producing hemihydrate gypsum, which comprises heating sulfuric acid and a calcium compound, wherein a molar ratio of (theoretical amount of hemihydrate gypsum) / (amount of gypsum that can be dissolved in a reaction solution). By adjusting the amount of the calcium compound or the acid to be used, if necessary, so that
A method for producing hemihydrate gypsum, which comprises selectively obtaining long-fiber α-type hemihydrate gypsum, α-type hemihydrate gypsum or β-type hemihydrate gypsum.
JP26416192A 1992-09-08 1992-09-08 Production of hemihydrate gypsum Pending JPH0692631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26416192A JPH0692631A (en) 1992-09-08 1992-09-08 Production of hemihydrate gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26416192A JPH0692631A (en) 1992-09-08 1992-09-08 Production of hemihydrate gypsum

Publications (1)

Publication Number Publication Date
JPH0692631A true JPH0692631A (en) 1994-04-05

Family

ID=17399311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26416192A Pending JPH0692631A (en) 1992-09-08 1992-09-08 Production of hemihydrate gypsum

Country Status (1)

Country Link
JP (1) JPH0692631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574526A (en) * 2018-12-26 2019-04-05 肇庆市珈旺环境技术研究院 Method for preparing high-strength gypsum by desulfurization gypsum normal-pressure salt solution method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109574526A (en) * 2018-12-26 2019-04-05 肇庆市珈旺环境技术研究院 Method for preparing high-strength gypsum by desulfurization gypsum normal-pressure salt solution method

Similar Documents

Publication Publication Date Title
KR101348524B1 (en) Process for preparing ammonium metatungstate
JPS60239324A (en) Ceric oxide with novel morphological properties and manufacture
CN103966670A (en) Method for integrating waste sulfuric acid treatment engineering and gypsum crystal whisker production
CN107190325A (en) A kind of method that utilization industrial by-product ardealite prepares anhydrous calcium sulfate whisker
CN107382111A (en) A kind of method that normal pressure salt solustion mehtod produces α super strong gypsums
CN102851739B (en) Preparation process of calcium sulfate whisker
JPH0692631A (en) Production of hemihydrate gypsum
CN108439451A (en) The method for preparing precipitated calcium carbonate using ardealite
JPS6335571B2 (en)
GB1561047A (en) Process for preparing pantethine and pantetheine
TW201540668A (en) Method for recycling ammonium sulfate to manufacture dihydrate gypsum
JP2000034121A (en) Production of gypsum dihydrate
JPS6029645B2 (en) Method for producing acicular zinc oxide particles
JP3583170B2 (en) Gypsum manufacturing method
JPS6058404A (en) Production of acrylamide polymer decomposed partly by hofmann degradation
JPS5913448B2 (en) Method for producing bulky calcium sulfate dihydrate needle crystals and apparatus used in the method
Sirimahasal et al. The Phase Morphology of Citrogypsum Waste Controlled by a Hydrothermal Process in Ethylene Glycol/Water Solutions
JP2005008445A (en) Method for manufacturing barium titanate powder
CN111762801B (en) Method for treating waste crystalline salt obtained by co-production of ethylene glycol and dimethyl carbonate
JPS5817132B2 (en) Spherical settsukou and its manufacturing method
CN115286030B (en) Method for producing gypsum whisker by transforming gypsum powder
CN111809228B (en) Preparation method of calcium sulfate mineral crystal fiber
JPS63274615A (en) Manufacture of alpha-type gypsum hemihydrate
JPS6128608B2 (en)
JPS605004A (en) Manufacture of chlorine dioxide