JPS605004A - Manufacture of chlorine dioxide - Google Patents
Manufacture of chlorine dioxideInfo
- Publication number
- JPS605004A JPS605004A JP11682384A JP11682384A JPS605004A JP S605004 A JPS605004 A JP S605004A JP 11682384 A JP11682384 A JP 11682384A JP 11682384 A JP11682384 A JP 11682384A JP S605004 A JPS605004 A JP S605004A
- Authority
- JP
- Japan
- Prior art keywords
- reaction medium
- chlorine dioxide
- normality
- charged
- chloride ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は二酸化塩素の製造方法に関する0〔従来技術〕
メタノールを使用する酸性塩素酸す) IJウム水溶液
の還元による二酸化塩素の製造方法は米国特許第コ、t
g i、o 、yコ 号明細書に記載さnており、既
知である。しかし、該方法は非常に遅く、大量の流出液
の処理を含み、低効率である0最近我々の米国特許第グ
、0ざ/、5.2θ号が発布さ【、該特許廚細書笠は先
行技術の問題が単一容器である発生器−蒸発器−結晶化
装置の使用により克服できることが記載さnている。米
国特許第9、Og/、!;コO号明細書に記述さnた方
法は高効率で操作さn1流出液が製造されず、許容でi
る層迄速度を持つ。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing chlorine dioxide. [Prior Art] A method for producing chlorine dioxide by reducing an aqueous solution of chlorine using methanol has been developed in the United States. Patent no.
It is described in the specification of g i, o, y co, and is known. However, the method is very slow, involves the treatment of a large amount of effluent, and has low efficiency.Recently, our U.S. Pat. It is stated that the problems of the prior art can be overcome by the use of a single vessel generator-evaporator-crystallizer. U.S. Patent No. 9, Og/,! ; the process described in No. 0 operates with high efficiency; no effluent is produced;
It has speed up to the layer where it is.
米国特許第ダ、θg I、! 20号の方法の工業的規
模の実施に際して、二酸化塩素製造の周期的に一定しな
い損失が観察さ扛た。仁の現象は該方法の条件下におい
て反応媒体の未知の変化の結果として痕跡量の塩化物イ
オンの完全な消耗か′ら発生すると考察さf′Lだ。U.S. Patent No. DA, θg I,! During industrial scale implementation of the process of No. 20, periodic and variable losses of chlorine dioxide production were observed. The phenomenon is considered to arise from the complete depletion of trace chloride ions as a result of unknown changes in the reaction medium under the conditions of the process.
塩素酸イオンを用いた反応金含む全ての二酸化塩素発生
方法は次式により進行することは良く知らしている:
米国特許第λ9gざ/、052号及び第弘ρgi、s、
2゜号の方法において使用する塩化物イオンはメタノー
ルと共生酸物塩素との反応により、二酸化塩素製造反応
時に形成さnるために、大量の塩素が副生成物として生
ずることがすく、そn故二酸化塩素は該方法の全効率に
依存して垣累をほとんど含有しないかおるいは全く含有
しないOそn故何らかの理由により全ての塩化物イオン
が上述の反応により消費さf′した場合、次の二酸化塩
素の製造は塩素酸イオンのメタノールによる還元によっ
て塩化物イオンが製造されるまで中断さ扛るであろう。It is well known that all chlorine dioxide generation methods involving reaction gold using chlorate ions proceed according to the following equation: U.S. Pat.
Since the chloride ions used in the method No. 2 are formed during the chlorine dioxide production reaction by the reaction between methanol and the symbiotic acid chlorine, a large amount of chlorine is likely to be produced as a by-product. Therefore, chlorine dioxide contains little or no ions depending on the overall efficiency of the process. Therefore, if for some reason all the chloride ions are consumed by the above reaction f', then The production of chlorine dioxide will be interrupted until chloride ions are produced by reduction of chlorate ions with methanol.
二酸化塩素製造のこの周期的に起る一定しない損失は木
切細管においては術語「ホワイトアウト(whitθ−
0ut)Jと記載する。This periodically occurring and variable loss of chlorine dioxide production is referred to by the term "whiteout" in wood cutting tubules.
0ut) J.
本発明によれば米国特許第’1.Og /、320号の
方法におけるホワイトアウトの問題は除去さfるか、一
方、他の有用な該方法の特性、最も重要な高効率は反応
媒体へ塩化物イオン全連続的に添加することによって保
持さnる。意歇的に反応媒体へ塩化物イオンを′添加す
ることによって塩化物イオンの存在が常に確保さnlこ
のためにホワイトアウトの可能性か除去さnる。According to the present invention, U.S. Patent No. '1. The problem of whiteout in the method of Og/320 is eliminated, while other useful properties of the method, most importantly high efficiency, are achieved by the continuous addition of chloride ions to the reaction medium. Retained. By optionally adding chloride ions to the reaction medium, the presence of chloride ions is ensured at all times, thereby eliminating the possibility of whiteout.
塩化物イオンの連続的な添加の有利な結果はいかなる°
重大な不利な結果をも伴うもOではな゛い。塩素酸イオ
ンからの二酸化塩素の製造における米国特許第6Og
/、5.20号 の方法の特徴である高効率は二酸化塩
素製造の許容できる速度を伴なって維持さnる。反応媒
体への塩化物4オンの添加は二酸化塩素と共に若干の塩
素を製造する結果となるが、しかし通常該塩素の弁製造
は許容できるものであり、ノぐルブミル環境においては
しばしば望ましい0
前述の米国特許第’1.Og/、!20号において開示
された操作可能な最低全酸規定度はヲ規定である。この
理由は前述の最低全酸規定度より低い全酸規定度では高
効率の二酸化塩素の製造か行わ扛ないことが以前に見い
出さnていたからである。前述の結論を導く実験は実験
室規模で行わnたものであジ、またこの実験における反
応媒体の体積は約θ、弘〜o、gんg/時間/m2(反
応媒体の5表面績)〔IO−コθ1b/時間/平方フィ
ート(反応媒体の表面積)〕の蒸発速度のガス相(水蒸
気、二酸化塩素及び塩素)を生ずる体積からなるもので
あった。Any beneficial result of continuous addition of chloride ions
It is not O, even if it involves serious disadvantageous consequences. US Patent No. 6Og for the production of chlorine dioxide from chlorate ions
The high efficiency characteristic of the process of No. 5.20 is maintained with an acceptable rate of chlorine dioxide production. The addition of chloride to the reaction medium results in the production of some chlorine along with chlorine dioxide, but the production of chlorine is usually acceptable and often desirable in noglubu mill environments. US Patent No. 1. Og/,! The lowest operable total acid normality disclosed in No. 20 is normal. The reason for this is that it has previously been found that highly efficient production of chlorine dioxide cannot be achieved at a total acid normality lower than the above-mentioned minimum total acid normality. The experiments leading to the above conclusions were carried out on a laboratory scale, and the volume of the reaction medium in this experiment was approximately θ, h~o, gg/hr/m2 (5 surface volumes of the reaction medium). It consisted of a volume yielding a gas phase (water vapor, chlorine dioxide, and chlorine) with an evaporation rate of [IO-co θ1b/hour/square foot (surface area of reaction medium)].
上述のデータとは異って工業規模のフリントの条件下で
は二酸化塩素はり規定より低く約7規定にまで下げた全
敗規定度で高効率で製造できることが意外にも見出さn
1従って本発明方法は少なくとも約7規定の全敗規定度
で行うことができることが今般驚くべきことに見い出さ
nた0
〔発明の構成〕
したがって本発明は塩素酸ナトリウム水溶液と硫酸を減
圧条件下に維持さnた反応帯域中の沸騰する水性酸性反
応媒体中へ連続的に装入し、メタノールを前記反応媒体
から二酸化塩素を形成するに十分な量で前記反応帯域へ
連続的に装入し、二酸化塩素をスチームとのガス状混合
物の形態で前記反応帯域から連続的に取り出し、水に溶
解して二酸化塩素水溶液を形成させ、且つ酸性硫酸ナト
リウムを前記帯域中の前記反応媒体から連続的に析出さ
せることよりなる前記反応媒体中での塩¥酸ナトリウム
のメタノールを用いた還元による高効率二酸化塩素連続
製造方法において、
(a) 前記硫酸を前記反応媒体中へ装入し、少なくと
も約7規定の全敗規定度を維持し、且つ(b) 塩化物
イオンを前記反応帯域外部から前詰反応媒体へ、周期的
に一定しない損失を防止するに少なくとも十分な量で且
つ前記二酸化塩素水溶液への塩素の溶解限度以下の量の
塩素が前記ガス状混合物中に存在する量となるように装
入することを特徴とする高効率二酸化塩素連続製造方法
を提供するにある。Contrary to the above data, it was surprisingly discovered that under industrial-scale flint conditions, it was possible to produce with high efficiency at a total failure standard of about 7 normal, which is lower than the standard for chlorine dioxide.
1 Therefore, it has now surprisingly been found that the process of the present invention can be carried out at a total normality of at least about 7N. methanol is continuously charged into said reaction zone in an amount sufficient to form chlorine dioxide from said reaction medium; Chlorine is continuously removed from the reaction zone in the form of a gaseous mixture with steam and dissolved in water to form an aqueous chlorine dioxide solution, and acidic sodium sulfate is continuously precipitated from the reaction medium in the zone. A highly efficient continuous process for producing chlorine dioxide by reduction of sodium chloride salt with methanol in said reaction medium, comprising: (a) charging said sulfuric acid into said reaction medium and at least about 7 normal dissolving chlorine in the aqueous chlorine dioxide solution in an amount at least sufficient to maintain normality and (b) prevent periodic irregular losses of chloride ions from outside the reaction zone to the prepacked reaction medium; It is an object of the present invention to provide a highly efficient continuous production method for chlorine dioxide, characterized in that the amount of chlorine that is below a limit is charged so that the amount is present in the gaseous mixture.
二酸化塩素発生方法の操作ノく2メーターは広範囲にわ
たり変化させることができる。反応剤の濃度は代表的に
は単室単一容器である発生器−蒸発器−結晶化装置の形
態をなす反応帯域中への塩素酸ナトリウム水溶液、硫酸
及びメタノールの流速によって通常制御される0
上述のように前記反応媒体中の硫酸の全敗規定度は少な
くとも約7規定に維持さn1約lコ規定まで変化させる
ことができる0塩素酸イオンの二酸化塩素への転化効率
は全敗規定の減少と共に幾分減少する傾向にあり、それ
故約り規定〜約io規定の範囲内の硫酸全規定度を使用
することか好ましい。硫酸は通常濃硫酸(93チ)の形
態で反応媒体へ装入さ扛る。The operating parameters of the chlorine dioxide generation process can be varied over a wide range. The concentrations of the reactants are usually controlled by the flow rates of the aqueous sodium chlorate solution, sulfuric acid, and methanol into the reaction zone, which is typically in the form of a single-chamber, single-vessel generator-evaporator-crystallizer. As mentioned above, the total normality of sulfuric acid in the reaction medium is maintained at at least about 7N and can be varied up to about 1N, and the conversion efficiency of chlorate ions to chlorine dioxide increases as the total normality decreases. It is therefore preferable to use a sulfuric acid total normality within the range of about 10 normal to about io normal. The sulfuric acid is usually charged to the reaction medium in the form of concentrated sulfuric acid (93%).
高効率を伴なう工業的規模の二酸化塩素の生成は我々の
米国特許第1I、01?βλθ号の教示とは異なF)?
規定よシ低い全敗規定度で行うことができる。より低い
酸度で増加した効率が観察さnると同時に、反応媒体中
に存在する塩化ナトリウムの濃度の顕著な増加、代表的
には約0.2モルへの増加がまた観察された。前述の挙
動の差は満足に説明できないが、しかしプラント条件下
で反応に利用されるかなシ大容量の反応媒体から起るも
のを考えらnlこのためにより長い効果的な滞留時間及
び反応媒体中のメタノールのよシ効果的な使用が減少し
た蒸発損失を導くものと考えらnる。Production of chlorine dioxide on an industrial scale with high efficiency is described in our US Patent No. 1I,01? F) different from the teaching of βλθ?
This can be done with a zero loss standard, which is lower than the standard. At the same time that increased efficiency was observed at lower acidity, a significant increase in the concentration of sodium chloride present in the reaction medium was also observed, typically to about 0.2 molar. The aforementioned differences in behavior cannot be satisfactorily explained, but may arise from the large volume of reaction medium available for the reaction under plant conditions, which results in a longer effective residence time in the reaction medium. It is believed that more efficient use of methanol leads to reduced evaporation losses.
より低い全敗規定度で非常に効果的に二酸化塩素を製造
する能力を与える大規模操作はまた約2. / = ’
I、j kg /時間/カ(反応媒体の表面積[sO〜
5001b/時間/平方フィート(反応媒体の表面積)
]の範囲の増加したガス状混合物蒸発速度が得られる。Large-scale operations also provide the ability to produce chlorine dioxide very effectively with lower total failure normalities of about 2. /='
I, j kg / hour / force (surface area of the reaction medium [sO ~
5001 b/hour/sq ft (surface area of reaction medium)
An increased gaseous mixture evaporation rate in the range of .
蒸発速度は反応帯域中の液体体積及び液体リサイクル速
度により決定さnる。The evaporation rate is determined by the liquid volume in the reaction zone and the liquid recycling rate.
本発明の改変操作において、上述の工業的規模の二酸化
塩素製造は9規定より低い全敗規定度で行うことができ
、約7規定まで減少することができるが、一方反応媒体
への塩化物イオンの連続的な添加は中止さnる。In a modified operation of the present invention, the industrial scale chlorine dioxide production described above can be carried out at total normality lower than 9N, which can be reduced to about 7N, while adding chloride ions to the reaction medium. Continuous addition is discontinued.
本発明方法における反応媒体中の塩素酸ナトリウムの濃
度は通常約θ、2モル〜モルSモル、好適には約0.9
モル−約八1モルに変化する。The concentration of sodium chlorate in the reaction medium in the process of the invention is usually about θ, 2 mol to mol S mol, preferably about 0.9
mole - changes to about 81 moles.
塩素酸ナトリウムは通常約5モル〜約7モルの濃度の塩
素酸ナトリウム水溶液の形態で反応媒体へ装入さnる。Sodium chlorate is usually charged to the reaction medium in the form of an aqueous sodium chlorate solution with a concentration of about 5 molar to about 7 molar.
上述のように通常の操作条件下では塩化物イオンは反応
媒体中での塩素のメタノールによる還元の結果として反
応媒体中尺存在する。本発明によシ塩、化ナトリウムを
媒体へ連続的に装入した場合でも、反応媒体中に存在す
る塩化物イオンの濃度は該添加塩化ナトリウムの不在下
よりも非常に高くなるものではない。この理由は添加塩
化物イオンが反応帯域で塩素に変換さnるためである。As mentioned above, under normal operating conditions, chloride ions are present in the reaction medium as a result of the reduction of chlorine in the reaction medium by methanol. Even when the salt, sodium chloride, is continuously charged to the medium according to the invention, the concentration of chloride ions present in the reaction medium is not significantly higher than in the absence of the added sodium chloride. The reason for this is that the added chloride ions are converted to chlorine in the reaction zone.
通常反応媒体中の塩化qkJイオン濃度は約9規定〜約
/:を規定の範囲の全敗規定度で約o、oo、2モル〜
約0.3モルに変化するが、一方?規定よシ低い全敗規
定度では反応媒体中の塩化物イオン濃度は通常約o、i
モル〜約0.3モルに変化する。Normally, the concentration of qkJ chloride ions in the reaction medium ranges from about 9 normal to about 2 mol with total normality in the specified range.
It changes to about 0.3 mole, but on the other hand? At lower normality than normal, the chloride ion concentration in the reaction medium is usually about o,i
mol to about 0.3 mol.
反応媒体へ添加する時の塩化物イオンは一般に塩化ナト
リウム水溶液の形態であり、通常約Sモルの濃度を持つ
。塩化ナトリウムは塩素酸ナトリウム溶液の1部分とし
て添加してもよh塩酸あるいは塩化水素もまた反応媒体
中に塩化物イオンを提供するために使用できる。The chloride ion when added to the reaction medium is generally in the form of an aqueous sodium chloride solution and usually has a concentration of about S molar. Sodium chloride may be added as part of the sodium chlorate solution; hydrochloric acid or hydrogen chloride may also be used to provide chloride ions in the reaction medium.
メタノールは反応媒体へ100%メタノールの形態ある
いはメタノール1重量−以上含有メタノール*溶消)−
1−丁柾入できるが一少なくとも約aV重量%のメタノ
ールが本発明操作内過剰の水の装入を回避するために好
ましい0反応源度は通常約6θ℃〜約9θ℃、好ましく
は約りO℃〜約7S℃に変化できる。温度が高けnば通
常反応速度はより速くな9、また二酸化塩素製造速度も
早くなるが、しかし過度に高い温度では二酸化塩素の分
解が起って二酸化塩素の収率を低下させる。Methanol is added to the reaction medium in the form of 100% methanol or methanol containing 1 weight or more of methanol *dissolved).
Although at least about aV wt. It can vary from 0°C to about 7S°C. Higher temperatures usually result in faster reaction rates 9 and also increase the rate of chlorine dioxide production; however, at excessively high temperatures, decomposition of chlorine dioxide occurs, reducing the yield of chlorine dioxide.
二酸化塩素発生器中の反応媒体から製造したガス状混合
物流中に存在する二酸化塩素は漂白買上凝縮し、次に全
二酸化塩素を溶解するために十分な体積の水流と接触す
ることにより二酸化塩素水溶液が形成される。この一段
階凝縮及び溶解工程において、最初の凝縮工程は約り℃
〜約6θ℃、好ましくは約7υ〜約60℃の温度に冷却
することによシ行うことができるが、一方次の溶解工程
は凝縮工程からの冷却さnたガス流と約θ℃〜約ココ℃
、好ましくは約3υ〜約to7(3の温度の水とを接触
すること罠よって行うことができる。二酸化塩素の製造
に関連する水の流速、凝縮水及び溶解水の温度に依存し
て、約6〜コOg/l、好ましくは約10〜/ s 、
171 / 13の範囲の二酸化塩素濃度を持つ二酸化
塩素溶液が形成さnる。The chlorine dioxide present in the gaseous mixture stream produced from the reaction medium in the chlorine dioxide generator is purchased by bleaching, condensing, and then making an aqueous solution of chlorine dioxide by contacting with a water stream of sufficient volume to dissolve all the chlorine dioxide. is formed. In this one-step condensation and dissolution process, the first condensation step is approximately
This can be carried out by cooling to a temperature of ~60°C, preferably from about 7υ to about 60°C, while the subsequent melting step is carried out by cooling the cooled gas stream from the condensation step to about 60°C. Here ℃
, preferably at a temperature of about 3υ to about 7 to 7.Depending on the flow rate of the water involved in the production of chlorine dioxide, the temperature of the condensed water and the dissolved water, about 6~0g/l, preferably about 10~/s,
A chlorine dioxide solution with a chlorine dioxide concentration in the range of 171/13 is formed.
本発明の実施に際して塩化ナトリウムが連続的に反応媒
体へ装入される場合、塩素が二酸化塩素と共に形成さn
る。この塩素は二酸化塩素溶液中VC溶解さn1約0.
/ 〜2.Ol / 13 %好ましくは約θ、t−
o、s9/Ijの量で存在する。If sodium chloride is continuously charged to the reaction medium in the practice of the invention, chlorine is formed together with chlorine dioxide.
Ru. This chlorine is dissolved in VC in a chlorine dioxide solution with n1 of about 0.
/ ~2. Ol/13% preferably about θ, t-
o, present in an amount of s9/Ij.
累溶解装置の必要性を回避す・るために二酸化塩素溶液
中の塩素の溶解度限界奮起える量の塩素を二酸化塩素と
共に生成するものでろ・りてaならない。In order to avoid the need for a cumulative dissolution device, chlorine must be produced with the chlorine dioxide in amounts that would raise the solubility limit of chlorine in the chlorine dioxide solution.
る。この酸性硫酸ナトリウムの酸分は我々の米国特許第
り、3−コ5.り31号明細書に記述したように水とメ
タノールを用いた処理により該酸性硫酸ナトリウムを中
性硫酸ナトリウムへ変換することによって反応媒体から
回収することができ、回収された硫酸は反応帯域ヘリサ
イクルされる。Ru. The acid content of this acidic sodium sulfate is determined by our US Patent No. 3-5. The acidic sodium sulfate can be recovered from the reaction medium by converting it to neutral sodium sulfate by treatment with water and methanol as described in No. 31, and the recovered sulfuric acid is recycled to the reaction zone. be done.
別法として酸性硫酸ナトリウムは塩素酸ナトリウムと塩
化ナトリウム及び/または塩化水素とか約a、g規定以
下の全敗規定度で酸性水性媒体中で反応する他の二酸化
塩素製造方法の反応媒体へ添加することができ、その場
合核酸性硫酸ナトリウムは我々の米国特許第3.りざq
、iot号明細書に記述したような該方法の酸必要量の
全であるいは1部分を提供するために使用される。Alternatively, the acidic sodium sulfate may be added to the reaction medium of other chlorine dioxide production processes in which sodium chlorate and sodium chloride and/or hydrogen chloride are reacted in an acidic aqueous medium at a total normality of less than about a, g specification. , in which case the nucleic acid sodium sulfate is described in our U.S. Patent No. 3. Rizaq
, IOT, to provide all or a portion of the acid requirements of the process.
酸性硫酸ナトリウムは通常反応媒体からスラリーとして
除去され、酸性硫酸ナトリウムは反応媒体から分離され
、反応媒体は通常新鮮な反方法において、二酸化塩素は
反応媒体の沸騰によって発生したスチームを用いて希釈
さn、このスチームは低操作圧力代表的には約1001
1Hyの使用と相俟って二酸化塩素を爆発濃度以下に維
持する。二酸化塩素が水に溶解することによって二酸化
塩素水溶液が形成さnて次いでスチームの大部分が凝縮
さnる吸収塔の底部では上述の低圧力下で二酸化塩素の
濃度は安全なレベルで維持さnる。Sodium acid sulfate is usually removed from the reaction medium as a slurry, the sodium acid sulfate is separated from the reaction medium, the reaction medium is usually fresh, and the chlorine dioxide is diluted using steam generated by boiling of the reaction medium. , this steam is produced at low operating pressures typically around 1001
Combined with the use of 1Hy, chlorine dioxide is maintained below explosive concentrations. An aqueous solution of chlorine dioxide is formed by dissolving the chlorine dioxide in water, and then most of the steam is condensed.At the bottom of the absorption tower, under the aforementioned low pressure, the concentration of chlorine dioxide is maintained at a safe level. Ru.
しかし該方法は約’!OrgrttHg以下の二酸化塩
素分圧を維持するために十分なパージ空気を混合するこ
とによって大気圧未満の圧力下ではあるかより高圧力下
で操作できる。実際の操作圧力は大部分反応媒体の温度
に依存するが、しかし約6θ〜ダθθIIHy 、好ま
しくは約?θ〜72011H!9の広範囲に変化させる
ことができる。パージ空気量を制御することによって操
作圧力を変化できることはより高い大気圧未満の圧力を
使用するように設計さf’した二酸化塩素製造プラント
例えば二酸化塩素と共に生成した大量の塩素を処理する
ために意図さnたプラントが塩素酸ナトリウムのメ〉ノ
ールによる還元にょシ二酸化塩素の形成を行うために使
用さnる場合に゛好都合である。But the method is about '! It is possible to operate at subatmospheric pressures or higher pressures by mixing in sufficient purge air to maintain a chlorine dioxide partial pressure below OrgrttHg. The actual operating pressure depends to a large extent on the temperature of the reaction medium, but is preferably between about 6θ and θθIIHy, preferably about ? θ~72011H! It can be varied over a wide range of 9. The ability to vary the operating pressure by controlling the amount of purge air is intended for chlorine dioxide production plants designed to use higher subatmospheric pressures to process large amounts of chlorine produced with e.g. chlorine dioxide. This is advantageous if the plant is used for the reduction of sodium chlorate with alcohol to form chlorine dioxide.
以下に実施例を挙げて本発明を説明する。 The present invention will be explained below with reference to Examples.
実施例 l
酸性塩素酸ナトリウム溶液をメタノールで還元し、一方
反応媒体を減圧条件下で沸騰させる/日当F)/sトン
の製造能力を持つ二酸化塩素製造装置を用いて実験した
。塩素酸ナトリウム′を塩素酸ナトリウム結晶から形成
さnたよM水溶液として反応媒体中塩素酸イオン濃度を
/Mに維持するために十分なj 5lj1分(2,2σ
8GPM)の流速で反応媒体へ連続的に装入した。また
硫酸を?J%HtSo、として反応媒体の酸度を約2〜
10規定に維持するために十分な711/91−<2.
0σ8GPM )の流速で反応媒体へ連続的に装入した
。メタノールt−5O重量%水溶液として31/分CO
,I UBCkPM)の速度で反応媒体へ連続的に装入
した。発生装置液体の平均温度は約jO℃でアフ、セス
キ硫酸ナトリウム結晶を発生器から除去した。EXAMPLE 1 Experiments were carried out using a chlorine dioxide production apparatus with a production capacity of F)/s per day, in which an acidic sodium chlorate solution was reduced with methanol, while the reaction medium was boiled under reduced pressure conditions. Sodium chlorate' is formed from sodium chlorate crystals as an aqueous solution of 1 min (2,2σ) sufficient to maintain the chlorate ion concentration in the reaction medium at /M
8 GPM) into the reaction medium continuously. Sulfuric acid again? J%HtSo, the acidity of the reaction medium is approximately 2 ~
711/91-<2.
The reaction medium was continuously charged at a flow rate of 0σ8 GPM). 31/min CO as methanol t-5O wt% aqueous solution
, IUBCkPM) into the reaction medium continuously. The average temperature of the generator liquid was approximately 0.degree. C. and the sodium sesquisulfate crystals were removed from the generator.
該発生器は二酸化塩素を製造するための実質的な定常条
件下、すなわち最初に意識的に添加した塩化ナトリウム
のない状態で運転し、次に5M塩化ナトリウム溶液f
/、9117% CO,S IJSGPM)の流速での
連続添加を用いた状態で運転した。The generator is operated under substantially steady state conditions for producing chlorine dioxide, i.e. first without intentionally added sodium chloride and then with a 5M sodium chloride solution f
/, 9117% CO,SIJSGPM).
該発生器からの排ガスを30℃に冷却することによって
スチームを凝縮し、冷却したガスを70℃の水を使用す
る吸収塔中で水に溶解した。The steam was condensed by cooling the exhaust gas from the generator to 30°C and the cooled gas was dissolved in water in an absorption tower using 70°C water.
塩素酸イオンの二酸化塩素への転化の化学効率を各々の
場合について決定した。The chemical efficiency of the conversion of chlorate ion to chlorine dioxide was determined in each case.
約ゾロ%の化学効率が意識的に添加する塩化ナトリウム
がない場合の実験と塩化ナトリウムを意識的に添加した
場合の実験の両方に観察さnた。塩化ナトリウムを意識
的に添加する期間中に得らnた二酸化塩素溶液は約7θ
g/lの二酸化塩素及び約0.7〜θ、trl/lの塩
素を含量するが、一方塊化ナトリウム添加が行わnない
初期運転期間に得らnた二酸化塩素溶液は約i。Chemical efficiencies of approximately 0% were observed both in experiments without consciously added sodium chloride and in experiments with consciously added sodium chloride. The chlorine dioxide solution obtained during the period of deliberate addition of sodium chloride is approximately 7θ
g/l of chlorine dioxide and about 0.7 to θ, trl/l of chlorine, while the chlorine dioxide solution obtained during the initial operating period without agglomerated sodium addition is about i.
11/lの二酸化塩素及び約θ、S〜0.b g/lの
塩素を含量した。更に二酸化塩素製造に際して製造速べ
の増加は塩化す) IJウムを反応媒体へ意識的に添加
する期間中に観察された。11/l of chlorine dioxide and about θ, S~0. b g/l chlorine content. Furthermore, during the production of chlorine dioxide, an increase in the production rate was observed during the period of intentional addition of IJ (chloride) to the reaction medium.
実施例 コ
塩素酸ナトリウムの酸性溶液をメタノールを用いて還元
し、一方反応媒体を減圧条件下で沸騰させる1日当りl
lIトンの製造能力を持つ二酸化塩素発生装置を用いて
実験した◇塩素酸ナトリウムを塩素酸ナトリウム結晶か
ら造った5M水溶液として反応媒体中の塩素酸イオン濃
度f!c/Mに維持するため罠十分な35j/分(?、
コσSGPM ) の流速で反応媒体中へ連続的に装入
した。また硫酸をデ3チH,So、として反応媒体を所
望の酸度に維持するために十分な流速で反応媒体へ連続
的に装入した。メタノールをSO重枕チ水溶液として、
y 17分(0,lσEl()PM )の流速で反応媒
体へ連続的に装入した。発生器液体の平均温度は約go
℃でワシ、セスキ硫酸ナトリクム結晶を発生器から除去
した。EXAMPLE An acidic solution of sodium cochlorate is reduced using methanol, while the reaction medium is boiled under reduced pressure conditions.
An experiment was conducted using a chlorine dioxide generator with a production capacity of lI tons.◇As a 5M aqueous solution of sodium chlorate made from sodium chlorate crystals, the chlorate ion concentration in the reaction medium f! Enough trap 35j/min(?,
It was continuously charged into the reaction medium at a flow rate of σSGPM). Sulfuric acid was also continuously charged to the reaction medium as 3H,So at a flow rate sufficient to maintain the desired acidity of the reaction medium. methanol as a SO heavy aqueous solution,
The reaction medium was continuously charged at a flow rate of y 17 min (0, lσEl() PM ). The average temperature of the generator liquid is approximately go
°C, the sodium sesquisulfate crystals were removed from the generator.
該発生器を二酸化塩素を製造するための実質的な定常条
件下、種々の全敗規定度で運転した。The generator was operated under substantially steady state conditions to produce chlorine dioxide at various normalities.
発生器からの排ガス全3θ℃に冷却することによってス
チームを凝縮し、冷却したガスヲlO℃の水を使用する
吸収塔中で水に#解した。塩素酸イオンの二酸化塩素へ
の転化の化学効率を各々の場合について決定した。The steam was condensed by cooling the entire exhaust gas from the generator to 30°C, and the cooled gas was dissolved in water in an absorption tower using water at 10°C. The chemical efficiency of the conversion of chlorate ion to chlorine dioxide was determined in each case.
全敗規定度(N) 7.2〜g、り デ〜IO’7.g
〜g0g実験時間(時) /2 /2 g、s
化学効率(%il 、9g )?? >99上述の第7
表から高化学効率操作が今岐規定度を?規定以下維持し
た時にも観察される。Defeat standard level (N) 7.2~g, Ri de~IO'7. g
~g0g Experimental time (hours) /2 /2 g, s Chemical efficiency (%il, 9g)? ? >99 7th above
From the table, does high chemical efficiency operation have a normality? It is also observed when the temperature is maintained below the specified level.
水門711Tl曹の要約として、本発明は化学効率に悪
影響を及ぼすことのない高効率二酸化塩素製造方法の操
作における改善に関する。本発明の範囲内における修正
は可能である。SUMMARY OF THE INVENTION The present invention relates to improvements in the operation of a high efficiency chlorine dioxide production process without adversely affecting chemical efficiency. Modifications within the scope of the invention are possible.
Claims (1)
反応帯域中の沸騰する水性酸性反応媒体中へ前記反応媒
体から二酸化塩素を形成するに十分な量装入し、二酸化
塩素をスチームとのガス状混合物の形態で前記反応帯域
から連続的に取り出し、水に溶解して二酸化塩素水溶液
を形成し、且つ酸性硫酸ナトリウムを前記帯域中の前記
反応媒体から連続的に析出させることよりなる前記反応
媒体中での塩素酸ナトリウムのメタノールを用いた還元
による高効率二酸化塩素連続製造方法において、(a)
前記硫酸を前記反応媒体中へ装入し、少なくとも約7
規定の全規定度を維持し、且つ (リ 塩化物イオンを前記反応帯域外部から前記反応媒
体へ周期的に一定しない損失を防塩素への塩素の溶解限
度以下の量の塩素が前記ガス状混合物中に存在する量と
なるように装本することを特徴とする高効率二酸化塩素
連続製造方法。 ユ 装入硫酸により全欧規定度を9〜lコ規定に維持し
、且つ塩化物イオンを水溶液として反応媒体中に連続的
に供給して反応媒体中の塩化物イオン濃度を約0.00
2〜約0.3モルとなす特許請求の範囲第1項記載の製
造方法。 3 装入硫酸によりデ規定よシ低い全欧規定度を維持し
、塩化物イオンを水溶液として反応媒体に連続的に供給
して自嚇呑#=#洋噂≠反応媒体中の塩化物イオン濃度
を約o、iモル〜約0.3モルとなす特許請求の範囲第
1項記載の製造方法。 弱 塩化物イオン水溶液がSモルの濃度の塩化ナトリウ
ム水溶液である特許請求の範囲第2項または第3項記載
の製造方法。 ! 装入硫酸によシタ規定よシ低い全酸規定度を維持し
、塩化物イオンの装入を行わない特許請求の範囲第5項
記載の製造方法0 ム 反応媒体がコ〜xskg/時間/反応媒体の面積1
m2 のガス状混合物蒸発速度で沸腸する特許請求の範
囲第5項記載の製造方法02 反応帯域を約6θ〜約’
I00mmHgの減圧下で反応媒体の沸点に維持し空気
を反応帯域へ導入し、ガス混合物中の二酸化塩素分圧を
? OmmHg以下に維持する特許請求の範囲第1項な
いし第6項のいずnかに記載の製造方法。[Claims] / Aqueous sodium chlorate solution and sulfuric acid are charged into a boiling aqueous acidic reaction medium in a reaction zone maintained under reduced pressure in amounts sufficient to form chlorine dioxide from said reaction medium; is continuously removed from said reaction zone in the form of a gaseous mixture with steam and dissolved in water to form an aqueous chlorine dioxide solution, and acidic sodium sulfate is continuously precipitated from said reaction medium in said zone. In the highly efficient continuous production method of chlorine dioxide by reduction of sodium chlorate with methanol in the reaction medium, comprising: (a)
The sulfuric acid is charged into the reaction medium at least about 7
Maintaining the specified total normality and (Li) Periodic and variable losses of chloride ions from outside the reaction zone to the reaction medium. A highly efficient continuous production method for chlorine dioxide characterized by binding the book so that the amount of chloride ions present in the chlorine dioxide is maintained at 9 to 1 by the charged sulfuric acid, and the chloride ions are kept in an aqueous solution. The chloride ion concentration in the reaction medium is maintained at about 0.00 by continuously feeding it into the reaction medium as
2. The method according to claim 1, wherein the amount is 2 to about 0.3 mol. 3 Maintain a lower normality than the normality using charged sulfuric acid, and continuously supply chloride ions as an aqueous solution to the reaction medium to reduce the concentration of chloride ions in the reaction medium. 2. The method according to claim 1, wherein the amount is from about o.i mol to about 0.3 mol. The manufacturing method according to claim 2 or 3, wherein the weak chloride ion aqueous solution is a sodium chloride aqueous solution having a concentration of S mol. ! The production method according to claim 5, in which the charged sulfuric acid maintains a total acid normality lower than the normality, and chloride ions are not charged. Area of medium 1
Manufacturing method 02 according to claim 5, in which the gaseous mixture is boiled at an evaporation rate of m2.
Air is introduced into the reaction zone under reduced pressure of I00 mmHg, maintaining the boiling point of the reaction medium, and the partial pressure of chlorine dioxide in the gas mixture is adjusted to ? The manufacturing method according to any one of claims 1 to 6, wherein the temperature is maintained at OmmHg or less.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000430111A CA1181224A (en) | 1983-06-10 | 1983-06-10 | High efficiency chlorine dioxide process |
CA430111 | 1983-06-10 | ||
CA431677 | 1983-06-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6398789A Division JPH01282102A (en) | 1983-06-10 | 1989-03-17 | Method for continuously manufacturing chlorine dioxide |
JP24586591A Division JPH04367505A (en) | 1983-06-10 | 1991-09-25 | Continudus preparation of chlorine dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS605004A true JPS605004A (en) | 1985-01-11 |
JPH048363B2 JPH048363B2 (en) | 1992-02-14 |
Family
ID=4125450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11682384A Granted JPS605004A (en) | 1983-06-10 | 1984-06-08 | Manufacture of chlorine dioxide |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS605004A (en) |
CA (1) | CA1181224A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214002A (en) * | 1990-03-05 | 1992-08-05 | Eka Nobel Ab | Manufacture of chlorine dioxide |
JP2013507311A (en) * | 2009-10-12 | 2013-03-04 | アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ | Method for producing chlorine dioxide |
KR20210011770A (en) * | 2019-07-23 | 2021-02-02 | 주식회사 클로바이오 | sustained-release preservative for chlorine dioxide and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52114493A (en) * | 1976-03-19 | 1977-09-26 | Erco Ind Ltd | Manufacturing process for chlorine dioxide by reductio of chlorate |
-
1983
- 1983-06-10 CA CA000430111A patent/CA1181224A/en not_active Expired
-
1984
- 1984-06-08 JP JP11682384A patent/JPS605004A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52114493A (en) * | 1976-03-19 | 1977-09-26 | Erco Ind Ltd | Manufacturing process for chlorine dioxide by reductio of chlorate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214002A (en) * | 1990-03-05 | 1992-08-05 | Eka Nobel Ab | Manufacture of chlorine dioxide |
JP2013507311A (en) * | 2009-10-12 | 2013-03-04 | アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップ | Method for producing chlorine dioxide |
KR20210011770A (en) * | 2019-07-23 | 2021-02-02 | 주식회사 클로바이오 | sustained-release preservative for chlorine dioxide and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH048363B2 (en) | 1992-02-14 |
CA1181224A (en) | 1985-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4473540A (en) | High efficiency chlorine dioxide process | |
US3563702A (en) | Production of chlorine dioxide | |
US3810969A (en) | Process for the production of chlorine dioxide | |
US4465658A (en) | Chlorine dioxide process | |
US3682592A (en) | Treatment of waste hci pickle liquor | |
JPH04231305A (en) | Manufacture of chlorine dioxide | |
JPH04231304A (en) | Manufacture of chlorine dioxide | |
JPS6256082B2 (en) | ||
JPH06263407A (en) | Continuous preparation of chlorine dioxide | |
JPH02157103A (en) | Manufacture of chlorine dioxide | |
US2811420A (en) | Chlorine dioxide generation | |
US3829557A (en) | Production of chlorine dioxide | |
JPS605004A (en) | Manufacture of chlorine dioxide | |
JPS61205602A (en) | Manufacture of chlorine dioxide | |
JPH04501552A (en) | Improved production method of hypochlorous acid | |
JPH02293301A (en) | Production of chlorine dioxide | |
JP3394981B2 (en) | Method for producing free hydroxylamine aqueous solution | |
JPH01282102A (en) | Method for continuously manufacturing chlorine dioxide | |
US3933987A (en) | Simultaneous production of chlorine dioxide and a salt of a strong acid | |
US3002813A (en) | Method of preparing monopersulfates | |
US4062929A (en) | Production of hydrogen fluoride | |
US4154810A (en) | Manufacture of chlorine dioxide by reduction of a specified chlorate | |
JPH05186216A (en) | Production of potassium sulfate and hydrochloric acid | |
US6921521B2 (en) | Method of producing chlorine dioxide employs alkaline chlorate in a mineral acid medium and urea as a reducing agent | |
US4178356A (en) | Process for manufacturing chlorine dioxide |