JPH069103Y2 - Subsea test rig - Google Patents

Subsea test rig

Info

Publication number
JPH069103Y2
JPH069103Y2 JP7826588U JP7826588U JPH069103Y2 JP H069103 Y2 JPH069103 Y2 JP H069103Y2 JP 7826588 U JP7826588 U JP 7826588U JP 7826588 U JP7826588 U JP 7826588U JP H069103 Y2 JPH069103 Y2 JP H069103Y2
Authority
JP
Japan
Prior art keywords
pressure
core barrel
container
seabed
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7826588U
Other languages
Japanese (ja)
Other versions
JPH025486U (en
Inventor
憲二 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7826588U priority Critical patent/JPH069103Y2/en
Publication of JPH025486U publication Critical patent/JPH025486U/ja
Application granted granted Critical
Publication of JPH069103Y2 publication Critical patent/JPH069103Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、海底(湖沼底などを含む)の試掘、試料採取
に適用される海底試掘装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a seabed test digging apparatus applied to test digging and sampling of a seabed (including lake bottom).

(従来の技術) 前記海底試掘装置の従来例を第3図によって説明する
と、洋上の支援母船(1)より電源および制御信号用等の
ケーブル(2)を介して海底に吊り降される海底試掘装置
(3)において、支援母船(1)よりケーブル(2)を介して容
器内の制御部(10)により電動機(4)を遠隔制御し、電動
機(4)により1組の傘歯車(5)、伝動軸(6)、1組の歯車
(7)を介してコアバレル(9)を回転駆動し、同電動機によ
ってチェン等を介しドリルヘッド(8)、コアバレル(9)を
上下動して、コアバレル(9)の空洞内に海底の鉱物資源
等の採取物を取入れ、支援母船(1)に引上げて採取して
いる。
(Prior Art) A conventional example of the seabed test digging apparatus will be described with reference to FIG. 3. The seabed test digging suspended from the offshore support mother ship (1) to the seabed via a cable (2) for power supply and control signals and the like. apparatus
In (3), the electric motor (4) is remotely controlled by the control unit (10) in the container from the support mother ship (1) via the cable (2), and the bevel gear (5) is set by the electric motor (4). Transmission shaft (6), 1 set of gears
The core barrel (9) is rotationally driven via (7), and the drill head (8) and core barrel (9) are moved up and down by the same motor via a chain, etc., and the mineral resources on the seabed are placed in the cavity of the core barrel (9). Etc. are taken and pulled up to the support mother ship (1) and collected.

(考案が解決しようとする課題) 従来の前記海底試掘装置は、採取量がコアバレルの空洞
体積分に限られて少なく、また、採取量を増加するため
には面倒な洋上−海底間の往復操作瀕度を増加すること
になり、深海の場合、潮流が速い場合等では、往復に長
時間を要し、海底の所定位置への誘導が困難になるなど
の問題点がある。
(Problems to be solved by the invention) In the conventional seabed test digging device, the sampling amount is limited to the cavity volume of the core barrel and is small, and in order to increase the sampling amount, the reciprocating operation between the ocean and the seabed is troublesome. This will increase the abundance, and in the case of deep sea or fast tidal currents, it takes a long time to make a round trip, which makes it difficult to guide the boat to a predetermined position on the sea floor.

また、採取量を増加するためには、採取物格納箱と同箱
内に採取物を吸込むためのポンプを装備することが考え
られるが、一般にポンプの吸込圧力は1kg/cm2以内で
あって極めて弱い吸収力しか基体できず、海底鉱物類を
試錐後に吸込むのは極めて困難である。
In addition, in order to increase the collection amount, it is conceivable to equip a collection box and a pump for sucking the collection sample in the same box. Generally, the suction pressure of the pump is within 1 kg / cm 2. Since it has a very weak absorption capacity as a substrate, it is extremely difficult to inhale submarine minerals after drilling.

本考案は、前記のような課題に対処するために開発され
たものであって、その目的とする処は、コアバレルによ
る海底の試掘、採取とともに同コアバレルの作動利用に
より外壁筒、連結筒を介して耐圧容器内に多量の採取を
可能にして、採取性能、能率を大幅に向上した海底試掘
装置を提供するにある。
The present invention was developed to address the above-mentioned problems, and the purpose thereof is to test and dig the seabed with a core barrel, and use the core barrel to operate and use the outer wall tube and the connecting tube. It is possible to collect a large amount in a pressure vessel and to provide a seabed test digging device with greatly improved collection performance and efficiency.

(課題を解決するための手段) 本考案は、洋上の支援母船あるいは潜水物体等より電源
および制御信号用等のケーブルを介して海底に吊り降さ
れる海底試掘装置において、該海底試掘装置の本体に駆
動機構で回転および上下動されるコアバレルを垂設し、
試コアバレルの周囲に採取間隔を設け下端開口形の外壁
筒を配設して、該外壁筒の上端部に開閉弁付き連通筒で
連結された耐圧容器と、該耐圧容器にガスのみ流通自在
の逆止弁付き連結パイプで連結されたガス容器、および
前記耐圧容器に排水管で連結された海水ポンプを、それ
ぞれ前記本体に配設した構成に特徴を有し、コアバレル
の回転および上下動によって外壁筒内への採取物の導入
を可能とし、開閉弁による連結筒の開閉とガス容器によ
る圧力容器内の自動気圧調整および海水ポンプによる耐
圧力容器内の排水によって、外壁筒から連結筒を介して
耐圧力容器内への採取物の採取を可能とし、同耐圧容器
によって採取量を大幅に増加している。
(Means for Solving the Problems) The present invention relates to a submarine test digging apparatus that is suspended from the offshore support mother ship or a submersible object or the like via a cable for power supply and control signals to the seabed. A core barrel that is rotated and moved up and down by a drive mechanism
A sampling interval is provided around the sample core barrel, an outer wall cylinder having a lower end opening is arranged, and a pressure container connected to the upper end of the outer wall cylinder by a communication cylinder with an opening / closing valve, and only gas can flow through the pressure container. A gas container connected by a connecting pipe with a check valve, and a seawater pump connected by a drain pipe to the pressure-resistant container are respectively arranged in the main body, and the outer wall is formed by the rotation and vertical movement of the core barrel. It enables the introduction of the sample into the cylinder, opens and closes the connecting cylinder with an on-off valve, automatically adjusts the air pressure in the pressure container with a gas container, and drains the pressure-resistant container with a seawater pump. It is possible to collect a sample into a pressure-resistant container, and the pressure-resistant container greatly increases the amount to be collected.

(作用) 支援母船あるいは潜水物体等より電源および制御信号等
のケーブルを介して海底に海底試掘装置を吊り降し、該
海底試掘装置の本体に垂設したコアバレルを駆動機構に
よって回転および上下動して海底を試掘し採取するとと
もに、コアバレルの前記回転および上下動に伴って、コ
アバレル周囲の外壁筒の採取間隔内に採取物が導入さ
れ、該導入と関連して開閉弁により連結筒を開にする
と、耐圧容器内の気圧と外水圧との差圧により採取物が
外壁筒から連結筒を経て耐圧容器内に円滑に導入され、
耐圧容器内への採取物および外水の導入により耐圧容器
内の気体はガスのみ流通自在の逆止弁を介してガス容器
内に自動的に収容され、海水ポンプにより排水管を介し
て耐圧容器内の海水排出により、耐圧容器内に大量の採
取物が採取されて、同海底試掘装置を揚収し、大量の採
取物が得られる。
(Operation) A submarine test digging device is suspended from the supporting mother ship or a submersible object via a cable for power supply and control signals, and a core barrel hung on the main body of the submarine test digging device is rotated and moved up and down by a drive mechanism. Along with the rotation and vertical movement of the core barrel, the sample is introduced within the sampling interval of the outer wall cylinder around the core barrel, and the connection cylinder is opened by the on-off valve in connection with the introduction. Then, the sample is smoothly introduced into the pressure resistant container from the outer wall cylinder through the connection cylinder due to the pressure difference between the atmospheric pressure in the pressure resistant container and the external water pressure,
The gas in the pressure vessel is automatically stored in the gas vessel through the check valve that allows only the gas to flow when the sample and the outside water are introduced into the pressure vessel, and the pressure vessel is discharged by the seawater pump through the drain pipe. Due to the discharge of seawater inside, a large amount of collected material will be collected in the pressure resistant container, and the same seabed test drilling device will be collected to obtain a large amount of collected material.

(実施例) 第1図および第2図に本考案の一実施例を示し、図中(1
3)は洋上の支援母船(1)(第3図参照)あるいは第2図
のような潜水物体(2)等より電源および制御信号用等の
ケーブル(11)を介して海底に吊り降される海底試掘装置
の本体であって、該海底試掘装置の本体(13)に駆動機構
(14,…22)で回転および上下動されるコアバレル(28)を
垂設し、コアバレル(28)の周囲に採取間隔(S)を設け下
端開口形の外壁筒(30)を配設して、外壁筒(30)の上端部
に開閉弁(33)付き連結筒(32)で連結された耐圧容器(38)
と、耐圧容器(38)にガスのみ流通自在の逆止弁(42)付き
連通パイプ(41)で連結されたガス容器(43)、および耐圧
容器(38)に排出管(44)で連結された海水ポンプ(45)を、
それぞれ前記本体(13)に配設した海底試掘装置になって
いる。
(Embodiment) One embodiment of the present invention is shown in FIG. 1 and FIG.
3) is suspended from the support mother ship (1) at sea (see Fig. 3) or the diving object (2) as shown in Fig. 2 to the seabed via the cable (11) for power supply and control signals. A main body of the seabed test digging device, wherein a drive mechanism is attached to the body (13) of the seabed test digging device.
A core barrel (28) which is rotated and moved up and down by (14, ... 22) is vertically installed, and a sampling interval (S) is provided around the core barrel (28), and an outer wall cylinder (30) having a lower end opening is provided. A pressure-resistant container (38) connected to the upper end of the outer wall cylinder (30) by a connecting cylinder (32) with an opening / closing valve (33).
A gas container (43) connected to the pressure container (38) by a communication pipe (41) with a check valve (42) that allows only gas to flow, and a discharge pipe (44) connected to the pressure container (38). Seawater pump (45)
Each is a seabed test digging device arranged in the main body (13).

前記海底試掘装置の本体(13)は、支援母船(1)あるいは
潜水物体(2)より電源および制御信号を伝送するケーブ
ル(11)にコネクター(12)で連けいされ、ケーブル(11)で
海底に吊り降して着底すると、電動機(14)に動力を供給
する。
The main body (13) of the seabed test digging device is connected to the cable (11) that transmits power and control signals from the support mother ship (1) or the submersible object (2) with the connector (12), and is connected to the seabed with the cable (11). When it hangs and reaches the bottom, it supplies power to the electric motor (14).

前記駆動機構(14,…22)は、電動機(14)の回転により出
力軸側の傘歯車(15)、同傘歯車(15)に噛合した傘歯車(1
6)、傘歯車(16)に同軸上の歯車(18)(17は軸受)を介し
て伝導歯車軸(19)を回転し、さらに1組の歯車(20)(21)
を経てコアバレル(28)を回転駆動するとともに、電動機
(14)の回転により出力軸上の歯車(25)、チエン(24)(26
はスプロケット)、金具(23)によりクロスヘッド(22)を
介してコアバレル(28)を上下動する構造になっており、
コアバレル(28)の回転および図示下動により先端刃(29)
で試錐し、コアバレル(28)内に採取されるとともに内壁
筒(30)の採取間隔(S)内にも採取される。即ち、先端刃
(29)の下降で海底を掘削しコアバレル(28)内に鉱物等を
採取するとともに、先端刃(29)の、逆回転上昇などによ
り採取間隔(S)間にも積極的に採取される。
The drive mechanism (14, ..., 22) includes a bevel gear (15) on the output shaft side by the rotation of the electric motor (14), and a bevel gear (1) meshed with the bevel gear (15).
6), the transmission gear shaft (19) is rotated through a gear (18) (17 is a bearing) coaxial with the bevel gear (16), and a set of gears (20) (21)
Drive the core barrel (28) via the
The rotation of (14) causes the gear (25), chain (24) (26
Is a sprocket) and the metal fittings (23) move the core barrel (28) up and down via the crosshead (22).
Rotating the core barrel (28) and moving it downward in the drawing causes the tip blade (29)
It is sampled in the core barrel (28) and also in the sampling interval (S) of the inner wall cylinder (30). That is, the tip blade
The bottom of the sea is excavated by descending of (29) to collect minerals and the like in the core barrel (28), and positively collected during the sampling interval (S) due to reverse rotation rise of the tip blade (29).

前記外壁筒(30)の上端部は開閉弁(33)付き連結筒(32)を
介して耐圧容器(38)に連結され、該開閉弁(33)は、液圧
(もしくはガス圧等)の給、排管(36)(37)を介して遠隔
操作される駆動装置(35)により駆動軸(34)で開閉作動さ
れるボール弁からなり、耐圧容器(38)は、ガス通過可能
な逆止弁(42)付き連結パイプ(41)でガス容器(43)に連結
され、ともに数気圧になっており、駆動装置(35)によっ
て開閉弁(33)を開作動し、外壁筒(30)の採取間隔(S)内
の採取物(a)が外水圧と耐圧容器(38)内の数気圧との差
圧により、即ち、外水圧の作用水圧に押され極めて短時
間で連結筒(32)を経て耐圧容器(38)内に導入され、耐圧
容器(38)内の中段網(39)上に採取物(a′)が採積されて
海水も満たされる。該海水によって耐圧容器(38)内は外
水圧と均圧し、このため外水圧によって耐圧容器(38)内
のガスは連結パイプ(41)、逆止弁(42)を経てガス容器(4
3)内へ逃がれる。海水が逆止弁(42)まで到達すると、逆
止弁(42)でストツプされガス容器(43)内には浸入しな
い。
The upper end of the outer wall cylinder (30) is connected to the pressure resistant container (38) through the connection cylinder (32) with the opening / closing valve (33), and the opening / closing valve (33) is connected to the hydraulic pressure (or gas pressure). It consists of a ball valve that is opened and closed by a drive shaft (34) by a drive device (35) that is remotely operated via supply and discharge pipes (36) (37). It is connected to the gas container (43) by a connecting pipe (41) with a stop valve (42) and both are at a few atmospheres in pressure, and the drive device (35) opens the on-off valve (33) to open the outer wall cylinder (30). The sample (a) in the sampling interval (S) of (1) is pressed by the differential pressure between the external water pressure and several atmospheric pressures in the pressure vessel (38), that is, the working water pressure of the external water pressure pushes the connecting cylinder (32 ) And is introduced into the pressure resistant vessel (38), and the sample (a ′) is collected on the middle stage net (39) in the pressure resistant vessel (38) to fill seawater. Due to the seawater, the pressure vessel (38) is pressure-equalized with the external water pressure, so that the gas in the pressure vessel (38) by the external water pressure passes through the connecting pipe (41) and the check valve (42) to the gas container (4).
3) Escape inside. When the seawater reaches the check valve (42), it is stopped by the check valve (42) and does not enter the gas container (43).

次に、駆動装置(35)で開閉弁(33)(ボール弁)を閉鎖し
た後、海水ポンプ(45)を作動し耐圧容器(38)内の海水を
排出し、該海水の排水量と同量のガスがガス容器(43)よ
り連結パイプ(41)を経て耐圧容器(38)へ流入して、耐圧
容器(38)内は常に1気圧以下にならず外水圧に対応して
数気圧に保たれ、海水ポンプ(45)のキャビテーションが
防止されて円滑な作動となる。
Next, after closing the on-off valve (33) (ball valve) with the drive device (35), the seawater pump (45) is operated to discharge the seawater in the pressure vessel (38), and the same amount as the discharge amount of the seawater. Gas from the gas container (43) flows into the pressure resistant container (38) through the connecting pipe (41), and the pressure resistant container (38) does not always become 1 atm or less and is kept at several atm in response to the external water pressure. The dripping and cavitation of the seawater pump (45) are prevented and smooth operation is achieved.

耐圧容器(38)内への前記採取は、コアバレル(28)の回転
および上下動を利用した外壁筒(30)の採取間隔(S)内へ
の取入れと、該取入れに関連した開閉弁(33)の開閉、耐
圧容器(38)内の自動ガス調整ならびに油水ポンプ(45)の
作動のサイクルを繰り返し行うことができ、耐圧容器(3
8)に採取物(a′)を満杯状にでき、満杯になるとケーブ
ル(11)を介して海底試掘装置を揚収し、適宜の手段によ
り耐圧容器(38)内の採取物を取出し、また、コアバレル
(9)内の採取も可能である。
The collection into the pressure-resistant container (38) is carried out by taking in the collection interval (S) of the outer wall cylinder (30) utilizing the rotation and vertical movement of the core barrel (28) and the on-off valve (33) related to the taking-in. ), The automatic gas adjustment in the pressure vessel (38) and the operation of the oil / water pump (45) can be repeated.
The sample (a ') can be filled in 8), and when it is full, the seabed test digging device is withdrawn via the cable (11), and the sample in the pressure vessel (38) is taken out by an appropriate means. , Core barrel
Collection within (9) is also possible.

なお、ガス容器の容積をV、ガス圧力をP、耐圧容
器(38)の容積をV、圧力をPとすると、 の関係を有し、耐圧容器の容積設定によって任意量の採
取量が自在に設定されるとともに、耐圧容器の容積およ
び外水圧に対応して耐圧容器、ガス容器等のガス量を確
保することにより、深度に関係なく常に採取が円滑とな
って作動信頼性が高められている。
When the volume of the gas container is V A , the gas pressure is P A , the volume of the pressure resistant container (38) is V B , and the pressure is P B , By setting the volume of the pressure-resistant container, an arbitrary amount of sample can be freely set, and by securing the gas amount of the pressure-resistant container, the gas container, etc. corresponding to the volume of the pressure-resistant container and the external water pressure. , Regardless of the depth, the sampling is always smooth and operation reliability is improved.

(考案の効果) 本考案は、前述のような構成よりなり、該海底試掘装置
は支援母船、潜水物体より電源および制御信号用等のケ
ーブルを介して海底に吊り降し、逆に揚収され、駆動機
構によってコアバレルを回転および上下動し海底を試掘
し採取するとともに、コアバレルの回転および上下動に
伴って外壁筒の採取間隔内に採取物が導入され、該導入
に対応して開閉弁により連結筒を開とし、外壁筒内の採
取物は差圧によって連結筒を経て耐圧容器内に円滑に導
入されるとともに、耐圧容器内に流入した海水は海水ポ
ンプで排出され、ガス容器による耐圧容器内へのガスの
自動給排により海水ポンプのキャビテイションが防止さ
れ海水の排出が円滑になって、コアバレルによる試掘、
採取とともに耐圧容器内に大量の採取物を採取でき、試
掘、採取性能が格段に向上されている。
(Effects of the Invention) The present invention has the above-described configuration, and the subsea test digging device is suspended from the support mother ship and submersible object through the cables for power supply and control signals to the seabed and is collected in reverse. , The core barrel is rotated and moved up and down by the drive mechanism to test-dig the seabed, and the sample is introduced within the sampling interval of the outer wall cylinder as the core barrel rotates and moves up and down. With the connecting cylinder open, the sample inside the outer wall cylinder is smoothly introduced into the pressure resistant container through the connecting cylinder due to the differential pressure, and the seawater that has flowed into the pressure resistant container is discharged by the seawater pump, and the pressure container by the gas container is used. Cavitation of the seawater pump is prevented by the automatic supply and discharge of gas to the inside, and the discharge of seawater is smoothed.
A large amount of material can be collected in the pressure vessel at the same time as the material is collected, and the test excavation and collection performance have been improved significantly.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す側視機構図、第2図は
潜水物体による吊り降し状態を示す側視機構図、第3図
は従来例の側視機構図である。 1:支援母船、2:潜水物体 11:ケーブル、13:本体 14,…22:駆動機構、28:コアバレル 30:外壁筒、32:連結筒 33:開閉弁、38:耐圧容器 41:連結パイプ、42:逆止弁 43:ガス容器、44:排水管 45:海水ポンプ
FIG. 1 is a side-view mechanism diagram showing an embodiment of the present invention, FIG. 2 is a side-view mechanism diagram showing a state of suspension by a diving object, and FIG. 3 is a side-view mechanism diagram of a conventional example. 1: Support mother ship 2: Diving object 11: Cable, 13: Main body 14, ... 22: Drive mechanism, 28: Core barrel 30: Outer wall cylinder, 32: Connection cylinder 33: Open / close valve, 38: Pressure vessel 41: Connection pipe, 42: Check valve 43: Gas container, 44: Drain pipe 45: Seawater pump

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】洋上の支援母船あるいは潜水物体等より電
源および制御信号用等のケーブルを介して海底に吊り降
される海底試掘装置において、該海底試掘装置の本体に
駆動機構で回転および上下動されるコアバレルを垂設
し、試コアバレルの周囲に採取間隔を設け下端開口形の
外壁筒を配設して、該外壁筒の上端部に開閉弁付き連結
筒で連結された耐圧容器と、該耐圧容器にガスのみ流通
自在の逆止弁付き連結パイプで連結されたガス容器、お
よび前記耐圧容器に排水管で連結された海水ポンプを、
それぞれ前記本体に配設したことを特徴とする海底試掘
装置。
1. A submarine test digging apparatus which is suspended from an offshore support mother ship or a submersible object to the seabed via cables for power supply and control signals. The main body of the submarine test digging apparatus is rotated and vertically moved by a drive mechanism. A core barrel is vertically installed, a sampling interval is provided around the trial core barrel, and a lower end opening type outer wall cylinder is disposed, and a pressure resistant container connected to the upper end of the outer wall cylinder by a connecting cylinder with an opening / closing valve, A gas container connected to the pressure container with a connecting pipe with a check valve that allows only gas to flow freely, and a seawater pump connected to the pressure container with a drain pipe,
A seabed test digging device, each of which is provided in the main body.
JP7826588U 1988-06-15 1988-06-15 Subsea test rig Expired - Lifetime JPH069103Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7826588U JPH069103Y2 (en) 1988-06-15 1988-06-15 Subsea test rig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7826588U JPH069103Y2 (en) 1988-06-15 1988-06-15 Subsea test rig

Publications (2)

Publication Number Publication Date
JPH025486U JPH025486U (en) 1990-01-16
JPH069103Y2 true JPH069103Y2 (en) 1994-03-09

Family

ID=31303202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7826588U Expired - Lifetime JPH069103Y2 (en) 1988-06-15 1988-06-15 Subsea test rig

Country Status (1)

Country Link
JP (1) JPH069103Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149151A (en) * 2010-01-19 2011-08-04 Okimoto Tamada Submarine underground survey excavator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149151A (en) * 2010-01-19 2011-08-04 Okimoto Tamada Submarine underground survey excavator

Also Published As

Publication number Publication date
JPH025486U (en) 1990-01-16

Similar Documents

Publication Publication Date Title
US6394192B1 (en) Methods for seabed piston coring
DE2233717C3 (en) Device for underwater drilling
CN108979577B (en) Sea bed gas hydrate pressure maintaining wire line coring drilling machine drilling process
CN104354843B (en) Coordinate the miniature salvaging drilling equipment of over seat anker and the method for ROV
CN105651546B (en) Water conservancy reservoir investigation and sampling device and its sampling method
JP2011516767A (en) Wireline drilling system and method
CN105716897B (en) A kind of water conservancy lake detection sampling equipment and its implementation method
EP2201210A1 (en) Variable position gas trap
CN109612776B (en) A kind of bottom intelligence water utilities water sampler
CN111649984A (en) Deep sea sediment sampling device and sampling method thereof
KR101691967B1 (en) Apparatus for sampling core
CN106834103B (en) A kind of Bacteria Detection multi-point sampling device
CN212568021U (en) Deep sea sediment sampling equipment
CN105547737B (en) A kind of deep sea diving sampler and its implementation
US6907931B2 (en) Method and device for driving into the marine subsurface at great depths, a tubular tool for soil sampling or for measuring soil characteristics
US3602320A (en) Deep sea pile setting and coring vessel
JP3302700B2 (en) Method and apparatus for drilling a borehole, especially for exploration and harvesting drilling
US2807439A (en) Coring device
CN211904697U (en) Marine geological sediment sampling device
JPH069103Y2 (en) Subsea test rig
CN211697012U (en) Ocean deep water drilling sampling equipment
CN212568039U (en) Sediment sampling device for ocean engineering
CN112758282A (en) Submarine grab bucket capable of preventing sample volatilization and scattering
US10428581B2 (en) Well-drilling apparatus and method of use
US3189105A (en) Method and apparatus of drilling underwater wells