JPH0690949B2 - Electromagnetic induction heating device - Google Patents

Electromagnetic induction heating device

Info

Publication number
JPH0690949B2
JPH0690949B2 JP29864286A JP29864286A JPH0690949B2 JP H0690949 B2 JPH0690949 B2 JP H0690949B2 JP 29864286 A JP29864286 A JP 29864286A JP 29864286 A JP29864286 A JP 29864286A JP H0690949 B2 JPH0690949 B2 JP H0690949B2
Authority
JP
Japan
Prior art keywords
electromagnetic induction
electromagnet
pole
heating device
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29864286A
Other languages
Japanese (ja)
Other versions
JPS63152894A (en
Inventor
勇 江口
俊之 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Daido Steel Co Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Sumitomo Heavy Industries Ltd filed Critical Daido Steel Co Ltd
Priority to JP29864286A priority Critical patent/JPH0690949B2/en
Publication of JPS63152894A publication Critical patent/JPS63152894A/en
Publication of JPH0690949B2 publication Critical patent/JPH0690949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電磁誘導加熱装置に関し,特に薄板等を連続し
て加熱するための電磁誘導加熱装置に関する。
Description: TECHNICAL FIELD The present invention relates to an electromagnetic induction heating device, and more particularly to an electromagnetic induction heating device for continuously heating a thin plate or the like.

(従来の技術) 一般に,この種の電磁誘導加熱装置には,幅に比べて長
さの長い薄板(ストリップ)を電磁誘導を用いて加熱す
るものがある。
(Prior Art) Generally, in this type of electromagnetic induction heating device, there is one that heats a thin plate (strip) having a length longer than its width by using electromagnetic induction.

従来,ストリップの電磁誘導加熱装置として,鋼板等の
ストリップの進行方向に磁力線を発生させて,鋼板を加
熱する電磁誘導加熱装置(以下LFX加熱装置という)
と,鋼板の進行方向に垂直に磁力線を発生させて,鋼板
を加熱する電磁誘導加熱装置(以下VFX加熱装置とい
う)とが知られている。
Conventionally, as an electromagnetic induction heating device for strips, an electromagnetic induction heating device (hereinafter referred to as LFX heating device) that heats a steel plate by generating magnetic field lines in the traveling direction of the strip.
And an electromagnetic induction heating device (hereinafter referred to as VFX heating device) that heats a steel sheet by generating magnetic field lines perpendicular to the traveling direction of the steel sheet.

(発明が解決しようとする問題点) ところで,LFX加熱装置の場合,鋼板の板厚が0.4mm以下
であると鋼板の加熱が極めて難しく,一方,VFX加熱装置
では通電量を増して,磁束を多くした場合,鋼板が電磁
石の継鉄に吸着してしまうという問題点がある。
(Problems to be solved by the invention) By the way, in the case of the LFX heating device, it is extremely difficult to heat the steel plate if the thickness of the steel plate is 0.4 mm or less. On the other hand, in the VFX heating device, the energization amount is increased to reduce the magnetic flux. In many cases, there is a problem that the steel plate is adsorbed on the yoke of the electromagnet.

本発明の目的はVFX加熱装置において,通電量を増加し
ても鋼板が電磁石に吸着されることのない電磁誘導加熱
装置を提供することにある。
An object of the present invention is to provide an electromagnetic induction heating device in a VFX heating device in which a steel sheet is not attracted to an electromagnet even if the amount of electricity supplied is increased.

(問題点を解決するための手段) 本発明は,所定の方向に送られる鋼板を連続して電磁誘
導によって加熱するための電磁誘導加熱装置において,
第1の継鉄と,この第1の継鉄の一面上に鋼板の板幅方
向に所定の間隔をもって配設された複数の磁極とを備え
る第1の電磁石と,第1の継鉄に対向して配置された第
2の継鉄と,この第2の継鉄の一面上に第1の電磁石の
磁極と対向して配設された複数の磁極とを備える第2の
電磁石とを有し,第1の電磁石と第2の電磁石との互い
に対向する磁極が90度位相をずらして磁化されるように
したことを特徴としている。
(Means for Solving Problems) The present invention relates to an electromagnetic induction heating device for continuously heating a steel sheet sent in a predetermined direction by electromagnetic induction,
A first electromagnet including a first yoke and a plurality of magnetic poles arranged on one surface of the first yoke in the plate width direction of the steel sheet at predetermined intervals, and facing the first yoke. And a second electromagnet having a plurality of magnetic poles arranged on one surface of the second yoke and facing the magnetic poles of the first electromagnet. The magnetic poles of the first electromagnet and the second electromagnet, which are opposed to each other, are magnetized with their phases shifted by 90 degrees.

(作用) 第1の電磁石と第2の電磁石との互いに対向する磁極を
90度位相をずらして磁化しているから,鋼板に電磁吸引
力が交互に働く。従って,鋼板が電磁石に吸着されるこ
とがなくなる。
(Operation) The magnetic poles of the first electromagnet and the second electromagnet that face each other are
Since the magnets are magnetized with a 90-degree phase shift, electromagnetic attraction acts alternately on the steel sheet. Therefore, the steel plate will not be attracted to the electromagnet.

(実施例) 以下本発明について実施例によって説明する。(Example) Hereinafter, the present invention will be described with reference to examples.

まず,第4図を参照して,VFX加熱装置の概要について説
明する。
First, an outline of the VFX heating device will be described with reference to FIG.

継鉄1の一端面(下端面)には所定の間隔をおいて鋼板
(図示せず)の進行方向に延びる複数の磁極片2a,2b,2c
及び2dが形勢されている。磁極片2a,2b,2c,及び2dには
それぞれコイル3a,3b,3c,及び3dが巻回され,磁極31,3
2,33,及び34が形成されて,電磁石4が構成されてい
る。一方,継鉄1に対向して継鉄5が配置され,継鉄5
の一端面(上端面)には磁極片2a,2b,2c,及び2dに対向
して磁極片6a,6b,6c,及び6dが形成され,磁極片6a,6b,6
c,及び6dにはそれぞれコイル7a,7b,7c,及び7dが巻回さ
れ,磁極71,72,73,及び74が形成されて,電磁石8が構
成されている。
A plurality of magnetic pole pieces 2a, 2b, 2c extending in the traveling direction of a steel plate (not shown) on one end surface (lower end surface) of the yoke 1 at a predetermined interval.
And 2d are set. Coils 3a, 3b, 3c, and 3d are wound around the pole pieces 2a, 2b, 2c, and 2d, respectively.
The electromagnet 4 is configured by forming 2, 33, and 34. On the other hand, the yoke 5 is arranged so as to face the yoke 1,
Of the magnetic pole pieces 6a, 6b, 6c, and 6d are formed on one end surface (upper surface) of the magnetic pole pieces 6a, 6b, 6c, and 6d so as to face the magnetic pole pieces 2a, 2b, 2c, and 2d.
Coils 7a, 7b, 7c, and 7d are wound around c and 6d, respectively, and magnetic poles 71, 72, 73, and 74 are formed, and an electromagnet 8 is configured.

電磁石4と電磁石8との間に形成された通路(ギャッ
プ)を通って,鋼板(図示せず)が送られる。この時,
後述するようにコイル3a〜3d,コイル7a〜7dに通電さ
れ,磁極31〜34,71〜74が磁化されて磁力線が発生し,
鋼板が電磁誘導加熱される。
A steel plate (not shown) is sent through a passage (gap) formed between the electromagnets 4 and 8. At this time,
As will be described later, the coils 3a to 3d and the coils 7a to 7d are energized, the magnetic poles 31 to 34, 71 to 74 are magnetized to generate magnetic force lines,
The steel sheet is heated by electromagnetic induction.

ここで,第5図を参照して,従来の電磁誘導加熱装置の
通電制御について説明する。
Here, the energization control of the conventional electromagnetic induction heating device will be described with reference to FIG.

コイル3a〜3d及び7a〜7dに単相交流電圧が印加される。
コイル3a〜3dへの通電によって,例えば,磁極31〜34は
左側から順にS極,N極,S極,N極となり,一方,コイル7a
〜7dへの通電によって磁極71〜74は左側から順にN極,S
極,N極,S極となる。このように電磁石4と電磁石8との
対向磁極は異磁極となるように通電制御される。そし
て,第5図に一点鎖線で示すように磁力線が形成され
る。
A single-phase AC voltage is applied to the coils 3a to 3d and 7a to 7d.
By energizing the coils 3a to 3d, for example, the magnetic poles 31 to 34 become S-pole, N-pole, S-pole, and N-pole from the left side, while the coil 7a
By energizing ~ 7d, the magnetic poles 71-74 are N pole, S sequentially from the left side.
It becomes a pole, N pole, and S pole. In this way, energization is controlled so that the opposing magnetic poles of the electromagnets 4 and 8 are different magnetic poles. Then, magnetic force lines are formed as shown by the one-dot chain line in FIG.

ところで,第5図に示すように,単相交流によって磁極
(N極,S極)を形成した場合,電磁石4及び8による吸
引力は常に等しく,電磁石4及び8による吸引力は磁路
長を短くするように鋼板に対して働くから,鋼板が電磁
石4及び8に対して平行に,しかも通路の中央に挿入さ
れないと,鋼板が進行方向とは垂直の方向に動かされて
しまう。この状態を第6図(a),(b),及び(c)
に示す。即ち,第6図(a)に示すように,一方の電磁
石(例えば,電磁石4)に鋼板が吸引されたり,第6図
(b)に示すように,一側端が磁石4の方向に吸引さ
れ,一方,他側端が電磁石8の方向に吸引されて,スト
リップがねじれてしまう。さらには,第6図(c)に示
すように,鋼板の両側端が電磁石4の方向に吸引され,
鋼板にそりが生じてしまい,いずれにしても正常な電磁
誘導加熱ができない場合がある。
By the way, as shown in FIG. 5, when a magnetic pole (N pole, S pole) is formed by a single-phase alternating current, the attraction force by the electromagnets 4 and 8 is always equal, and the attraction force by the electromagnets 4 and 8 has a magnetic path length. Since it acts on the steel sheet so as to shorten it, unless the steel sheet is inserted parallel to the electromagnets 4 and 8 and in the center of the passage, the steel sheet will be moved in a direction perpendicular to the traveling direction. This state is shown in FIGS. 6 (a), (b), and (c).
Shown in. That is, as shown in FIG. 6 (a), a steel plate is attracted to one electromagnet (for example, electromagnet 4), or as shown in FIG. 6 (b), one side end is attracted toward the magnet 4. On the other hand, the other end is attracted toward the electromagnet 8 and the strip is twisted. Furthermore, as shown in FIG. 6 (c), both ends of the steel plate are attracted toward the electromagnet 4,
In some cases, normal electromagnetic induction heating may not be possible because the steel plate is warped.

次に,本発明による電磁誘導加熱装置について説明す
る。なお,電磁誘導加熱装置自体の構成は第4図と同様
である。
Next, the electromagnetic induction heating device according to the present invention will be described. The structure of the electromagnetic induction heating device itself is the same as in FIG.

第3図を参照して,交流電源9がコンデンサ10を介し
て,コイル7dの一端に接続され,コイル7dは順次コイル
7c,コイル3b,及びコイル3aに接続され,コイル3aが交流
電源9に接続されている。さらに,交流電源9はコイル
11に接続され,コイル11は順次コイル3d,コイル3c,7b及
びコイル7aに接続され,コイル7aは交流電源9に接続さ
れている。また,コイル7aの一端とコイル3dの他端には
コンデンサ12が連結され,一方,コイル3aの一端とコイ
ル7dの一端にはコンデンサ13が連結されている。コイル
11とコンデンサ10とを所定の(適当な)値に選び,コイ
ル3a,3b,7c,7d(経路I)を流れる電流と,コイル7a,7
b,3c,7d(経路II)を流れる電流とは位相が90度ずれる
ようにする。
Referring to FIG. 3, an AC power supply 9 is connected to one end of a coil 7d via a capacitor 10, and the coil 7d is a coil in sequence.
7c, the coil 3b, and the coil 3a, and the coil 3a is connected to the AC power supply 9. Further, the AC power supply 9 is a coil
The coil 11 is connected to the coil 3d, the coils 3c and 7b, and the coil 7a sequentially, and the coil 7a is connected to the AC power supply 9. A capacitor 12 is connected to one end of the coil 7a and the other end of the coil 3d, while a capacitor 13 is connected to one end of the coil 3a and one end of the coil 7d. coil
11 and the capacitor 10 are selected to have predetermined (appropriate) values, and the current flowing through the coils 3a, 3b, 7c, 7d (path I) and the coils 7a, 7
The phase should be 90 degrees out of phase with the current flowing through b, 3c, 7d (path II).

ここで,第1図を参照して,互いに位相が90度ずれてい
る電流として,A=Ksinθ, を考える(Kは係数(振幅)θは2πftである。fは周
波数,tは時間)。そして,この場合,電流Bが経路II
を流れ,電流Aが経路Iを流れる。
Here, referring to FIG. 1, as currents whose phases are shifted by 90 degrees, A = K sin θ, (K is a coefficient (amplitude) θ is 2πft. F is frequency and t is time). And in this case, the current B is
And the current A flows through the path I.

第1図(a)に示すように,θ=Oの場合,磁極71,72,
33,及び34がそれぞれ,N極,S極,S極,N極に磁化され,実
線矢印で示すように磁力線が発生する。θが増加する
と,磁極71,72,33,及び34の磁束は徐々に減少し,一
方,磁極31,32,73,及び74が磁化されて,それぞれN極,
S極,S極,N極となるとともに磁束が徐々に増加する。θ
=45°の時点で,磁極31〜34,71〜74の磁束は等しくな
り,この場合,第1図(b)に実線矢印で示すように磁
力線が発生する。以下順次,θが増加するにしたがって
第1図(c),(d),(e),(f),(g),及び
(h)に示すように磁極のN,Sが変化し,それぞれ実線
矢印で示すように磁力線が形成される。そして,θ=36
0°で第1図(a)に示す状態へ戻る。
As shown in FIG. 1 (a), when θ = O, the magnetic poles 71, 72,
33 and 34 are magnetized to N pole, S pole, S pole, and N pole, respectively, and magnetic force lines are generated as shown by solid arrows. When θ increases, the magnetic flux of the magnetic poles 71, 72, 33, and 34 gradually decreases, while the magnetic poles 31, 32, 73, and 74 are magnetized, and the N pole, respectively.
The magnetic flux gradually increases as it becomes S pole, S pole, and N pole. θ
= 45 °, the magnetic fluxes of the magnetic poles 31 to 34 and 71 to 74 become equal, and in this case, magnetic force lines are generated as shown by solid arrows in FIG. As shown in FIGS. 1 (c), (d), (e), (f), (g), and (h), the magnetic poles N and S change as θ increases. Magnetic lines of force are formed as indicated by solid arrows. And θ = 36
At 0 °, the state returns to that shown in FIG.

ここで,電流ABがθ=0°(θ=180°)とθ=9
0°(θ=270°)の位置における磁力線の形成を示す第
1図(a)(第1図(e))と第1図(c)(第1図
(g))とにそれぞれ対応する第2図(a)及び(b)
を参照して,第1図(a)に示す状態において,鋼板14
が電磁誘導加熱装置を通過すると,θ=0°の状態で
は,第2図(a)に示すように,磁極72(N極)から出
た磁力線の一部は鋼板14を通過して磁極71(S極)に達
する。この結果,鋼板14の左側部分は磁極71,及び72の
方向,即ち太線矢印で示す方向に引かれる。一方,同様
にして,鋼板14の右側部分は磁極33,及び34の方向,即
ち,太線矢印で示す方向に引かれる。θ=90°の状態で
は,第2図(b)に示すように,磁極31(N極)から出
た磁力線の一部は鋼板14を通過して磁極32(S極)に達
する。この結果,鋼板14の左側部分は磁極31,及び32の
方向,即ち,太線矢印で示す方向に引かれる。一方,同
様にして,鋼板14の右側部分は磁極73,及び74の方向,
即ち,太線矢印で示す方向に引かれる。
Here, the currents A and B are θ = 0 ° (θ = 180 °) and θ = 9
It corresponds to FIG. 1 (a) (FIG. 1 (e)) and FIG. 1 (c) (FIG. 1 (g)) showing the formation of magnetic force lines at the position of 0 ° (θ = 270 °), respectively. 2 (a) and (b)
Referring to FIG. 1, in the state shown in FIG.
When θ passes through the electromagnetic induction heating device, in the state of θ = 0 °, as shown in FIG. 2 (a), a part of the magnetic force lines from the magnetic pole 72 (N pole) passes through the steel plate 14 and the magnetic pole 71 Reach (S pole). As a result, the left side portion of the steel plate 14 is pulled in the direction of the magnetic poles 71 and 72, that is, in the direction indicated by the thick arrow. On the other hand, similarly, the right side portion of the steel plate 14 is drawn in the direction of the magnetic poles 33 and 34, that is, in the direction indicated by the thick line arrow. In the state of θ = 90 °, as shown in FIG. 2 (b), a part of the magnetic force lines from the magnetic pole 31 (N pole) passes through the steel plate 14 and reaches the magnetic pole 32 (S pole). As a result, the left side portion of the steel plate 14 is pulled in the direction of the magnetic poles 31 and 32, that is, in the direction indicated by the thick line arrow. On the other hand, similarly, the right side portion of the steel plate 14 is in the direction of the magnetic poles 73 and 74,
That is, it is drawn in the direction indicated by the thick arrow.

上述の記載から明らかなように,電磁石4及び8の対向
する磁極のコイルに90度位相のずれた交番電流を加えて
いるから,つまり,電磁石4及び8の対向する磁極が90
度位相がずれて磁化されるようにしたから,第1図
(a)〜(h)に示すように,N極,S極が順次形成され,
しかも各磁極の磁束量が同一となるのは瞬間的であるか
ら,鋼板には実質的に交互に吸引力が働き,その結果鋼
板の磁極への吸着を防ぐことができる。
As is clear from the above description, since alternating currents 90 degrees out of phase are applied to the coils of the opposite magnetic poles of the electromagnets 4 and 8, that is, the opposite magnetic poles of the electromagnets 4 and 8 are 90 degrees.
Since the magnets are magnetized out of phase with each other, the N pole and the S pole are sequentially formed as shown in FIGS.
Moreover, since the magnetic flux amounts of the magnetic poles are the same instantaneously, the attractive force acts substantially alternately on the steel sheet, and as a result, the attraction of the steel sheet to the magnetic poles can be prevented.

(発明の効果) 以上説明したように,本発明による電磁誘導加熱装置で
は,90度位相のずれた二相交流を用いているから,鋼板
に交互に吸引力が働き,磁極への鋼板の吸着を防止する
ことができる。つまり,通電量を増加しても鋼板が電磁
石に吸着されることがない。
(Effects of the Invention) As described above, in the electromagnetic induction heating apparatus according to the present invention, since the two-phase alternating current with a 90-degree phase shift is used, the attractive force acts alternately on the steel plates, and the steel plates are attracted to the magnetic poles. Can be prevented. In other words, the steel plate is not attracted to the electromagnet even if the amount of electricity is increased.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(h)は本発明による電磁誘導加熱装置
によって形成される磁力線を示す図,第1図(i)は二
相交流を示す図,第2図(a)及び(b)はそれぞれ本
発明による電磁誘導加熱装置において,鋼板に作用する
吸引力を示す図,第3図は本発明による電磁誘導加熱装
置に用いられる電源回路を示す図,第4図は電磁誘導加
熱装置を概略的に示す図,第5図は従来の電磁誘導加熱
装置の通電制御を説明するための図,第6図(a)は鋼
板の吸着を説明するための図,第6図(b)及び(c)
は第5図を実線矢印の方向から示し,それぞれ鋼板の吸
着を示すための図である。 1,5……継鉄,4,8……電磁石,9……交流電源。
1 (a) to 1 (h) are diagrams showing magnetic lines of force formed by the electromagnetic induction heating apparatus according to the present invention, FIG. 1 (i) are diagrams showing two-phase alternating current, and FIGS. 2 (a) and 2 (b). ) Are views showing the suction force acting on the steel plate in the electromagnetic induction heating apparatus according to the present invention, FIG. 3 is a view showing a power supply circuit used in the electromagnetic induction heating apparatus according to the present invention, and FIG. 4 is an electromagnetic induction heating apparatus. FIG. 5 is a schematic diagram, FIG. 5 is a diagram for explaining energization control of a conventional electromagnetic induction heating device, FIG. 6 (a) is a diagram for explaining adsorption of a steel plate, and FIG. 6 (b) And (c)
FIG. 5 is a diagram showing FIG. 5 from the direction of the solid line arrow, and is a diagram showing adsorption of steel sheets, respectively. 1,5 …… Yoke iron, 4,8 …… Electromagnet, 9 …… AC power supply.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の方向に送られる薄板を連続して電磁
誘導によって加熱するための電磁誘導加熱装置におい
て,第1の継鉄と,該第1の継鉄の一面上に前記薄板の
板幅方向に所定の間隔をもって配設された複数の磁極と
を備える第1の電磁石と,前記第1の継鉄に対向して配
置された第2の継鉄と,該第2の継鉄の一面上に前記第
1の電磁石の磁極と対向して配設された複数の磁極とを
備える第2の電磁石とを有し,前記第1の電磁石と第2
の電磁石との互いに対向する磁極が90度位相をずらして
磁化されるようにしたことを特徴とする電磁誘導加熱装
置。
1. An electromagnetic induction heating device for continuously heating a thin plate fed in a predetermined direction by electromagnetic induction, comprising: a first yoke and a plate of the thin plate on one surface of the first yoke. A first electromagnet having a plurality of magnetic poles arranged at predetermined intervals in the width direction, a second yoke arranged to face the first yoke, and a second yoke A second electromagnet having on one surface thereof a plurality of magnetic poles arranged to face the magnetic poles of the first electromagnet, and the first electromagnet and the second electromagnet.
The electromagnetic induction heating device is characterized in that the magnetic poles facing each other with the electromagnet are magnetized by shifting their phases by 90 degrees.
JP29864286A 1986-12-17 1986-12-17 Electromagnetic induction heating device Expired - Lifetime JPH0690949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29864286A JPH0690949B2 (en) 1986-12-17 1986-12-17 Electromagnetic induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29864286A JPH0690949B2 (en) 1986-12-17 1986-12-17 Electromagnetic induction heating device

Publications (2)

Publication Number Publication Date
JPS63152894A JPS63152894A (en) 1988-06-25
JPH0690949B2 true JPH0690949B2 (en) 1994-11-14

Family

ID=17862376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29864286A Expired - Lifetime JPH0690949B2 (en) 1986-12-17 1986-12-17 Electromagnetic induction heating device

Country Status (1)

Country Link
JP (1) JPH0690949B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726473A (en) * 2017-10-10 2018-02-23 沈阳日月蓝天新能源科技有限公司 A kind of Electromagnetic Heating air-conditioning

Also Published As

Publication number Publication date
JPS63152894A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
US6798089B1 (en) Forcer and associated three phase linear motor system
JP3181620B2 (en) Electromagnetic device for heating metal elements
JPH0734646B2 (en) Linear motor
JP2009545940A (en) Force ripple compensation linear motor
JP2010534905A (en) Induction heating method
TW591856B (en) Integrated system of non-contact power feed device and permanent magnet-excited transverse flux linear motor
CN105720784A (en) Symmetric double-sided permanent magnet assisted linear switch reluctance motor
US7315011B2 (en) Magnetic heating device
JPH0135592B2 (en)
KR910015093A (en) Magnetic Circuit and Magnetic Induction Method of Rotors for Power Generation and Power Generation
JPH0690949B2 (en) Electromagnetic induction heating device
EP0413756A4 (en) Method and apparatus for controlling the carriage of a linear motor
JPS62126856A (en) Linear motor
JP2526819B2 (en) Linear motor
JPS6237912A (en) Magnetic fixture
JP2642240B2 (en) Linear motor
EP1582627A1 (en) Rail heating device
JP3513171B2 (en) Induction actuator and control method thereof
JPH0721104Y2 (en) Linear synchronous motor
JP2000341930A (en) Linear motor utilizing permanent magnet
JP2001205325A (en) Electromagnet for nuncontacting control of steel sheet
JPS63242160A (en) Linear synchronous motor
JP3407927B2 (en) Control method of induction actuator
JPH0116383Y2 (en)
JPH0734050Y2 (en) Iron plate separation device