JPH0721104Y2 - Linear synchronous motor - Google Patents

Linear synchronous motor

Info

Publication number
JPH0721104Y2
JPH0721104Y2 JP1989075991U JP7599189U JPH0721104Y2 JP H0721104 Y2 JPH0721104 Y2 JP H0721104Y2 JP 1989075991 U JP1989075991 U JP 1989075991U JP 7599189 U JP7599189 U JP 7599189U JP H0721104 Y2 JPH0721104 Y2 JP H0721104Y2
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous motor
linear synchronous
field
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989075991U
Other languages
Japanese (ja)
Other versions
JPH0314976U (en
Inventor
渡部  俊春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1989075991U priority Critical patent/JPH0721104Y2/en
Publication of JPH0314976U publication Critical patent/JPH0314976U/ja
Application granted granted Critical
Publication of JPH0721104Y2 publication Critical patent/JPH0721104Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、リニア電磁アクチュエータとして可変周波
数電源によって可変速制御されるリニア同期モータ、こ
とにその永久磁石界磁部の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a linear synchronous motor, which is a linear electromagnetic actuator and is controlled at a variable speed by a variable frequency power source, and more particularly to a structure of a permanent magnet field portion thereof.

〔従来の技術〕[Conventional technology]

第3図は従来のリニア同期モータを界磁の移動方向から
見た側面図、第4図は第3図のA−A位置における断面
図である。図において、軌道13に布設されたレール12の
上には、レール12に案内される車輪11を有する台車10が
載置され、台車10にはその下面に上端が固定された非磁
性材からなる支持体6と、この支持体6に固定された板
状の複数の永久磁石5A,5B,5C,5D等5とで構成される長
さlなるリニア同期モータの永久磁石界磁4が取り付け
られ、複数の永久磁石は軌道に沿ってN極,S極が交互に
並ぶよう所定の極ピッチを保持して支持体6に固定され
る。
FIG. 3 is a side view of a conventional linear synchronous motor as seen from the direction of field movement, and FIG. 4 is a sectional view taken along the line AA of FIG. In the figure, a truck 10 having wheels 11 guided by the rail 12 is placed on a rail 12 laid on a track 13, and the truck 10 is made of a non-magnetic material whose upper end is fixed to its lower surface. A permanent magnet field 4 of a linear synchronous motor having a length 1 and including a support 6 and a plurality of plate-shaped permanent magnets 5A, 5B, 5C, 5D etc. 5 fixed to the support 6 is attached. , A plurality of permanent magnets are fixed to the support 6 while maintaining a predetermined pole pitch so that N poles and S poles are alternately arranged along the orbit.

一方、軌道13側には一対の電機子1A,1Bが永久磁石5と
の間に空気ギャップ長gを保持して界磁4を挟むよう取
り付けられ、電機子1A,1Bは長さL,磁性鉄板の積み厚H
なる電機子鉄心2と、その軌道に沿って形成されたコイ
ル収納溝に所定の相順,極順で巻装された多相交流巻線
からなる電機子巻線3とで構成され、電機子巻線3を図
示しないインバータ等の可変電圧,可変周波数電源に接
続し、電機子巻線へ供給する電流,周波数を制御するこ
とにより、リニア同期モータの推力および界磁4の移動
速度を制御でき、したがって台車10を所望の推力と速度
でレール12に沿って往復運動させるリニア電磁アクチュ
エータが形成される。
On the other hand, on the track 13 side, a pair of armatures 1A, 1B is attached so as to hold the air gap length g between the permanent magnet 5 and the field magnet 4 and the armatures 1A, 1B have a length L, a magnetic field. Iron plate stacking thickness H
And an armature winding 3 formed of a multi-phase AC winding wound in a coil storage groove formed along the track in a predetermined phase order and pole order. By connecting the winding 3 to a variable voltage and variable frequency power source such as an inverter (not shown) and controlling the current and frequency supplied to the armature winding, the thrust of the linear synchronous motor and the moving speed of the field 4 can be controlled. Therefore, a linear electromagnetic actuator is formed which causes the carriage 10 to reciprocate along the rail 12 at a desired thrust and speed.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで、インバータ等の電源から電機子巻線に通電す
ることによって、長さlなる界磁4と対向している位置
の電機子巻線と界磁間に電磁力が発生し、図中の台車10
が駆動されると、その結果として界磁と対向している位
置の電機子巻線には、界磁が同期速度で移動することで
逆起電力eが発生する。この逆起電力eと電源から一次
巻線に流れる電流Iの積が台車を駆動する電磁力を発生
するに有効な電力となる。この反面界磁と対向していな
い区間LA,LBに位置する電機子巻線に流れる電流Iによ
って電機子1A,1B間のギャップ長Gなる空隙中に磁界を
発生する。この磁界は電源から見ると次式で表わされる
励磁リアクタンスXmとして作用し、電源に無効電力を要
求する。
By energizing the armature winding from a power source such as an inverter, an electromagnetic force is generated between the armature winding and the field at a position facing the field 4 having a length l, and the bogie in the figure. Ten
As a result, the back electromotive force e is generated in the armature winding at the position facing the field by the field moving at the synchronous speed. The product of this counter electromotive force e and the current I flowing from the power supply to the primary winding becomes the effective power for generating the electromagnetic force that drives the truck. On the other hand, a magnetic field is generated in the air gap having a gap length G between the armatures 1A and 1B by the current I flowing through the armature windings located in the sections LA and LB not facing the field. When viewed from the power source, this magnetic field acts as an exciting reactance Xm represented by the following formula, and requests reactive power to the power source.

ここで、Kw:電機子巻線で決まる係数、Vs:同期速度〔m/
s〕 H :リニア同期モータの一次鉄心積厚さ〔m〕 τ:リニア同期モータの極ピッチ〔m〕 上式において励磁リアクタンスXmは、電機子と界磁の長
さの比L/l,リニア同期モータの出力によって決まる電機
子鉄心の積み厚H,同期速度Vs等に比例して増加し、極ピ
ッチτと空隙長Gとの比G/τに逆比例して減少する。イ
ンバータ等の高価な電源装置を必要とするリニア同期モ
ータでは、装置全体の経済性に及ぼす電源装置のコスト
の比重が高く、したがって無効電力の低減がことに重要
視される。
Where Kw: coefficient determined by armature winding, Vs: synchronous speed (m /
s] H: Primary iron core product thickness of linear synchronous motor [m] τ: Pole pitch of linear synchronous motor [m] In the above equation, excitation reactance Xm is the ratio of armature to field length L / l, linear It increases in proportion to the stack thickness H of the armature core determined by the output of the synchronous motor, the synchronous speed Vs, etc., and decreases in inverse proportion to the ratio G / τ of the pole pitch τ and the air gap length G. In a linear synchronous motor that requires an expensive power supply device such as an inverter, the cost of the power supply device has a high weight on the economy of the entire device, and therefore reduction of reactive power is important.

従来のリニア同期モータは電機子の長さLが1mから3m程
度、電機子の長さLが界磁の長さlの5倍から10倍程度
のものが知られている。したがって、極ピッチτも数cm
と小さい。また、永久磁石5として使用されるフェライ
ト磁石,希土類磁石等の磁化方向の厚さtには製造上の
限界があり、現在入手可能な永久磁石の厚みtは20mm以
下である。その結果、一対の電機子間の空気ギャップ長
Gは30mm程度となり、励磁リアクタンスXmに大きな影響
を及ぼすG/τの値も必然的に大きくなり、したがって無
効電力もあまり大きくならないので、電源容量の低減も
あまり問題にならなかった。
It is known that the conventional linear synchronous motor has an armature length L of about 1 m to 3 m and an armature length L of about 5 to 10 times the field length l. Therefore, the pole pitch τ is also several cm
And small. Further, there is a manufacturing limit on the thickness t in the magnetization direction of ferrite magnets, rare earth magnets, etc. used as the permanent magnets 5, and the thickness t of currently available permanent magnets is 20 mm or less. As a result, the air gap length G between the pair of armatures is about 30 mm, and the value of G / τ that has a large effect on the excitation reactance Xm is inevitably large. Reduction was not too much of a problem.

ところが、リニア同期モータのアクチュエータへの適用
技術の進歩により、従来より電機子長の長いリニア同期
モータ,例えば電機子長が10mから30mにも及ぶ大型アク
チュエータが求められており、これに伴なってリニア同
期モータの極ピッチτも十数cmと大きくすることが必要
になるために、一対の電機子間の空隙長Gを大きくして
G/τ値を大きくしないと励磁リアクタンスXmが大きくな
って無効電力が増し、その結果大きな容量の可変電圧,
可変周波数電源が必要になるために、リニア電磁アクチ
ュエータとしての経済性が損われるという問題が発生す
る。空隙長Gを大きくしようとする場合、これに比例し
て永久磁石界磁の磁化方向の厚みを増し、永久磁石と電
機子との間の空気ギャップ長gを従来の装置と同等の数
mm程度に保持して推力の低下を防ぐ必要があるが、永久
磁石の厚みには前述の製造上の制約があり、永久磁石の
厚みを所望の寸法に大きくできないという問題がある。
またこれを解決する方法として厚み20mm以下の永久磁石
を複数板接着して永久磁石界磁を形成する方法が考えら
れるが、高価な永久磁石材料を必要以上に使用するため
に経済的不利益を招くという欠点がある。
However, due to advances in technology for applying linear synchronous motors to actuators, linear synchronous motors with longer armature lengths, such as large actuators with armature lengths of 10m to 30m, have been sought after. Since it is necessary to increase the pole pitch τ of the linear synchronous motor to a dozen cm, the gap length G between the pair of armatures must be increased.
If the G / τ value is not increased, the exciting reactance Xm increases and the reactive power increases, resulting in a large variable voltage,
Since a variable frequency power source is required, there arises a problem that the economical efficiency of the linear electromagnetic actuator is impaired. In order to increase the air gap length G, the thickness of the permanent magnet field in the magnetization direction is increased in proportion to this, and the air gap length g between the permanent magnet and the armature is set to a value equal to that of the conventional device.
Although it is necessary to maintain the thickness to about mm to prevent the thrust from decreasing, there is a problem that the thickness of the permanent magnet cannot be increased to a desired dimension due to the above-mentioned manufacturing restrictions.
As a method of solving this, a method of forming a permanent magnet field by bonding a plurality of permanent magnets with a thickness of 20 mm or less can be considered, but it is economically disadvantageous because an expensive permanent magnet material is used more than necessary. It has the drawback of inviting.

この考案の目的は、入手容易な厚みの永久磁石材料を適
量用いて励磁リアクタンスが小さく電機子長の長い大型
リニア同期モータを得ることにある。
An object of the present invention is to obtain a large-sized linear synchronous motor having a small excitation reactance and a long armature length by using an appropriate amount of a readily available permanent magnet material.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、この考案によれば、軌道に
案内された台車に支持体を介して支持された永久磁石界
磁と、この永久磁石界磁をその両側に空気ギャップを保
持して挟むよう軌道側に支持された一対の電機子とを有
するものにおいて、非磁性体から成る支持体と、所定の
極ピッチを保持して断続して前記支持体に支持された複
数個の強磁性体と、前記一対の電機子に互いに異なる極
性の磁極面が対向するよう前記複数個の強磁性体の両面
に一対ずつ固定された永久磁石とからなり,かつ互いに
隣接する前記永久磁石の極性が交互に反転するよう着磁
されてなる永久磁石界磁を備えてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a permanent magnet field supported by a carriage guided by a track via a support body, and this permanent magnet field is provided with air gaps on both sides thereof. A pair of armatures supported on the track side so as to be sandwiched, in which a support made of a non-magnetic material and a plurality of ferromagnets intermittently supported at a predetermined pole pitch are supported by the support. And a pair of permanent magnets fixed to both sides of the plurality of ferromagnetic bodies so that magnetic pole surfaces of different polarities face the pair of armatures, and the polarities of the permanent magnets adjacent to each other are A permanent magnet field magnetized so as to be alternately inverted is provided.

〔作用〕[Action]

上記手段において、支持体に支持された鉄材等の強磁性
体を間隔材としてその両側に板材の永久磁石を取り付
け、一対の電機子に空気ギャップ長gを介して対向する
面がN極およびS極となる永久磁石界磁を形成したこと
により、2枚の永久磁石を重ねた厚みは空気ギャップ長
g中に所定の磁界を作るに必要とする厚みですみ、した
がって容易に入手できる市販の永久磁石材を使用できる
とともに、鉄材等安価な強磁性体の厚さを変えるだけで
任意の空隙長Gが得られるので、経済的不利益を招かず
にG/τ値を大きく取る構成が可能となり、励磁リアクタ
ンスを増大させることなく電機子鉄心長の長い大型のリ
ニア同期モータが得られ、かつ電源容量の増大も阻止す
ることができる。
In the above means, a ferromagnetic material such as an iron material supported by a support is used as a spacing material, and permanent magnets of a plate material are attached to both sides of the spacing material. By forming the permanent magnet field that serves as a pole, the thickness of the two permanent magnets stacked is the thickness required to create a predetermined magnetic field in the air gap length g, and therefore a commercially available permanent magnet Since a magnetic material can be used and an arbitrary gap length G can be obtained simply by changing the thickness of an inexpensive ferromagnetic material such as an iron material, it is possible to take a large G / τ value without incurring any economic disadvantage. A large linear synchronous motor having a long armature core length can be obtained without increasing the excitation reactance, and an increase in power supply capacity can be prevented.

また、永久磁石間に透磁率の大きい強磁性体を挿入した
構成の永久磁石界磁としたことで、この強磁性体で消費
される起磁力は磁気回路全体で消費される起磁力に比べ
てほんの僅かであり、リニア同期モータの推力にはほと
んど影響しない。
In addition, by using a permanent magnet field with a structure in which a ferromagnetic material with a large magnetic permeability is inserted between the permanent magnets, the magnetomotive force consumed by this ferromagnetic material is greater than that consumed by the entire magnetic circuit. It is very small and has almost no influence on the thrust of the linear synchronous motor.

〔実施例〕〔Example〕

以下この考案を実施例に基づいて説明する。 The present invention will be described below based on embodiments.

第1図はこの考案の実施例としてのリニア同期モータを
示す側面図、第2図は第1図におけるB−B位置の断面
図である。図において、永久磁石界磁20は、非磁性材か
らなる支持体6によって台車10の下面に固定されてお
り、支持体6には鉄材等からなる強磁性体21が所定の極
ピッチを保持して断続して複数個取り付けられ、板状の
強磁性体21の両面には一対の板状の永久磁石22および23
がエポキシ樹脂などの熱硬化性接着剤によって固着さ
れ、一対の電機子1Aおよび1Bに空気ギャップgを保持し
て対向する一対の永久磁石22,23の磁極面の極性がN極
およびS極となり、かつ互いに隣接する永久磁石界磁の
極性が交互に反転するよう着磁される。
FIG. 1 is a side view showing a linear synchronous motor as an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line BB in FIG. In the figure, the permanent magnet field 20 is fixed to the lower surface of the carriage 10 by a support 6 made of a non-magnetic material, and a ferromagnetic body 21 made of an iron material or the like holds a predetermined pole pitch on the support 6. A plurality of plate-shaped permanent magnets 22 and 23 are provided on both sides of the plate-shaped ferromagnetic material 21 intermittently.
Are fixed by a thermosetting adhesive such as an epoxy resin, and the polarities of the pair of permanent magnets 22 and 23 facing each other with the air gap g held between the pair of armatures 1A and 1B are the N pole and the S pole. , And the polarities of the permanent magnet fields adjacent to each other are alternately inverted.

このように構成されたリニア同期モータにおいて、電機
子1A,1Bの長さLが長大化することによって生ずる励磁
リアクタンスXmの増加、およびこれに伴う無負荷損の増
大を防ぐために一対の電機子1A,1B間の空気ギャップ長
Gを大きくしようとする場合、安価な鉄材からなる強磁
性体21の厚みdを大きくすることにより、強磁性体21が
透磁率の大きい間隔材として機能して起磁力の損失をほ
とんど伴わずに永久磁石界磁20の厚みTを増大させるこ
とが可能になる。また、板状の永久磁石22,23の厚み2t
は電機子との間のギャップ長gなる空隙中に所望の磁界
を発生するに必要な厚みですむので、製造上の制約によ
って決まる20mm以下の板状の永久磁石を使用することが
可能であり、高価な永久磁石材料の使用量を必要最小限
に抑さえることができる。またリニア同期モータの大型
化によって極ピッチτも大きくなるが、ギャップ長Gを
容易に大きくできるのでG/τ値を従来の小型機と同等に
大きくすることが可能であり、したがってリニア同期モ
ータの大型化に伴う励磁リアクタンスの増大を阻止して
無負荷損の少いリニア同期モータを得ることができる。
In the linear synchronous motor configured as described above, a pair of armatures 1A is provided in order to prevent an increase in excitation reactance Xm caused by an increase in the length L of the armatures 1A and 1B and an accompanying increase in no-load loss. In order to increase the air gap length G between 1 and 1B, by increasing the thickness d of the ferromagnetic material 21 made of an inexpensive iron material, the ferromagnetic material 21 functions as a spacing material having a large magnetic permeability and the magnetomotive force is increased. It is possible to increase the thickness T of the permanent magnet field 20 with almost no loss. In addition, the thickness of the plate-shaped permanent magnets 22 and 23 is 2t.
Since the thickness required to generate a desired magnetic field in the gap with the armature is g, it is possible to use a plate-shaped permanent magnet of 20 mm or less determined by manufacturing restrictions. The amount of expensive permanent magnet material used can be suppressed to the necessary minimum. Although the pole pitch τ also increases with the increase in size of the linear synchronous motor, the gap length G can be easily increased, so that the G / τ value can be increased to the same level as that of the conventional small-sized machine. It is possible to prevent an increase in excitation reactance due to an increase in size and obtain a linear synchronous motor with little no-load loss.

〔考案の効果〕[Effect of device]

この考案は前述のように、リニア同期モータの永久磁石
界磁を非磁性の支持体に支持された強磁性体と、その両
面に固着させた一対の板状の永久磁石とで構成した。そ
の結果、強磁性体が高い透磁率の間隔材として機能し
て、起磁力の損失や永久磁石の厚みの増大を伴なうこと
なく永久磁石界磁の磁化方向の厚みを容易かつ安価に増
すことを可能にするので、リニア同期モータの大出力化
や電機子鉄心の長大化に対して従来技術で問題となった
永久磁石材の厚みの制約や薄い永久磁石を重ねて使用す
ることによって生ずる経済的な不利益を排除して電機子
鉄心の長大化など大型化に相応したG/τ値が容易に得ら
れ、したがって無効電力が少く高価な可変電圧,可変周
波数電源の容量も小さくてすむリニア同期モータを経済
的にも有利に提供することができる。また大型のリニア
同期モータが経済的にも有利に提供できることにより、
リニア電磁アクチュエータの大型化に貢献することがで
きる。
As described above, this invention comprises the permanent magnet field of the linear synchronous motor as a ferromagnetic body supported by a non-magnetic support body and a pair of plate-shaped permanent magnets fixed to both surfaces thereof. As a result, the ferromagnetic material functions as a spacer having a high magnetic permeability, and easily and inexpensively increases the thickness of the permanent magnet field in the magnetization direction without loss of magnetomotive force or increase in the thickness of the permanent magnet. It is possible to increase the output of linear synchronous motors and the lengthening of armature iron cores, which is caused by the restrictions on the thickness of permanent magnet materials and the use of thin permanent magnets, which were problems in the prior art. It is possible to easily obtain the G / τ value corresponding to the size increase such as lengthening of the armature core by eliminating the economic disadvantage, and therefore the reactive power is small and the expensive variable voltage and variable frequency power supply capacity are also small. The linear synchronous motor can be provided economically and advantageously. In addition, because a large linear synchronous motor can be provided economically,
It can contribute to the increase in size of the linear electromagnetic actuator.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の実施例としてのリニア同期モータを
示す側面図、第2図は第1図のB−B位置における断面
図、第3図は従来のリニア同期モータを示す側面図、第
4図は第3図のA−A位置における断面図である。 1A,1B……電機子、2……電機子鉄心、3……電機子巻
線、4,20……永久磁石界磁、5,22,23……永久磁石、6
……支持体、21……強磁性体、10……台車、12……レー
ル、L……電機子鉄心の長さ、l……永久磁石界磁の
(有効)長さ、G,g……空気ギャップ長、T……永久磁
石界磁の厚み、t……永久磁石の厚み、d……強磁性体
の厚み。
1 is a side view showing a linear synchronous motor as an embodiment of the present invention, FIG. 2 is a sectional view taken along the line BB in FIG. 1, and FIG. 3 is a side view showing a conventional linear synchronous motor. FIG. 4 is a sectional view taken along the line AA in FIG. 1A, 1B ... armature, 2 ... armature core, 3 ... armature winding, 4,20 ... permanent magnet field, 5,22,23 ... permanent magnet, 6
...... Support, 21 ...... Ferromagnetic material, 10 ...... Truck, 12 ...... Rail, L ...... Armature iron core length, l ...... (Effective) length of permanent magnet field, G, g ... ... air gap length, T ... thickness of permanent magnet field, t ... thickness of permanent magnet, d ... thickness of ferromagnetic material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】軌道に案内された台車に支持体を介して支
持された永久磁石界磁と、この永久磁石界磁をその両側
に空気ギャップを保持して挟むよう軌道側に支持された
一対の電機子とを有するものにおいて、非磁性体から成
る支持体と、所定の極ピッチを保持して断続して前記支
持体に支持された複数個の強磁性体と、前記一対の電機
子に互いに異なる極性の磁極面が対向するよう前記複数
個の強磁性体の両面に一対ずつ固定された永久磁石とか
らなり,かつ互いに隣接する前記永久磁石の極性が交互
に反転するよう着磁されてなる永久磁石界磁を備えてな
ることを特徴とするリニア同期モータ。
1. A permanent magnet field supported by a carriage guided on a track via a support, and a pair supported on the track side so as to sandwich the permanent magnet field with air gaps on both sides thereof. In a pair of armatures, a support body made of a non-magnetic material, a plurality of ferromagnetic bodies that are intermittently supported by the support body while holding a predetermined pole pitch. The permanent magnets are fixed to the opposite surfaces of the plurality of ferromagnetic bodies in pairs so that the magnetic pole surfaces having different polarities face each other. The permanent magnets adjacent to each other are magnetized so that the polarities thereof are alternately inverted. A linear synchronous motor characterized by comprising a permanent magnet field.
JP1989075991U 1989-06-28 1989-06-28 Linear synchronous motor Expired - Lifetime JPH0721104Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989075991U JPH0721104Y2 (en) 1989-06-28 1989-06-28 Linear synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989075991U JPH0721104Y2 (en) 1989-06-28 1989-06-28 Linear synchronous motor

Publications (2)

Publication Number Publication Date
JPH0314976U JPH0314976U (en) 1991-02-14
JPH0721104Y2 true JPH0721104Y2 (en) 1995-05-15

Family

ID=31617058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989075991U Expired - Lifetime JPH0721104Y2 (en) 1989-06-28 1989-06-28 Linear synchronous motor

Country Status (1)

Country Link
JP (1) JPH0721104Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217965A (en) * 1987-03-05 1988-09-12 Shinko Electric Co Ltd Linear motor

Also Published As

Publication number Publication date
JPH0314976U (en) 1991-02-14

Similar Documents

Publication Publication Date Title
US4563602A (en) Permanent magnet type stepping motor
TW533658B (en) Linear motor and production method therefor
US20120133466A1 (en) Method and Apparatus for Coil-less Magnetoelectric Magnetic Flux Switching for Permanent Magnets
JP5434917B2 (en) Armature and linear motor
TW201840105A (en) Linear motor
JPH0135592B2 (en)
CN109698600B (en) Linear motor with auxiliary weak magnetic structure
CN110880852B (en) Magnetic field modulation type permanent magnet linear generator with composite armature structure
JPH0721104Y2 (en) Linear synchronous motor
JPH11178310A (en) Linear motor
JPS62126856A (en) Linear motor
JP2001008432A (en) Linear motor
JP2642240B2 (en) Linear motor
WO1995012914A1 (en) A variable-reluctance linear or rotary synchronous electric motor with volumetric development of force
JPS6111542B2 (en)
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JP2526819B2 (en) Linear motor
JPS6192158A (en) Linear motor
JPS6395849A (en) Linear pulse motor
JPS63242160A (en) Linear synchronous motor
JPH05111229A (en) Converter for electric energy and mechanical energy
JP2691672B2 (en) Rectilinear electric machine
Hayafune et al. Dynamics of the PM type linear synchronous motor for magnetically levitated carrier vehicle
JPH0393453A (en) Linear servomotor
JP2001258235A (en) Linear actuator