JPH0690916A - Cerebral magnetic field measuring instrument - Google Patents

Cerebral magnetic field measuring instrument

Info

Publication number
JPH0690916A
JPH0690916A JP4245050A JP24505092A JPH0690916A JP H0690916 A JPH0690916 A JP H0690916A JP 4245050 A JP4245050 A JP 4245050A JP 24505092 A JP24505092 A JP 24505092A JP H0690916 A JPH0690916 A JP H0690916A
Authority
JP
Japan
Prior art keywords
cryostat
cup
liquid helium
magnetic field
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4245050A
Other languages
Japanese (ja)
Inventor
Hiroshi Ota
浩 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP4245050A priority Critical patent/JPH0690916A/en
Publication of JPH0690916A publication Critical patent/JPH0690916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To eliminate the interference of external magnetic noises of the cerebral magnetic field measuring instrument for which a superconductive quantum interferometer (SQUID) fluxmeter is used and to enhance the accuracy of cerebral magnetic field measurement by enabling the installation of a long-sized highly critical temp. oxide superconductor sufficient for decreasing the external magnetic noises. CONSTITUTION:The cup-shaped highly critical temp. oxide superconductor 1 of a hollow tubular body closed at one end is held at a differential temp. by the liquid nitrogen sealed into an external cryostat 2a enclosing the conductor. A cup-shaped internal cryostat 2b thermally insulated from the outside field of room temp. is placed therein via an ice-bag-shaped liquid helium container 7 housing a SQUID chip 4 within liquid helium and a pickup coil 5 connected thereto. The helium container 7 and the internal cryostat 2b are formed to a recessed shape so as to enclose the patient's head. The SQUID fluxmeter 3 is constituted of the helium container 7, the hemispherical end of the external cryostat 2a and the internal cryostat 2b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SQUID(Super Co
nducting Quantum Interference Device: 超伝導量子干
渉計)磁束計を利用した脳磁界計測装置に係るものであ
る。弱結合ジョセフソン素子を含む超伝導回路を通る磁
束が変化するとそれに応じて電流信号が変化する。この
量子干渉現象によって極めて微小な磁束変化を計測する
装置がSQUID磁束計である。
BACKGROUND OF THE INVENTION The present invention relates to SQUID (Super Co
nducting Quantum Interference Device: Superconducting Quantum Interference Device) This is a device for measuring a brain magnetic field using a flux meter. When the magnetic flux passing through the superconducting circuit including the weakly coupled Josephson element changes, the current signal changes accordingly. The SQUID magnetometer is a device that measures an extremely small change in magnetic flux by the quantum interference phenomenon.

【0002】[0002]

【従来技術】図3に従来のSQUID磁束計を利用した
開放型脳磁界計測装置(特願平2−38108号)を示
す。図において1は高臨界温度酸化物超伝導体(セラミ
ック)であり、2はこれを作動温度に保つため液体窒素
を収容した断熱容器もしくはクライオスタットであり、
これらは高臨界温度超伝導体磁気シールド装置を構成し
ている。図に示すように、この磁気シールド装置にSQ
UID磁束計を組み合わせている。SQUID磁束計は
液体ヘリウムを熱絶縁する中空容器3と、この中空容器
の内部空間内で液体ヘリウムに漬けたSQUIDチップ
4と、このSQUIDチップに接続された脳磁場検出用
ピックアップコイル5とを備えている。中空容器3は液
体ヘリウムを中空容器の内部空間に入れるトランスファ
チューブ6と、ピックアップコイル5とSQUIDチッ
プ4を中空容器の内部空間に挿入したり、取り出したり
するための縦孔8を備えている。縦孔8には液体ヘリウ
ムの蒸発を防止するための熱遮蔽板9を設ける。なお、
図には示していないが、磁気遮蔽の完全を期してクライ
オスタット2の周囲に強磁性体ミューメタルもしくはヘ
ルムホルツコイルを配置している。しかし、そのように
してもこの開放型脳磁界計測装置では外部磁気雑音が上
下から侵入するという問題がある。外部磁気雑音は地磁
気や環境磁気雑音であり、とくに環境磁気雑音は脳磁場
の周波数と比較できる0.1ないし100ヘルツという低
周波雑音であるため測定誤差の原因となる。
2. Description of the Related Art FIG. 3 shows an open type brain magnetic field measuring apparatus (Japanese Patent Application No. 2-38108) using a conventional SQUID magnetometer. In the figure, 1 is a high critical temperature oxide superconductor (ceramic), 2 is an adiabatic container or cryostat containing liquid nitrogen to keep it at an operating temperature,
These constitute a high critical temperature superconductor magnetic shield device. As shown in the figure, SQ
Combined with a UID magnetometer. The SQUID magnetometer includes a hollow container 3 that thermally insulates liquid helium, an SQUID chip 4 immersed in liquid helium in the inner space of the hollow container, and a brain magnetic field detection pickup coil 5 connected to the SQUID chip. ing. The hollow container 3 is provided with a transfer tube 6 for inserting liquid helium into the internal space of the hollow container, and a vertical hole 8 for inserting and removing the pickup coil 5 and the SQUID chip 4 into the internal space of the hollow container. The vertical hole 8 is provided with a heat shield plate 9 for preventing evaporation of liquid helium. In addition,
Although not shown in the figure, a ferromagnetic mu metal or Helmholtz coil is arranged around the cryostat 2 for the purpose of perfect magnetic shielding. However, even in such a case, this open-type brain magnetic field measurement apparatus has a problem that external magnetic noise intrudes from above and below. External magnetic noise is terrestrial magnetism or environmental magnetic noise, and in particular, environmental magnetic noise is a low frequency noise of 0.1 to 100 Hertz that can be compared with the frequency of the brain magnetic field, which causes a measurement error.

【0003】図4は別の従来のSQUID磁束計を利用
した密封縦型脳磁界計測装置を示す。
FIG. 4 shows another conventional vertical cerebral magnetic field measurement apparatus utilizing a SQUID magnetometer.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、外部
磁気雑音を低減するに足る長尺の高臨界温度酸化物超伝
導体を現実に設置可能なものとし、外部磁気雑音の干渉
を排除して脳磁界計測の精度を高め、現実的な価格と大
きさの脳磁界計測装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to actually install a long high-critical-temperature oxide superconductor that is sufficient to reduce external magnetic noise, and to eliminate external magnetic noise interference. Then, the accuracy of the brain magnetic field measurement is improved, and the brain magnetic field measurement device of a realistic price and size is provided.

【0005】[0005]

【課題を解決するための手段】この目的を達成する本発
明の脳磁界計測装置は、一端で閉じ他端で開いている中
空管体のコップ状の高臨界温度酸化物超伝導体と、これ
を液体窒素で作動温度に保つコップ状の外部クライオス
タットとから成る磁気シールド装置を横に配置し、従来
の脳磁界計測装置では磁気シールド装置とは別個独立に
構成したSQUID磁束計を磁気シールド装置と構成部
分を共有させることによって磁気シールド装置とSQU
ID磁束計とを一体不可分に構成し、それによって高臨
界温度酸化物超伝導体を冷却している液体窒素をSQU
ID磁束計の液体ヘリウムの蒸発防止にも利用し、更に
有利には高臨界温度酸化物超伝導体とこれを包囲する外
部クライオスタットの直径を患者を収容できるに足る空
間を形成する極限的寸法まで低減させ、磁気シールド装
置を比較的小型に設計できるようにしたばかりでなく、
高臨界温度酸化物超伝導体のセラミック焼成を現実的な
価格にまで引下げれるようにしたのである。
Means for Solving the Problems A brain magnetic field measuring apparatus of the present invention which achieves this object is a cup-shaped high critical temperature oxide superconductor having a hollow tubular body which is closed at one end and opened at the other end. A magnetic shield device consisting of a cup-shaped external cryostat that keeps this at operating temperature with liquid nitrogen is placed laterally, and in the conventional brain magnetic field measurement device, the SQUID magnetometer is a magnetic shield device that is configured separately from the magnetic shield device. The magnetic shield device and SQ
Liquid nitrogen cooling the high critical temperature oxide superconductor by SQU
It is also used to prevent the evaporation of liquid helium in the ID magnetometer, and more advantageously, the diameters of the high critical temperature oxide superconductor and the outer cryostat surrounding the supercritical temperature oxide are limited to the limit size that forms a space enough to accommodate a patient. Not only was it possible to reduce the size and design the magnetic shield device to be relatively small,
The ceramic firing of high critical temperature oxide superconductors can be reduced to a realistic price.

【0006】すなわち、本発明に従ってSQUIDチッ
プとピックアップコイルとを収納する氷嚢型液体ヘリウ
ム容器と、この氷嚢型液体ヘリウム容器を室温の外界と
熱絶縁するコップ状の内部クライオスタットとを設け、
内部クライオスタットを外部クライオスタットと同軸的
に配置し、氷嚢型液体ヘリウム容器を外部クライオスタ
ットと内部クライオスタットの閉じた端の空間に配置し
て氷嚢型液体ヘリウム容器とこれに隣接する外部クライ
オスタットの半球状の端部分と内部クライオスタットと
からSQUID磁束計を構成している。
That is, according to the present invention, an ice bag type liquid helium container for accommodating a SQUID chip and a pickup coil, and a cup-shaped internal cryostat for thermally insulating the ice bag type liquid helium container from the ambient environment are provided,
The inner cryostat is placed coaxially with the outer cryostat, and the ice bag-shaped liquid helium container is placed in the space between the closed ends of the outer cryostat and the inner cryostat so that the ice bag-shaped liquid helium container and the adjacent outer cryostat have a hemispherical end. The SQUID magnetometer is composed of the part and the internal cryostat.

【0007】この構成によって磁気シールド装置の直径
を、磁気シールド装置とSQUID磁束計とを別個独立
して構成した横型脳磁界計測装置(図5)に比して直径
を患者を収容するに足る極限的な小さい直径にまで低減
できるのである。直径が大きいとそれに比例してセラミ
ック管体の深さを増していかなければ開いた端からのS
QUID磁束計への磁場の侵入を阻止できない。このた
め磁気シールド装置とSQUID磁束計を別個独立して
構成した横型脳磁界計測装置ではセラミック管体は長尺
となり、体積はその長さの3乗となって増大するので、
高臨界温度酸化物超伝導体を電気炉で焼成するにも、ま
たその製作は価格的にも禁止的な大きさとなる。本発明
による磁気シールド装置とSQUID磁束計との一体不
可分の構成によってセラミック管体は現実的な大きさの
ものとなったのである。
With this configuration, the diameter of the magnetic shield device is limited to a diameter enough to accommodate a patient as compared with a horizontal brain magnetic field measurement device (FIG. 5) in which the magnetic shield device and the SQUID magnetometer are separately configured. It can be reduced to a relatively small diameter. If the diameter is large, the S from the open end must be increased unless the depth of the ceramic tube is increased in proportion to it.
It cannot prevent the magnetic field from entering the QUID magnetometer. For this reason, in the lateral brain magnetic field measurement device in which the magnetic shield device and the SQUID magnetometer are independently configured, the ceramic tube body becomes long and the volume increases as the cube of the length thereof.
Even if a high-critical-temperature oxide superconductor is fired in an electric furnace, its production becomes prohibitive in terms of cost. The ceramic tube body has a realistic size due to the integral structure of the magnetic shield device and the SQUID magnetometer according to the present invention.

【0008】[0008]

【実施例】図1を参照して本発明の一実施例を説明す
る。図に示すように、一端で閉じて他端で開いている中
空管体のコップ状の高臨界温度酸化物超伝導体1を包囲
している外部クライオスタット2a(ステンレス鋼)は
封入された液体窒素により高臨界温度酸化物超伝導体1
を作動温度に保っている。氷嚢型液体ヘリウム容器7
(ガラス、強化プラスチック)は、液体ヘリウムにSQ
UIDチップ4とこれに接続されたピックアップコイル
5とを収納している。この氷嚢型液体ヘリウム容器7を
室温の外界と熱絶縁するコップ状の内部クライオスタッ
ト2bを外部クライオスタット2aと同軸的に配置す
る。外部クライオスタット2aと内部クライオスタット
2bとの環状空間Sを利用してトランスファ・チューブ
を挿入し、氷嚢型液体ヘリウム容器7の開口Oを介して
液体ヘリウムを氷嚢型液体ヘリウム容器7に注入する。
Hは液体ヘリウムの液面を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. As shown in the figure, the outer cryostat 2a (stainless steel) surrounding the cup-shaped high-critical-temperature oxide superconductor 1 of the hollow tubular body which is closed at one end and open at the other end is a sealed liquid. Nitrogen-based supercritical oxide superconductor 1
Is kept at the operating temperature. Ice bag type liquid helium container 7
(Glass, reinforced plastic) is SQ in liquid helium
The UID chip 4 and the pickup coil 5 connected thereto are housed. A cup-shaped internal cryostat 2b that thermally insulates the ice bag type liquid helium container 7 from the outside at room temperature is arranged coaxially with the external cryostat 2a. A transfer tube is inserted using the annular space S between the outer cryostat 2a and the inner cryostat 2b, and liquid helium is injected into the ice bag-shaped liquid helium container 7 through the opening O of the ice bag-shaped liquid helium container 7.
H indicates the liquid level of liquid helium.

【0009】この氷嚢型液体ヘリウム容器7と内部クラ
イオスタット2bの閉じた端は患者の頭部を包囲するよ
うに凹処とし、頭部を包囲するようにピックアップコイ
ル5を氷嚢型液体ヘリウム容器7の凹処に配置する。こ
れにより侵入外部磁界が最も微弱な最奥部で、患者の頭
部に最も接近した状態で脳磁界を検出する。図1に示す
ように、氷嚢型液体ヘリウム容器7は外部クライオスタ
ット2aの閉じた端と内部クライオスタット2bの閉じ
た端との空間に配置されることにより氷嚢型液体ヘリウ
ム容器7とこれに隣接する外部クライオスタットの半球
状の端部分と内部クライオスタット2bとから破線で示
すようにSQUID磁束計3を構成している。
The closed ends of the ice bag type liquid helium container 7 and the internal cryostat 2b are recessed so as to surround the patient's head, and the pick-up coil 5 of the ice bag type liquid helium container 7 is surrounded so as to surround the head part. Place it in the recess. As a result, the cerebral magnetic field is detected in a state in which the penetrating external magnetic field is the weakest and closest to the patient's head. As shown in FIG. 1, the ice-sac-type liquid helium container 7 is disposed in the space between the closed end of the outer cryostat 2a and the closed end of the inner cryostat 2b, so that the ice-sac-type liquid helium container 7 and the external adjacent space The hemispherical end of the cryostat and the internal cryostat 2b constitute the SQUID magnetometer 3 as shown by the broken line.

【0010】12は患者を中空空間に収容し、また中空
空間から患者を運び出す搬送台である。図2に示すよう
に磁気シールド装置の管状表面に沿って配置されたスラ
イドベアリング10に滑動するよう挿入されたシャフト
11に搬送台12を接続して架台13を含めた装置全体
の寸法を短縮するとよい。この折り返し型平行移動機構
の採用により脳磁界計測装置の全長は2メートル程度に
短縮され、設置面積は大幅に節減できる。
Reference numeral 12 is a carrier for accommodating the patient in the hollow space and for carrying the patient out of the hollow space. As shown in FIG. 2, when the carrier 12 is connected to the shaft 11 slidably inserted in the slide bearing 10 arranged along the tubular surface of the magnetic shield device to reduce the size of the entire device including the gantry 13. Good. By adopting this folding-back type parallel movement mechanism, the total length of the brain magnetic field measurement apparatus can be shortened to about 2 meters, and the installation area can be significantly reduced.

【0011】[0011]

【発明の効果】本発明に従って高臨界温度酸化物超伝導
体(セラミック)を横に配置することにより、縦に配置
した場合のような設置不安定、専用建屋の建造という不
利益を回避することができる。本発明による磁気シール
ド装置とSQUID磁束計との一体不可分の構成によっ
てセラミック管体は現実的に焼成可能な大きさのものと
なったのであり、そして脳磁界計測装置の大きさも患者
を収容するに足る空間的大きさに向かって極限まで減少
させることができるのである。又、氷嚢型液体ヘリウム
容器の液体ヘリウムはこれに隣接する外部クライオスタ
ットの半球状の端部分を介して液体窒素によって効果的
に冷却され、それによって液体ヘリウムの蒸発を防ぎ、
長期の計測を可能としている。
EFFECTS OF THE INVENTION By arranging a high critical temperature oxide superconductor (ceramic) horizontally according to the present invention, it is possible to avoid the instability of installation and the disadvantages of constructing a dedicated building when vertically arranged. You can Due to the inseparable structure of the magnetic shield device and the SQUID magnetometer according to the present invention, the ceramic tube body has a size that can be practically fired, and the size of the brain magnetic field measuring device is also large enough to accommodate a patient. It can be reduced to the limit towards a sufficient spatial size. Also, the liquid helium in the ice bag type liquid helium container is effectively cooled by the liquid nitrogen through the hemispherical end portion of the outer cryostat adjacent thereto, thereby preventing the evaporation of the liquid helium,
It enables long-term measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脳磁界計測装置の一実施例の縦断面図
である。
FIG. 1 is a vertical sectional view of an embodiment of a brain magnetic field measuring apparatus of the present invention.

【図2】本発明の脳磁界計測装置の別の実施例の斜視図
である。
FIG. 2 is a perspective view of another embodiment of the brain magnetic field measuring apparatus of the present invention.

【図3】従来の脳磁界計測装置の一例を示す略図であ
る。
FIG. 3 is a schematic diagram showing an example of a conventional brain magnetic field measurement apparatus.

【図4】従来の脳磁界計測装置の別の例を示す略図であ
る。
FIG. 4 is a schematic diagram showing another example of a conventional brain magnetic field measurement apparatus.

【図5】磁気シールド装置とSQUID磁束計とが別個
独立となっている横型脳磁界計測装置の縦断面図であ
る。
FIG. 5 is a vertical cross-sectional view of a horizontal cerebral magnetic field measurement apparatus in which a magnetic shield device and a SQUID magnetometer are independent and independent.

【符号の説明】[Explanation of symbols]

1 高臨界温度酸化物超伝導体 2 クライオスタット 2a 外部クライオスタット 2b 内部クライオスタット 3 SQUID磁束計 4 SQUIDチップ 5 ピックアップコイル 6 トランスファ・チューブ 7 氷嚢型液体ヘリウム容器 8 縦孔 9 熱遮蔽板 10 スライドベアリング 11 シャフト 12 搬送台 13 架台 1 High Critical Temperature Oxide Superconductor 2 Cryostat 2a External Cryostat 2b Internal Cryostat 3 SQUID Magnetometer 4 SQUID Chip 5 Pickup Coil 6 Transfer Tube 7 Ice Bag Type Liquid Helium Container 8 Vertical Hole 9 Heat Shield Plate 10 Slide Bearing 11 Shaft 12 Carrier stand 13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一端で閉じて他端で開いている中空管体
のコップ状横型高臨界温度酸化物超伝導体磁気シールド
装置と、SQUIDチップとピックアップコイルとを収
納する氷嚢型液体ヘリウム容器と、この氷嚢型液体ヘリ
ウム容器を室温の外界と熱絶縁するコップ状の内部クラ
イオスタットとを備え、前記の磁気シールド装置は、コ
ップ状の高臨界温度酸化物超伝導体と、これを作動温度
に保つコップ状の外部クライオスタットとを備え、前記
の内部クライオスタットは、外部クライオスタットと同
軸的に配置され、前記の氷嚢型液体ヘリウム容器は前記
の外部クライオスタットと内部クライオスタットの閉じ
た端の空間に配置されてSQUID磁束計を構成してい
ることを特徴とする脳磁界計測装置。
1. A cup-shaped horizontal type high critical temperature oxide superconductor magnetic shield device having a hollow tubular body closed at one end and opened at the other end, and an ice bag type liquid helium container accommodating a SQUID chip and a pickup coil. And a cup-shaped internal cryostat that thermally insulates this ice bag type liquid helium container from the outside at room temperature, the magnetic shield device is a cup-shaped high-critical-temperature oxide superconductor, and this to the operating temperature. And a cup-shaped outer cryostat, wherein the inner cryostat is arranged coaxially with the outer cryostat, and the ice-sac-type liquid helium container is arranged in a space between the outer cryostat and the closed end of the inner cryostat. An apparatus for measuring brain magnetic fields, which comprises an SQUID magnetometer.
【請求項2】 中空管体の磁気シールド装置はその管状
表面に沿って配置されたスライドベアリングと、このス
ライドベアリングに滑動するよう挿入されたシャフトと
を有し、このシャフトに搬送台を接続して磁気シールド
装置の開いている端から水平方向に挿入したり、取り出
したりすることができるようにした請求項1に記載の脳
磁界計測装置。
2. A hollow tube magnetic shield device has a slide bearing disposed along its tubular surface and a shaft slidably inserted into the slide bearing, to which a carrier is connected. The brain magnetic field measuring apparatus according to claim 1, wherein the magnetic shield apparatus can be horizontally inserted and taken out from the open end of the magnetic shield apparatus.
JP4245050A 1992-09-14 1992-09-14 Cerebral magnetic field measuring instrument Pending JPH0690916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245050A JPH0690916A (en) 1992-09-14 1992-09-14 Cerebral magnetic field measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245050A JPH0690916A (en) 1992-09-14 1992-09-14 Cerebral magnetic field measuring instrument

Publications (1)

Publication Number Publication Date
JPH0690916A true JPH0690916A (en) 1994-04-05

Family

ID=17127839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245050A Pending JPH0690916A (en) 1992-09-14 1992-09-14 Cerebral magnetic field measuring instrument

Country Status (1)

Country Link
JP (1) JPH0690916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046335A (en) * 2008-08-22 2010-03-04 National Institute Of Information & Communication Technology Positioning device for brain magnetic field measuring equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046335A (en) * 2008-08-22 2010-03-04 National Institute Of Information & Communication Technology Positioning device for brain magnetic field measuring equipment

Similar Documents

Publication Publication Date Title
Goree et al. Magnetometers using RF‐driven squids and their applications in rock magnetism and paleomagnetism
US5506200A (en) Compact superconducting magnetometer having no vacuum insulation
US5065582A (en) Dewar vessel for a superconducting magnetometer device
JPH0614899A (en) Cerebral magnetic field measuring instrument
US8171741B2 (en) Electrically conductive shield for refrigerator
Seton et al. Liquid helium cryostat for SQUID-based MRI receivers
US4225818A (en) Cryogenic nuclear gyroscope
Fuller et al. An introduction to the use of SQUID magnetometers in biomagnetism
JPH0690916A (en) Cerebral magnetic field measuring instrument
US20030218872A1 (en) Superconducting magnetic shield
JPH05317280A (en) Cerebral magnetic field measuring instrument
Yano et al. New methods for magnetic susceptibility measurements of solid 3 He at ultralow temperatures
JP3084046B2 (en) Weak magnetic field detection device with cooling device
JPH04276594A (en) Superconductive magnetic shield device
JP3021970B2 (en) Functional superconducting magnetic shield and magnetometer using the same
JPS63278385A (en) Magnetic shielding device
US20220330870A1 (en) Multimodal position transformation dual-helmet meg apparatus
JP3360091B2 (en) Superconducting accelerometer
Petley The ubiquitous SQUID
JP2613554B2 (en) SQUID magnetometer
JPH07321382A (en) Squid storage container and squid cooling method
JPH0738278A (en) Superconducting magnetic shield container
JPH05281314A (en) Superconducting magnetic shield device and superconducting magnetic measuring instrument using it
Vašek Miniature susceptometer for the study of high Tc superconducting materials
ter Brake et al. SQUID-magnetometer with open-ended horizontal room-temperature access