JPH0688844A - Measuring method for s' parameter of multiport circuit - Google Patents

Measuring method for s' parameter of multiport circuit

Info

Publication number
JPH0688844A
JPH0688844A JP26306392A JP26306392A JPH0688844A JP H0688844 A JPH0688844 A JP H0688844A JP 26306392 A JP26306392 A JP 26306392A JP 26306392 A JP26306392 A JP 26306392A JP H0688844 A JPH0688844 A JP H0688844A
Authority
JP
Japan
Prior art keywords
measuring
parameter
measured
port
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26306392A
Other languages
Japanese (ja)
Other versions
JP3017367B2 (en
Inventor
Akihiko Uchino
晃彦 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4263063A priority Critical patent/JP3017367B2/en
Publication of JPH0688844A publication Critical patent/JPH0688844A/en
Application granted granted Critical
Publication of JP3017367B2 publication Critical patent/JP3017367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To calculate the true S parameter of a multiport circuit by calculating S parameters which cause errors between the ports and measuring ends of a vector network analyzer and reflection coefficients which cause errors in nonreflective terminators. CONSTITUTION:Before measuring the S parameter of a four-port circuit 5, a computer 15 calculates S parameters which cause errors between the ports 11 and 12 and measuring ends 6 and 7 of a vector network analyzer 18 by the TRL method. In addition, reflection coefficients are measured by successively inserting transmission lines having short electrical lengths between nonreflective terminators 13 and 14 which are coaxial with the end 6 and reflection coefficients which cause errors in the terminators 13 and 14 are calculated from the measured results. Then the S parameter is measured by connecting the ports 1 and 2 of a four-port circuit 5 which is an object to be measured to the ends 6 and 7 and terminators 13 and 14 to the ports 3 and 4 of the circuit 5. From the measured S parameter, the S parameters which cause errors and reflection coefficients are removed by using the computer 15. Therefore, the real S parameter of the circuit 5 can be calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、夫々第1及び第2の測
定端に接続された2個の測定ポートを有するベクトルネ
ットワークアナライザを用いてマルチポート回路の真の
Sパラメータを測定する方法の改良に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the true S-parameters of a multiport circuit using a vector network analyzer having two measuring ports connected to the first and second measuring ends, respectively. Regarding improvement.

【0002】[0002]

【従来の技術】近年、マイクロ波ミリ波機器の普及に伴
い、Sパラメータの測定技術が重要となっている。特
に、特願平3−91754号にて開示されているよう
に、4ポート回路を低雑音増幅器の整合回路として用い
るなど、マルチポート回路の研究も盛んとなっており、
マルチポート回路のSパラメータの正確な測定が特に重
要になっている。現在広く行なわれているSパラメータ
の測定方法としては、図5に示すように、例えばマイク
ロストリップラインにて構成される4ポート回路5を測
定する場合、測定に利用する2つのポート1,2をベク
トルネットワークアナライザの測定端6,7に接続し、
残りの2つのポート3,4を何らかの手段で無反射終端
(16,17)して測定する方法がとられている。ネッ
トワーク・アナライザの測定端6,7はTRL法により
校正され、両測定端の間に挿入される被測定物のSパラ
メータが正確に測定できるように意図している。TRL
法は例えばIEEE Trans. Microwave Theory Tech.,
Vol. MTT-27, No.12, Dec. 1979.p.987-993 にて開示さ
れている校正法で、マイクロストリップライン回路の測
定に適した方法である。
2. Description of the Related Art In recent years, with the widespread use of microwave and millimeter wave devices, S-parameter measurement technology has become important. In particular, as disclosed in Japanese Patent Application No. 3-91754, research on multiport circuits has become active, such as using a 4-port circuit as a matching circuit for a low noise amplifier.
Accurate measurement of S-parameters in multiport circuits has become especially important. As a widely used measuring method of S-parameters at present, as shown in FIG. Connect to the measuring ends 6 and 7 of the vector network analyzer,
A method of measuring the remaining two ports 3 and 4 by non-reflecting terminations (16, 17) by some means is used. The measuring ends 6 and 7 of the network analyzer are calibrated by the TRL method, and it is intended that the S parameter of the DUT inserted between the measuring ends can be accurately measured. TRL
The method is, for example, IEEE Trans. Microwave Theory Tech.,
The calibration method disclosed in Vol. MTT-27, No. 12, Dec. 1979. p. 987-993 is a method suitable for measurement of a microstrip line circuit.

【0003】[0003]

【発明が解決しようとする課題】図5の例に示す従来の
測定方法は、被測定物の4つのポートのうち測定に利用
する2つのポート以外の、残りの(N−2)個のポート
を何らかの手段で無反射終端して測定しているが、一般
に精度良く無反射終端するのは非常に困難である。従っ
て、従来の方法で測定されたSパラメータは誤差を含ん
でおり、被測定物の真のSパラメータとはならないとい
う問題点があった。
The conventional measuring method shown in the example of FIG. 5 uses the remaining (N-2) ports other than the two ports used for the measurement among the four ports of the DUT. Is measured with a non-reflective termination by some means, but it is generally very difficult to accurately perform a non-reflective termination. Therefore, there is a problem in that the S parameter measured by the conventional method includes an error and does not become the true S parameter of the measured object.

【0004】本発明の目的はベクトルネットワークアナ
ライザによって測定されたマルチポート回路のSパラメ
ータから誤差要因を除去して真のSパラメータを得るた
めの測定方法を提供することにある。
An object of the present invention is to provide a measuring method for removing an error factor from an S parameter of a multiport circuit measured by a vector network analyzer to obtain a true S parameter.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の測定方法は、反射係数の大きな1ポートの
負荷と、電気長の異なる2つの伝送線路を校正用標準器
として具備し、第1の測定端と負荷を接続して反射係数
を測定し、第2の測定端と負荷を接続して反射係数を測
定し、第1の測定端と第2の測定端の間に電気長の短い
伝送線路を挿入して4個のSパラメータを測定し、第1
の測定端と第2の測定端の間に電気長の長い伝送線路を
挿入して4個のSパラメータを測定し、第1の測定端と
(N−2)個の無反射終端器の間に順次電気長の短い伝
送線路を挿入して反射係数を測定し、これらの測定結果
から、ベクトルネットワークアナライザの第1の測定ポ
ートから第1の測定端までの誤差要因Sパラメータと、
第2ポートから第2の測定端までの誤差要因Sパラメー
タと、(N−2)個の無反射終端器の誤差要因反射係数
を算出し、実際のNポート回路の測定時には、N個ある
ポートのうち測定に使用しない(N−2)個のポートに
上記(N−2)個の無反射終端器を接続し、測定された
Sパラメータから上記誤差要因を取り除いてNポート回
路の真のSパラメータを得ることを要旨とする。
In order to achieve the above object, the measuring method of the present invention comprises a 1-port load having a large reflection coefficient and two transmission lines having different electric lengths as calibration standards. The first measurement end is connected to the load to measure the reflection coefficient, the second measurement end is connected to the load to measure the reflection coefficient, and the electrical length is provided between the first measurement end and the second measurement end. Insert a short transmission line of 4 and measure 4 S-parameters.
Between the first measuring end and the (N-2) non-reflective terminator by inserting a transmission line having a long electrical length between the measuring end of the second measuring end and the second measuring end to measure four S-parameters. A transmission line with a short electrical length is sequentially inserted into to measure the reflection coefficient, and from these measurement results, the error factor S parameter from the first measurement port to the first measurement end of the vector network analyzer,
The error factor S parameter from the second port to the second measurement end and the error factor reflection coefficient of the (N−2) non-reflection terminators are calculated, and N ports are actually measured at the time of measurement of the N port circuit. The (N-2) non-reflective terminators are connected to (N-2) ports that are not used for measurement, and the above-mentioned error factors are removed from the measured S-parameters to determine the true S-value of the N-port circuit. The point is to get the parameters.

【0006】[0006]

【作用】本発明の測定方法では、ベクトルネットワーク
アナライザの第1ポートから第1の測定端までの誤差要
因のSパラメータと、第2ポートから第2の測定端まで
の誤差要因のSパラメータと、(N−2)個の無反射終
端器の微差要因の反射係数を算出することができ、実際
のNポート回路の測定時には、N個あるポートのうち測
定に使用しない(N−2)個のポートに上記(N−2)
個の無反射終端器を接続し、測定されたSパラメータか
ら上記誤差要因を取り除いたNポート回路の真のSパラ
メータを得ることができる。
In the measuring method of the present invention, the S parameter of the error factor from the first port to the first measuring end of the vector network analyzer and the S parameter of the error factor from the second port to the second measuring end, It is possible to calculate the reflection coefficient of the slight difference factor of (N-2) non-reflection terminators, and when actually measuring the N-port circuit, do not use (N-2) of the N ports Above (N-2) on the port
The non-reflective terminators can be connected to obtain the true S-parameters of the N-port circuit by removing the above error factors from the measured S-parameters.

【0007】[0007]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1乃至図4は本発明の測定方法の一実施例を示
し、同図において、5は4ポート1〜4を有する4ポー
ト回路、6及び7はベクトルネットワークアナライザ1
8の第1ポート11、第2ポート12に夫々接続された
第1及び第2の測定端、8,9,10は夫々TRL校正
標準器としての負荷、電気長の短い伝送線路、電気長の
長い伝送線路である。13及び14は同軸型無反射終端
器、15はコンピュータ、16,17は無反射終端部で
ある。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show an embodiment of the measuring method of the present invention, in which 5 is a 4-port circuit having 4 ports 1 to 4, 6 and 7 are vector network analyzers 1.
The first and second measuring terminals 8 and 9 respectively connected to the first port 11 and the second port 12 of the reference numeral 8, 9 and 10 respectively represent a load serving as a TRL calibration standard, a transmission line with a short electrical length, and an electrical length. It is a long transmission line. Reference numerals 13 and 14 are coaxial type non-reflective terminators, 15 is a computer, and 16 and 17 are non-reflective terminators.

【0008】まず、4ポート回路5のSパラメータを測
定する前に、図1に示す手順でTRL(Through REFLEC
T-LINE)校正を行うため、第1の測定端6と負荷8を接
続して反射係数を測定し、第2の測定端7と負荷を接続
して反射係数を測定し、第1の測定端6と第2の測定端
7の間に電気長の短い伝送線路9を挿入して4個のSパ
ラメータを測定し、第1の測定端6と第2の測定端7の
間に電気長の長い伝送線路10を挿入して4個のSパラ
メータを測定する。これらの測定結果から、コンピュー
タ15によりベクトルネットワークアナライザ18の第
1ポート11から第1の測定端6までの誤差要因Sパラ
メータと、第2ポート12から第2の測定端7までの誤
差要因のSパラメータがTRL法で算出される。
First, before measuring the S parameter of the 4-port circuit 5, the TRL (Through REFLEC
T-LINE) In order to calibrate, the reflection coefficient is measured by connecting the first measuring end 6 and the load 8 and the reflection coefficient is measured by connecting the second measuring end 7 and the load. A transmission line 9 having a short electrical length is inserted between the end 6 and the second measuring end 7 to measure four S-parameters, and the electrical length is placed between the first measuring end 6 and the second measuring end 7. Of the long transmission line 10 is inserted and four S-parameters are measured. From these measurement results, the computer 15 causes the computer 15 to calculate the error factor S parameter from the first port 11 to the first measuring end 6 and the error factor S parameter from the second port 12 to the second measuring end 7. The parameters are calculated by the TRL method.

【0009】また、図3に示す手順で無反射終端部の校
正を行うため、測定に利用する第1の測定端6と2個の
無反射終端器13,14の間に順次電気長の短い伝送線
路9を挿入して反射係数を測定する。これらの結果か
ら、コンピュータ15によって2個の無反射終端器1
3,14の誤差要因の反射係数が算出される。
Further, since the non-reflective end portion is calibrated by the procedure shown in FIG. 3, the electrical length between the first measuring end 6 and the two non-reflective terminators 13 and 14 used for the measurement is sequentially short. The transmission line 9 is inserted and the reflection coefficient is measured. From these results, the computer 15 uses the two anti-reflection terminators 1
The reflection coefficients of error factors 3 and 14 are calculated.

【0010】次に図3に示すように4ポート回路5のS
パラメータを測定するため、測定に利用する2つのポー
ト1,2をベクトルネットワークアナライザ18の測定
端6,7に接続し、残りの2つのポート3,4には同軸
型の無反射終端器13,14を接続してSパラメータが
測定される。測定されたSパラメータから、コンピュー
タ15等の外部計算手段を用いて、上記誤差要因のSパ
ラメータ、反射係数を取り除く。このようにして、被測
定物である4ポート回路5の真のSパラメータが算出さ
れる。
Next, as shown in FIG. 3, the S of the 4-port circuit 5 is
In order to measure the parameters, two ports 1 and 2 used for the measurement are connected to the measurement ends 6 and 7 of the vector network analyzer 18, and the remaining two ports 3 and 4 are provided with coaxial reflectionless terminators 13. 14 is connected and the S-parameter is measured. From the measured S parameter, the S parameter and the reflection coefficient of the error factor are removed by using an external calculation means such as the computer 15. In this way, the true S parameter of the 4-port circuit 5 that is the DUT is calculated.

【0011】図4は上述した本発明の測定方法の各手順
を示すフローチャートである。
FIG. 4 is a flowchart showing each procedure of the above-described measuring method of the present invention.

【0012】[0012]

【発明の効果】以上述べたように、本発明の測定方法に
よれば、ベクトルネットワークアナライザの第1ポート
から第1の測定端までの誤差要因のSパラメータと、第
2ポートから第2の測定端までの誤差要因のSパラメー
タと、(N−2)個の無反射終端器の誤差要因の反射係
数と、を算出して、実際のNポート回路の測定時には、
N個あるポートのうち測定に使用しない(N−2)個の
ポートに上記(N−2)個の無反射終端器を接続し、測
定されたSパラメータから上記誤差要因を取り除いてN
ポート回路の真のSパラメータを得ることができる。
As described above, according to the measuring method of the present invention, the S parameter of the error factor from the first port to the first measuring end of the vector network analyzer and the second measurement from the second port. The S parameter of the error factor up to the end and the reflection coefficient of the error factor of the (N-2) non-reflection terminators are calculated, and at the time of actual measurement of the N port circuit,
Of the N ports, the (N-2) non-reflective terminators are connected to the (N-2) ports that are not used for measurement, and the error factor is removed from the measured S-parameters to obtain N.
The true S-parameters of the port circuit can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はTRL校正の手順を示す説明図である。FIG. 1 is an explanatory diagram showing a procedure of TRL calibration.

【図2】本発明の方法による無反射終端部の校正の手順
を示す説明図である。
FIG. 2 is an explanatory diagram showing a procedure for calibrating a non-reflection end portion by the method of the present invention.

【図3】本発明の実施例を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of the present invention.

【図4】本発明の測定方法のフローチャートである。FIG. 4 is a flowchart of the measuring method of the present invention.

【図5】従来の4ポート回路の測定方法を示すブロック
図である。
FIG. 5 is a block diagram showing a conventional method of measuring a 4-port circuit.

【符号の説明】[Explanation of symbols]

1 ポート1 2 ポート2 3 ポート3 4 ポート4 5 4ポート回路 6 第1の測定端 7 第2の測定端 8 負荷(TRL校正標準器) 9 電気長の短い伝送線路(TRL校正用標準器) 10 電気長の長い伝送線路(TRL校正用標準器) 11 ベクトルネットワークアナライザの第1ポート 12 ベクトルネットワークアナライザの第2ポート 13 同軸型無反射終端器1 14 同軸型無反射終端器2 15 コンピュータ 16 無反射終端部1 17 無反射終端部2 1 port 1 2 port 2 3 port 3 4 port 4 5 4 port circuit 6 1st measuring end 7 2nd measuring end 8 Load (TRL calibration standard) 9 Transmission line with short electrical length (TRL calibration standard) 10 Transmission line with long electrical length (standard device for TRL calibration) 11 First port of vector network analyzer 12 Second port of vector network analyzer 13 Coaxial non-reflection terminal 1 14 Coaxial non-reflection terminal 2 15 Computer 16 None Reflection termination 1 17 Non-reflection termination 2

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2の測定端に接続された第1
及び第2の測定ポートを有するベクトルネットワークア
ナライザを用いてN(3以上の整数)ポート回路のSパ
ラメータを測定する方法において、 反射係数の大きな1ポートの負荷と、電気長の異なる2
つの伝送線路を校正用標準器として具備し、 第1の測定端と上記負荷を接続して反射係数を測定し、
上記第2の測定端と上記負荷を接続して反射係数を測定
し、 上記第1の測定端と第2の測定端の間に電気長の短い伝
送線路を挿入して4個のSパラメータを測定し、 上記第1の測定端と第2の測定端の間に電気長の長い伝
送線路を挿入して4個のSパラメータを測定し、 前記第1の測定端と(N−2)個の無反射終端器の間に
順次電気長の短い伝送線路を挿入して反射係数を測定
し、 これらの測定結果から、前記ベクトルネットワークアナ
ライザの第1の測定ポートから第1の測定端までの誤差
要因Sパラメータと、第2ポートから第2の測定端まで
の誤差要因Sパラメータと、(N−2)個の無反射終端
器の誤差要因反射係数を算出し、 前記Nポート回路のN個あるポートのうち測定に使用し
ない(N−2)個のポートに上記(N−2)個の無反射
終端器を接続して、該回路のSパラメータを測定し、 測定されたSパラメータから上記誤差要因のSパラメー
タ及び反射係数を取り除いてNポート回路の真のSパラ
メータを得ることを特徴とするマルチポート回路のSパ
ラメータ測定方法。
1. A first connected to the first and second measuring ends.
And a method of measuring the S parameter of an N (integer of 3 or more) port circuit using a vector network analyzer having a second measurement port, wherein a load of one port having a large reflection coefficient and a different electrical length are used.
Equipped with two transmission lines as a calibration standard, connecting the first measuring end and the load to measure the reflection coefficient,
The reflection coefficient is measured by connecting the second measuring end and the load, and a transmission line having a short electrical length is inserted between the first measuring end and the second measuring end to obtain four S parameters. The measurement is performed, a transmission line having a long electrical length is inserted between the first measurement end and the second measurement end, and four S parameters are measured, and the first measurement end and (N-2) pieces are measured. The transmission coefficient of the electrical length is sequentially inserted between the non-reflective terminators of the above, and the reflection coefficient is measured. From these measurement results, the error from the first measurement port of the vector network analyzer to the first measurement end is measured. The factor S parameter, the error factor S parameter from the second port to the second measurement end, and the error factor reflection coefficient of the (N−2) non-reflection terminators are calculated, and there are N of the N port circuits. The above (N-2) is added to (N-2) ports that are not used for measurement. Connecting the non-reflective terminators, measuring the S-parameters of the circuit, and removing the S-parameters and reflection coefficients of the error factors from the measured S-parameters to obtain the true S-parameters of the N-port circuit. A characteristic S-parameter measuring method for a multiport circuit.
JP4263063A 1992-09-04 1992-09-04 S-parameter measurement method for multiport circuit Expired - Fee Related JP3017367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263063A JP3017367B2 (en) 1992-09-04 1992-09-04 S-parameter measurement method for multiport circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263063A JP3017367B2 (en) 1992-09-04 1992-09-04 S-parameter measurement method for multiport circuit

Publications (2)

Publication Number Publication Date
JPH0688844A true JPH0688844A (en) 1994-03-29
JP3017367B2 JP3017367B2 (en) 2000-03-06

Family

ID=17384335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263063A Expired - Fee Related JP3017367B2 (en) 1992-09-04 1992-09-04 S-parameter measurement method for multiport circuit

Country Status (1)

Country Link
JP (1) JP3017367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197577A (en) * 1997-01-10 1998-07-31 Kyocera Corp Standard gauge for calibration of high frequency measurement, method of calibration, and transmission loss measuring method for high frequency transmitting line
WO2005029102A1 (en) * 2003-09-18 2005-03-31 Advantest Corporation Error factor acquisition device, method, program, and recording medium
KR100682005B1 (en) * 2004-03-25 2007-02-15 후지쯔 가부시끼가이샤 Apparatus and method for s-parameter calculation, and computer-readable recording medium for recording s-parameter calculation program
WO2018074646A1 (en) * 2016-10-17 2018-04-26 한국표준과학연구원 Electromagnetic impedance measurement device and electromagnetic impedance calibration method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197577A (en) * 1997-01-10 1998-07-31 Kyocera Corp Standard gauge for calibration of high frequency measurement, method of calibration, and transmission loss measuring method for high frequency transmitting line
WO2005029102A1 (en) * 2003-09-18 2005-03-31 Advantest Corporation Error factor acquisition device, method, program, and recording medium
KR100752252B1 (en) * 2003-09-18 2007-08-29 가부시키가이샤 아드반테스트 Error factor acquisition device, error factor acquisition method, and computer-readable recording medium recording program of instruction
US7348784B2 (en) 2003-09-18 2008-03-25 Advantest Corporation Error factor acquisition device, method, program, and recording medium
CN100422752C (en) * 2003-09-18 2008-10-01 株式会社爱德万测试 Error factor acquisition device, method, program, and recording medium
KR100682005B1 (en) * 2004-03-25 2007-02-15 후지쯔 가부시끼가이샤 Apparatus and method for s-parameter calculation, and computer-readable recording medium for recording s-parameter calculation program
WO2018074646A1 (en) * 2016-10-17 2018-04-26 한국표준과학연구원 Electromagnetic impedance measurement device and electromagnetic impedance calibration method
US10802064B2 (en) 2016-10-17 2020-10-13 Korea Research Institute Of Standards And Science Electromagnetic wave impedance measuring apparatus and calibration method of impedance

Also Published As

Publication number Publication date
JP3017367B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
Purroy et al. New theoretical analysis of the LRRM calibration technique for vector network analyzers
US6060888A (en) Error correction method for reflection measurements of reciprocal devices in vector network analyzers
US7068049B2 (en) Method and apparatus for measuring a device under test using an improved through-reflect-line measurement calibration
US4982164A (en) Method of calibrating a network analyzer
CN104237829B (en) Overall calibration method for high-accuracy noise factor measuring system
JP2004301839A (en) Calibration method for performing multiport measurement in semiconductor wafer
Rolfes et al. Multiport method for the measurement of the scattering parameters of N-ports
Stumper Uncertainty of VNA S-parameter measurement due to nonideal TRL calibration items
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US20110199107A1 (en) Method and apparatus for calibrating a test system for measuring a device under test
US20070029990A1 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
Lu et al. Multiport scattering matrix measurement using a reduced-port network analyzer
CN112098791B (en) On-chip calibration piece model and method for determining parameters in on-chip calibration piece model
JP5483133B2 (en) Correction method for high frequency characteristics error of electronic parts
CN111983539A (en) On-chip S parameter measurement system calibration method
US20070030012A1 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
CN111983538A (en) On-chip S parameter measurement system calibration method and device
Williams et al. In-line multiport calibration
Stumper Influence of TMSO calibration standards uncertainties on VNA S-parameter measurements
JP3017367B2 (en) S-parameter measurement method for multiport circuit
CN111856374A (en) High-speed digital oscilloscope bandwidth calibration test device and test method
US7769555B2 (en) Method for calibration of a vectorial network analyzer
US20080010034A1 (en) Method for network analyzer calibration and network analyzer
JP3912428B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic components, and calibration method for high-frequency electrical characteristics measuring apparatus
US20230051442A1 (en) Method for Calibrating Crosstalk Errors in System for Measuring on-Wafer S Parameters and Electronic Device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees