JPH10197577A - Standard gauge for calibration of high frequency measurement, method of calibration, and transmission loss measuring method for high frequency transmitting line - Google Patents

Standard gauge for calibration of high frequency measurement, method of calibration, and transmission loss measuring method for high frequency transmitting line

Info

Publication number
JPH10197577A
JPH10197577A JP9002551A JP255197A JPH10197577A JP H10197577 A JPH10197577 A JP H10197577A JP 9002551 A JP9002551 A JP 9002551A JP 255197 A JP255197 A JP 255197A JP H10197577 A JPH10197577 A JP H10197577A
Authority
JP
Japan
Prior art keywords
frequency
line
delay
measurement
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9002551A
Other languages
Japanese (ja)
Other versions
JP3404238B2 (en
Inventor
Takehiro Okumichi
武宏 奥道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP00255197A priority Critical patent/JP3404238B2/en
Publication of JPH10197577A publication Critical patent/JPH10197577A/en
Application granted granted Critical
Publication of JP3404238B2 publication Critical patent/JP3404238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a measuring method for the transmission loss in a high frequency transmission line which can accurately extract the transmission constant by the TRL (trough reflect line) calibration method even for high frequency wave, for example in the milli-wave band, and can extract the transmission loss. SOLUTION: A calibration standard gauge is for high frequency measurement for use with the TRL calibration method where line conductors 15, 17, 21 are formed on dielectric base boards 14, 16, 18 and includes a delay line whose delay part has an electric length larger than half one vacuum wavelength of the frequency to be measured, and the calibration of the high frequency measurement is made using this standard gauge, and thereupon the transmission loss of a high frequency transmission line is measured. Accurate delay can be determined even for a high frequency wave, for example in the milli-band, with small drop of the accuracy, and it is possible to make calibration with high precision and high certainty. Also the transmission constant can be extracted accurately, and the transmission loss be extracted accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高周波用伝送線路の
伝送損失について高精度な高周波測定を行なうための高
精度かつ高確度な校正標準器および校正法ならびに高周
波用伝送線路の伝送損失の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-accuracy and high-accuracy calibration standard and method for performing high-accuracy high-frequency measurement of transmission loss of a high-frequency transmission line, and a method of measuring transmission loss of a high-frequency transmission line. About.

【0002】[0002]

【従来の技術】従来より、高周波測定として高周波回路
に用いられる高周波用伝送線路の線路長が適当であるか
どうかを評価するために伝送線路の伝送損失を測定する
ことが行なわれており、そのような高周波測定のための
校正法にTRL(Trough-Reflect-Line )校正法があ
る。
2. Description of the Related Art Hitherto, transmission loss of a transmission line has been measured to evaluate whether or not the length of a high-frequency transmission line used in a high-frequency circuit is appropriate. A calibration method for such a high-frequency measurement is a TRL (Trough-Reflect-Line) calibration method.

【0003】このTRL校正法の原理は、例えばDavid
Rubin 著"De-Embedding mm-Wave MICs with TRL"(MICR
OWAVE JOURNAL 1990年6月号,141-150頁)に記載されて
いるように、測定基準面間を直接接続した状態での測定
値と、測定基準面での短絡あるいは開放状態での測定値
と、測定基準面間を遅延線路を介して接続した状態での
測定値とを用いる校正法である。具体的には、所定の測
定基準面間に相当する2つの端子間を接続する図3
(a)〜(d)に平面図で示すような4つの構造、すな
わち(a)端子1および端子2の間を測定対象の高周波
用伝送線路と同じ電気長の伝送線路3で直結した基本直
結構造、(b)端子4および端子5のそれぞれに開放端
を有する伝送線路6・6’を接続した反射測定構造、
(c)端子7および端子8を(a)の伝送線路3より長
い伝送線路(例えば遅延線路)9で直結した電気長測定
構造、(d)端子10および端子11を(a)の伝送線路3
と同じ長さの伝送線路12で接続し、中央部に所定の被試
験デバイス(DUT:Device Under Test )13を配置し
たデバイス構造のそれぞれにおける散乱パラメータ(S
パラメータ)の測定データ4種の組から所定の計算によ
り高周波測定における誤差除去を行なう校正法であり、
また、例えば(a)と(c)との構造における測定デー
タから測定対象の高周波用伝送線路についての減衰定数
αや位相係数βを抽出することにより、高周波用伝送線
路の伝送損失を求めることができるというものである。
The principle of this TRL calibration method is described in, for example, David
Rubin, "De-Embedding mm-Wave MICs with TRL" (MICR
OWAVE JOURNAL, June 1990, pp. 141-150), the measured value with the measurement reference plane directly connected and the measurement value with the measurement reference plane shorted or open. And a measurement value in a state where the measurement reference planes are connected via a delay line. Specifically, FIG. 3 shows a connection between two terminals corresponding to a predetermined measurement reference plane.
(A) to (d) have four structures as shown in plan views, that is, (a) a basic direct connection in which a terminal 1 and a terminal 2 are directly connected by a transmission line 3 having the same electrical length as a high-frequency transmission line to be measured. Structure, (b) reflection measurement structure in which transmission lines 6.6 ′ having open ends are connected to terminals 4 and 5, respectively;
(C) an electrical length measurement structure in which the terminals 7 and 8 are directly connected by a transmission line (for example, a delay line) 9 longer than the transmission line 3 of (a), and (d) the terminals 10 and 11 are connected to the transmission line 3 of (a).
Are connected by a transmission line 12 having the same length as that of the device, and a scattering parameter (S
Is a calibration method for removing errors in high-frequency measurement by a predetermined calculation from a set of four types of measurement data of
Further, for example, the transmission loss of the high-frequency transmission line can be obtained by extracting the attenuation constant α and the phase coefficient β of the high-frequency transmission line to be measured from the measurement data in the structures (a) and (c). It is possible.

【0004】上記TRL校正法による実際の測定におい
て使用する測定周波数帯域としては、測定基準面(端子
1・2)間を高周波用伝送線路3で直結した状態(図3
(a)の構造)と測定基準面(端子7・8)間を遅延線
路9を介して接続した状態(図3(c)の構造)との測
定において求められる方向性による誤差やポートマッチ
と反射トラッキング誤差との比、遅延線路の遅延部の伝
搬定数の解の符号の選択等の必要条件から、遅延線路の
遅延部の電気長が測定する最低周波数の真空波長の1/
18以上かつ測定する最高周波数の真空波長の4/9以下
となるような、すなわち遅延線路の遅延部を伝搬する間
に回転する位相が20°〜160 °の範囲(位相マージンが
20°マージン)となるような周波数帯域が用いられる。
例えば、比誘電率が9.5 の基板上に形成したマイクロス
トリップ線路でのTRL校正法において図3(c)の構
造として線路中に物理長が3mmの遅延部を設けた場合
には、実効比誘電率が約6.5 であるので、遅延部を伝搬
する間の位相回転が20°〜160 °の範囲となる周波数帯
域は2.2 〜17.4GHzとなる。
The measurement frequency band used in the actual measurement by the TRL calibration method is a state in which the measurement reference planes (terminals 1 and 2) are directly connected by the high-frequency transmission line 3 (FIG. 3).
(A) and the state where the measurement reference planes (terminals 7 and 8) are connected via the delay line 9 (the structure in FIG. From the necessary conditions such as the ratio with respect to the reflection tracking error and the selection of the sign of the solution of the propagation constant of the delay section of the delay line, the electrical length of the delay section of the delay line is 1/1 of the lowest frequency vacuum wavelength to be measured.
18 or more and 4/9 or less of the vacuum wavelength of the highest frequency to be measured, that is, the phase rotating during propagation through the delay part of the delay line is in the range of 20 ° to 160 ° (the phase margin is
(A 20 ° margin) is used.
For example, in a TRL calibration method for a microstrip line formed on a substrate having a relative dielectric constant of 9.5, when a delay portion having a physical length of 3 mm is provided in the line as the structure of FIG. Since the rate is about 6.5, the frequency band in which the phase rotation during propagation through the delay section is in the range of 20 ° to 160 ° is 2.2 to 17.4 GHz.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この場
合にTRL校正法により抽出される伝搬定数は、図4に
その伝搬定数の周波数特性を線図で示すようなものとな
り、周波数が高くなるにつれて得られる伝搬定数の変動
が大きくなってその精度が低下することとなる。ここ
で、図4において横軸は周波数f(GHz)を、縦軸は
伝搬定数のうちの減衰定数α(dB/m)を表わしてお
り、曲線Aは上記の条件下でTRL校正法により抽出さ
れた伝送線路の単位長さ当たりの減衰定数αの周波数特
性曲線を示している。
However, in this case, the propagation constant extracted by the TRL calibration method is shown in FIG. 4 as a graph showing the frequency characteristic of the propagation constant. Therefore, the fluctuation of the propagation constant increases, and the accuracy decreases. In FIG. 4, the horizontal axis represents the frequency f (GHz), the vertical axis represents the attenuation constant α (dB / m) of the propagation constant, and the curve A is extracted by the TRL calibration method under the above conditions. 6 shows a frequency characteristic curve of the attenuation constant α per unit length of the transmission line.

【0006】従って、例えば上記周波数帯域よりさらに
高い周波数範囲での測定を行なうためには上記よりさら
に物理長の短い遅延部を有する遅延線路を用いる必要が
あるが、この場合、遅延部の物理量を極端に短くすると
伝搬損失量が測定誤差に埋もれる程のレベルとなること
から得られる伝搬定数の精度の低下がさらに大きくなる
という問題点があった。
Therefore, for example, in order to perform measurement in a frequency range higher than the above-mentioned frequency band, it is necessary to use a delay line having a delay section having a shorter physical length than the above. In this case, the physical quantity of the delay section must be reduced. If the length is extremely short, there is a problem that the accuracy of the propagation constant obtained is further reduced because the propagation loss becomes a level that is buried in the measurement error.

【0007】また、従来のTRL校正法では、周波数帯
域として上記のように遅延線路の遅延部の電気長が20°
マージンとなる周波数帯域を使用することから、広帯域
の周波数に対して測定を行なうためには、複数本の遅延
線路についてその遅延部の電気長がカバーする周波数帯
域をそれぞれ求めてそれら複数本の遅延線路を用いる必
要があり、そのうえミリ波帯等の高周波に対してはそれ
ら複数本の遅延線路の遅延部に相当する物理長が極端に
短くなるために精度の低下が大きく、正確な遅延を得て
校正を行なうことが困難であるという問題点もあった。
In the conventional TRL calibration method, as described above, the electric length of the delay section of the delay line is 20 ° as a frequency band.
Since a frequency band that serves as a margin is used, in order to perform measurement over a wide band of frequencies, for each of a plurality of delay lines, the frequency band covered by the electrical length of the delay section is determined, and the plurality of delay lines are determined. It is necessary to use a line, and for high frequencies such as the millimeter wave band, the physical length corresponding to the delay section of the plurality of delay lines becomes extremely short, so that the accuracy is greatly reduced and an accurate delay is obtained. There is also a problem that it is difficult to perform calibration.

【0008】さらに、物理長が短い遅延部の遅延線路を
用いて抽出された伝搬定数は、遅延部が短いために伝送
損失量が測定誤差に埋もれる程のレベルとなってしまう
ことから伝送損失の正確な抽出が困難となり、不正確な
ものとなってしまうという問題点もあった。
Further, the propagation constant extracted using the delay line of the delay unit having a short physical length is at a level such that the transmission loss is buried in the measurement error due to the short delay unit, and thus the transmission loss is reduced. There is also a problem that accurate extraction becomes difficult and the result becomes inaccurate.

【0009】本発明は上記従来技術における問題点に鑑
みて本発明者が鋭意研究に努めた結果完成されたもので
あり、その目的は、高周波測定における校正法として用
いられるTRL校正法、すなわち測定基準面間を直接接
続した状態での測定値と、測定基準面での短絡あるいは
開放状態での測定値と、測定基準面間を遅延線路を介し
て接続した状態での測定値を用いる校正法について、ミ
リ波帯等の高周波に対しても、精度の低下が小さく、正
確な遅延を得ることができ、高精度かつ高確度の校正を
行なうことができる高周波測定の校正標準器および高周
波測定の校正法を提供することにある。
The present invention has been completed in view of the above-mentioned problems in the prior art as a result of the inventor's intensive research, and an object of the present invention is to provide a TRL calibration method used as a calibration method in high-frequency measurement, that is, a measurement method. Calibration method using measured values when the reference planes are directly connected, measured values in the short-circuited or open state on the measured reference planes, and measured values when the measurement reference planes are connected via the delay line With respect to high frequency such as millimeter wave band, there is little decrease in accuracy, accurate delay can be obtained, high-precision and high-accuracy calibration can be performed. It is to provide a calibration method.

【0010】また、本発明の目的は、ミリ波帯等の高周
波に対してもTRL校正法によって伝搬定数を高精度で
正確に抽出することができ、伝送損失を正確に抽出する
ことができる高周波用伝送線路の伝送損失の測定方法を
提供することにある。
[0010] It is another object of the present invention to provide a TRL calibration method for accurately extracting a propagation constant with high accuracy even for a high frequency such as a millimeter wave band, and for accurately extracting a transmission loss. To provide a method for measuring the transmission loss of a transmission line.

【0011】[0011]

【課題を解決するための手段】本発明の高周波測定の校
正標準器は、測定基準面間を高周波用伝送線路で直接接
続した状態での散乱パラメータ測定値と、測定基準面間
を遅延線路を介して接続した状態での散乱パラメータ測
定値とを用いるTRL校正法に使用される、高周波用伝
送線路の伝送特性に関する高周波測定の校正のための高
周波測定の校正標準器であって、前記遅延線路は誘電体
基板上に線路導体が形成されて成り、かつ遅延部の電気
長が被測定周波数の真空波長の半分よりも長いことを特
徴とするものである。
According to the present invention, there is provided a calibration standard for high frequency measurement, comprising: a scattering parameter measurement value in a state where the measurement reference planes are directly connected by a high frequency transmission line; and a delay line between the measurement reference planes. A calibration standard for high-frequency measurement for calibrating high-frequency measurement related to transmission characteristics of a high-frequency transmission line, which is used in a TRL calibration method using a scattering parameter measurement value in a state where the delay line is connected via the delay line. Is characterized in that a line conductor is formed on a dielectric substrate, and the electrical length of the delay section is longer than half the vacuum wavelength of the frequency to be measured.

【0012】また、本発明の高周波測定の校正法は、測
定基準面間を高周波用伝送線路で直接接続した状態での
散乱パラメータ測定値と、測定基準面間を遅延線路を介
して接続した状態での散乱パラメータ測定値とを用いる
TRL校正法による、高周波用伝送線路の伝送特性に関
する高周波測定の校正法において、前記遅延線路とし
て、誘電体基板上に線路導体が形成されて成る、遅延部
の電気長が被測定周波数の真空波長の半分よりも長い遅
延線路を用いることを特徴とするものである。
Further, the calibration method for high-frequency measurement according to the present invention provides a method for measuring scattering parameters in a state in which measurement reference planes are directly connected by a high-frequency transmission line, and a method in which measurement reference planes are connected via a delay line. In a calibration method for high-frequency measurement on transmission characteristics of a high-frequency transmission line by a TRL calibration method using a measured value of a scattering parameter and a delay line, a delay line is formed by forming a line conductor on a dielectric substrate as the delay line. It is characterized in that a delay line having an electrical length longer than half the vacuum wavelength of the frequency to be measured is used.

【0013】また、本発明の高周波用伝送線路の伝送損
失の測定方法は、高周波用伝送線路の伝送損失を、測定
基準面間を前記高周波用伝送線路で直接接続した状態で
の散乱パラメータ測定値と、測定基準面間を遅延線路を
介して接続した状態での散乱パラメータ測定値とを用い
てTRL校正法により求める測定方法であって、前記遅
延線路として、誘電体基板上に線路導体が形成されて成
る、遅延部の電気長が被測定周波数の真空波長の半分よ
りも長い遅延線路を用いることを特徴とするものであ
る。
Further, according to the method for measuring transmission loss of a high-frequency transmission line of the present invention, the transmission loss of the high-frequency transmission line is measured by measuring a scattering parameter in a state where the measurement reference planes are directly connected by the high-frequency transmission line. And a scattering parameter measurement value in a state where the measurement reference planes are connected via a delay line. The measurement method is a TRL calibration method, wherein a line conductor is formed on a dielectric substrate as the delay line. In this case, a delay line whose electrical length is longer than half the vacuum wavelength of the frequency to be measured is used.

【0014】本発明の高周波測定の校正標準器によれ
ば、TRL校正法で用いる校正標準器である測定基準面
間を接続する遅延線路が、誘電体基板上に線路導体が形
成されて成り、かつその遅延部の電気長が被測定周波数
の真空波長すなわち真空中の波長の半分よりも長いもの
であることから、ミリ波帯等の高周波に対しても、遅延
線路の遅延部の物理的長さが測定の確度に対して十分に
長いものとなって、高い精度で正確な遅延を得ることが
できるものとなり、より高精度で正確な校正を行なうこ
とができるものとなる。また、この遅延線路の遅延部か
ら抽出された伝搬定数が高精度で正確なものとなり、従
って正確な伝送損失を抽出して求めることができるもの
となる。
According to the calibration standard for high-frequency measurement of the present invention, a delay line connecting between measurement reference planes, which is a calibration standard used in the TRL calibration method, is formed by forming a line conductor on a dielectric substrate, In addition, since the electrical length of the delay section is longer than the vacuum wavelength of the measured frequency, that is, half of the wavelength in vacuum, the physical length of the delay section of the delay line is high even for high frequencies such as the millimeter wave band. Becomes sufficiently long with respect to the accuracy of the measurement, so that an accurate delay can be obtained with high accuracy, and more accurate and accurate calibration can be performed. Further, the propagation constant extracted from the delay section of the delay line becomes accurate and accurate, and therefore, an accurate transmission loss can be extracted and obtained.

【0015】なお、従来のTRL校正法において使用さ
れる校正標準器としては、測定周波数帯域が広くて1本
の遅延線路ではその帯域全体をカバーできない場合に
は、所定の精度を維持するために測定周波数帯域を複数
に分割し、それぞれの帯域に応じた電気長を有する複数
本の遅延線路を使用することが一般に行なわれている
が、本発明の校正標準器についても同様に複数本の遅延
線路を使用してよいことは言うまでもない。
As a calibration standard used in the conventional TRL calibration method, if the measurement frequency band is wide and a single delay line cannot cover the entire band, it is necessary to maintain a predetermined accuracy. Although it is common practice to divide the measurement frequency band into a plurality of parts and use a plurality of delay lines having an electrical length corresponding to each band, a plurality of delay lines are similarly used for the calibration standard of the present invention. It goes without saying that tracks can be used.

【0016】また、本発明の高周波測定の校正法によれ
ば、TRL校正法で用いる測定基準面間を接続する遅延
線路として、誘電体基板上に線路導体が形成されて成
る、遅延部の電気長が被測定周波数の真空波長の半分よ
りも長い遅延線路を用いることから、ミリ波帯等の高周
波に対しても、遅延線路の遅延部の物理的長さが測定の
確度に対して十分に長いものとなって、高い精度で正確
な遅延を得ることができるものとなり、より高精度で正
確な校正ができるものとなる。また、この校正法によっ
ても、この遅延線路の遅延部から抽出された伝搬定数が
高精度で正確なものとなり、従って正確な伝送損失を抽
出して求めることができるものとなる。
Further, according to the calibration method for high-frequency measurement of the present invention, as a delay line for connecting between measurement reference planes used in the TRL calibration method, the electric potential of the delay section is formed by forming a line conductor on a dielectric substrate. Since a delay line whose length is longer than half the vacuum wavelength of the frequency to be measured is used, the physical length of the delay section of the delay line is sufficient for the measurement accuracy even at high frequencies such as the millimeter wave band. As the length becomes longer, accurate delay can be obtained with high accuracy, and more accurate and accurate calibration can be performed. Also, according to this calibration method, the propagation constant extracted from the delay section of the delay line becomes accurate and accurate, and therefore, an accurate transmission loss can be extracted and obtained.

【0017】なお、従来のTRL校正法においては、測
定周波数帯域が広くて1本の遅延線路ではその帯域全体
をカバーできない場合には、所定の精度を維持するため
に測定周波数帯域を複数に分割し、それぞれの帯域に応
じた電気長を有する複数本の遅延線路を使用することが
一般に行なわれているが、本発明の校正法についても同
様に複数本の遅延線路を使用してよいことは言うまでも
ない。
In the conventional TRL calibration method, when the measurement frequency band is wide and one delay line cannot cover the entire band, the measurement frequency band is divided into a plurality of parts in order to maintain a predetermined accuracy. Although it is common practice to use a plurality of delay lines having an electrical length corresponding to each band, the calibration method of the present invention may also use a plurality of delay lines. Needless to say.

【0018】また、本発明の高周波用伝送線路の伝送損
失の測定方法によれば、測定基準面間を測定対象の高周
波用伝送線路と同じ電気長の伝送線路で直接接続した状
態での散乱パラメータ測定値と、測定基準面間を遅延線
路を介して接続した状態での散乱パラメータ測定値とを
用いてTRL校正法により高周波用伝送線路の伝送損失
を求めるのに際して、遅延線路として、誘電体基板上に
線路導体が形成されて成る、遅延部の電気長が被測定周
波数の真空波長の半分よりも長い遅延線路を用いること
から、ミリ波帯等の高周波に対しても、遅延線路の遅延
部の物理的長さが測定の確度に対して十分に長いものと
なって、高い精度で正確な遅延を得ることができて正確
な伝搬定数を得ることができるものとなり、より高精度
で正確な伝送損失の測定が行なえるものとなる。
Further, according to the method for measuring transmission loss of a high-frequency transmission line of the present invention, the scattering parameter in a state where the measurement reference planes are directly connected by a transmission line having the same electrical length as the high-frequency transmission line to be measured. When the transmission loss of the high-frequency transmission line is determined by the TRL calibration method using the measured values and the measured values of the scattering parameters in a state where the measurement reference planes are connected via the delay line, a dielectric substrate is used as the delay line. Since a delay line having a line conductor formed thereon and having an electrical length longer than half the vacuum wavelength of the frequency to be measured is used, the delay portion of the delay line can be used for high frequencies such as the millimeter wave band. Physical length is sufficiently long for the accuracy of the measurement, so that accurate delay can be obtained with high accuracy and accurate propagation constant can be obtained, and more accurate and accurate Transmission loss Measurement becomes the thing done.

【0019】なお、本発明の高周波用伝送線路の伝送損
失の測定方法においても、上記のTRL校正法における
のと同様に、異なる電気長を有する複数本の遅延線路を
使用してよいことは言うまでもない。
In the method of measuring the transmission loss of the high-frequency transmission line according to the present invention, it is needless to say that a plurality of delay lines having different electric lengths may be used as in the above-described TRL calibration method. No.

【0020】[0020]

【発明の実施の形態】以下、本発明の高周波測定の校正
標準器および校正法ならびに高周波用伝送線路の伝送損
失の測定方法について、これらの実施の形態として、測
定基準面間すなわち校正面間を測定対象の高周波用伝送
線路と同じ電気長の伝送線路で直結(Thru接続:直接接
続)した状態の散乱パラメータ測定値と、測定基準面間
を遅延線路を介して接続した状態の散乱パラメータ測定
値とを用いて、TRL校正法により、遅延線路の遅延部
を伝搬する高周波の信号波の伝搬定数を単位長さ当たり
の損失量として算出し抽出した場合を例にとって説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a calibration standard and a calibration method for high-frequency measurement and a method for measuring transmission loss of a high-frequency transmission line according to the present invention will be described with reference to the drawings. Scattering parameter measurement value when directly connected (Thru connection: direct connection) with a transmission line having the same electrical length as the high-frequency transmission line to be measured, and scattering parameter measurement value when the measurement reference plane is connected via a delay line A description will be given of an example in which the TRL calibration method is used to calculate and extract the propagation constant of a high-frequency signal wave propagating in the delay section of the delay line as a loss amount per unit length.

【0021】従来、遅延線路の遅延部の電気長は、被測
定最低周波数すなわち測定する最低周波数の真空波長の
1/18以上でかつ被測定最高周波数すなわち測定する最
高周波数の真空波長の4/9以下の長さとするために、
すなわち測定する高周波信号がその遅延線路の遅延部を
伝搬する間に回転する位相が20°〜160 °の範囲となる
周波数を測定周波数帯域として用いることができるもの
とするために、例えば5GHz〜40GHzの周波数範囲
での測定を行なう場合には、比誘電率が9.5 の基板上に
形成したマイクロストリップ線路では、遅延線路として
物理長で約1.3mmの遅延部を有する線路を用いること
となる。
Conventionally, the electrical length of the delay section of the delay line is at least 1/18 of the lowest frequency to be measured, ie, the vacuum wavelength of the lowest frequency to be measured, and 4/9 of the highest frequency to be measured, ie, the vacuum wavelength of the highest frequency to be measured. In order to have the following length,
That is, for example, 5 GHz to 40 GHz in order to use as a measurement frequency band a frequency at which the phase rotating during the propagation of the high-frequency signal to be measured in the delay section of the delay line is in the range of 20 ° to 160 °. When the measurement is performed in the frequency range described above, a microstrip line formed on a substrate having a relative permittivity of 9.5 uses a delay line having a physical length of about 1.3 mm as a delay line.

【0022】しかし、このような短い遅延部では伝送損
失が少ないため、測定機(ベクトルネットワークアナラ
イザ等)の精度が不十分となり、その伝送損失の抽出が
困難となる。つまり、伝送方向の測定機の精度が通常±
0.02dB程度であるのに対して物理長が約1.3 mmのマ
イクロストリップ線路の伝送損失は一般的なもので40
GHz付近で0.05dBとなるので、測定機の精度に
よる測定誤差が大きくなり、損失量の抽出量がその誤差
に大きな影響を受けることとなる。
However, since the transmission loss is small in such a short delay section, the accuracy of a measuring instrument (such as a vector network analyzer) becomes insufficient, and it becomes difficult to extract the transmission loss. In other words, the accuracy of the measuring instrument in the transmission direction is usually ±
The transmission loss of a microstrip line having a physical length of about 1.3 mm is about 0.02 dB, while the general transmission loss is about 40 mm.
Since it becomes 0.05 dB near GHz, the measurement error due to the accuracy of the measuring device increases, and the amount of loss extraction is greatly affected by the error.

【0023】これに対し、本発明の高周波測定の校正標
準器においては、図1にその一例を平面図で示すよう
に、遅延線路は誘電体基板上に線路導体が形成されて成
り、かつ遅延部の電気長が被測定周波数すなわち測定す
る周波数の真空波長の半分よりも長いものであり、本発
明の高周波測定の校正法においては、この遅延線路を測
定基準面間を接続する遅延線路として用いるものであ
る。
On the other hand, in the calibration standard for high frequency measurement according to the present invention, as shown in a plan view of FIG. 1, the delay line is formed by forming a line conductor on a dielectric substrate, and The electrical length of the portion is longer than half the vacuum wavelength of the frequency to be measured, that is, the frequency to be measured. In the calibration method for high-frequency measurement of the present invention, this delay line is used as a delay line connecting between measurement reference planes. It is.

【0024】この図1において、(a)は誘電体基板14
上に測定対象の高周波用伝送線路と同じ電気長のThru接
続の伝送線路(線路導体)15が形成された基本直結構
造、(b)は誘電体基板16上にLine(Delay Line)接続
の伝送線路17が形成された遅延線路である電気長測定構
造、(c)は誘電体基板18上にReflect (Open)状態の
伝送線路19・19’が形成された反射測定構造、(d)は
誘電体基板20上に形成されたThru接続の伝送線路21の中
心(校正面)にDUT22(一点鎖線で区画した部分)を
接続した状態のデバイス構造を示している。なお、この
図1(d)はDUT22としてバンドパスフィルタを用い
た例である。
In FIG. 1, (a) shows a dielectric substrate 14
A basic direct connection structure in which a transmission line (line conductor) 15 having the same electrical length as the high-frequency transmission line to be measured is formed on the dielectric substrate 16, and (b) is a line (Delay Line) connection transmission on the dielectric substrate 16. (C) is a reflection measurement structure in which the transmission lines 19 and 19 ′ in a Reflect (Open) state are formed on a dielectric substrate 18, and (d) is a dielectric measurement structure in which the transmission lines 19 and 19 ′ are formed on a dielectric substrate 18. FIG. 3 shows a device structure in a state where a DUT 22 (portion defined by a dashed line) is connected to the center (calibration plane) of a transmission line 21 of a Thru connection formed on a body substrate 20. FIG. 1D shows an example in which a band-pass filter is used as the DUT 22.

【0025】また、本発明にとっては(c)と(d)は
特に必要ではなく、本発明にかかるTRL校正法を基本
として他のパラメータ測定を行なう場合に必要とされる
ものである。
Further, (c) and (d) are not particularly required for the present invention, but are required when other parameter measurement is performed based on the TRL calibration method according to the present invention.

【0026】上記誘電体基板14・16・18・20としては、
アルミナ系材料や窒化アルミ系材料等の各種の絶縁性セ
ラミックスやテフロン(PTFE)・ガラスエポキシ・
ポリイミド等の絶縁性樹脂系の材料等の誘電体材料から
成る基板が用いられる。
The dielectric substrates 14, 16, 18, 20 include:
Various insulating ceramics such as alumina-based materials and aluminum nitride-based materials, Teflon (PTFE), glass epoxy,
A substrate made of a dielectric material such as an insulating resin material such as polyimide is used.

【0027】また、上記伝送線路15・17・18・19・19’
・21として被着形成される線路導体は、誘電体基板上に
線路状に被着形成されたタングステンやクロム・モリブ
デン・銅・銀・金等あるいはこれらの合金等の材料から
成る高周波信号伝送用の導体層であり、誘電体基板の材
料に応じてその上に被着形成可能な導体材料が用いられ
る。マイクロ波帯域やミリ波帯域の高周波信号に対して
は、例えばアルミナ系材料の誘電体基板とクロム−銅−
ニッケル−金から成る線路導体との組合せ等を用いれば
よい。
The transmission lines 15, 17, 18, 19, 19 '
-The line conductor deposited as 21 is for high-frequency signal transmission composed of a material such as tungsten, chromium, molybdenum, copper, silver, gold, or an alloy thereof deposited on the dielectric substrate in a line shape. And a conductive material that can be formed thereon according to the material of the dielectric substrate. For high-frequency signals in the microwave band or millimeter wave band, for example, a dielectric substrate made of an alumina-based material and chromium-copper-
A combination with a line conductor made of nickel-gold may be used.

【0028】本発明の高周波測定の校正標準器および校
正法によれば、上記の比誘電率が9.5 の基板上に形成し
たマイクロストリップ線路での測定系においては、例え
ば物理長で8.0 mmの遅延部を有する遅延線路を用い、
さらに物理長で6.4 mmおよび5.1 mmの遅延部を有す
る遅延線路も用いる。このとき、比誘電率が9.5 のマイ
クロストリップ線路の実効比誘電率は約6.5 であり、前
記遅延部の電気長は各々20.4mm、16.3mmおよび13.0
mmとなる。
According to the calibration standard and the calibration method for high frequency measurement of the present invention, in the measurement system using a microstrip line formed on a substrate having a relative dielectric constant of 9.5, for example, a delay of 8.0 mm in physical length. Using a delay line with
Further, a delay line having a delay part of 6.4 mm and 5.1 mm in physical length is used. At this time, the effective relative permittivity of the microstrip line having a relative permittivity of 9.5 is about 6.5, and the electrical lengths of the delay portions are 20.4 mm, 16.3 mm and 13.0 mm, respectively.
mm.

【0029】ここで、TRL校正法の要求から伝搬定数
の抽出において精度が低下する周波数範囲は、実効比誘
電率をεreff、遅延線路の遅延部の物理長をlとする
と、次の範囲となる。
Here, the frequency range in which the accuracy is reduced in the extraction of the propagation constant due to the requirement of the TRL calibration method is as follows, where the effective relative permittivity is ε reff and the physical length of the delay section of the delay line is l. Become.

【0030】{(180n−20)/360 }×{1/(l×√
εreff)}×300〜 {(180n+20)/360 }×{1/
(l×√εreff)}×300 但し、nは整数であり、単位はGHzである。
{(180n-20) / 360} × {1 / (l ×})
ε reff )} × 300 ~ {(180n + 20) / 360} ×} 1 /
(L × {ε reff )} × 300 where n is an integer and the unit is GHz.

【0031】すなわち、40GHz以下の周波数帯域での
測定においては、遅延部の電気長が20.4mmの遅延線路
を用いる場合は、0〜0.82GHz・6.5 〜8.2 GHz・
13.8〜15.5GHz・21.2〜22.9GHz・28.6〜30.2GH
z・36.0〜37.6GHzのそれぞれの周波数範囲で伝搬定
数の抽出の精度が低下する。また遅延部の電気長が16.3
mmの遅延線路を用いる場合は、0〜1.0 GHz・8.2
〜10.2GHz・17.4〜19.4GHz・26.6〜28.6GHz・
35.8〜37.8GHzのそれぞれの周波数範囲で、さらに遅
延部の電気長が13.0mmの遅延線路を用いる場合は、0
〜1.3 GHz・10.3〜12.8GHz・21.8〜24.3GHz・
33.32 〜35.9GHzのそれぞれの周波数範囲で伝搬定数
の抽出の精度が低下する。
That is, in a measurement in a frequency band of 40 GHz or less, when a delay line having an electric length of 20.4 mm is used, a delay line of 0 to 0.82 GHz 6.5 to 8.2 GHz.
13.8-15.5GHz ・ 21.2〜22.9GHz ・ 28.6〜30.2GH
The accuracy of extraction of the propagation constant is reduced in each frequency range of z · 36.0 to 37.6 GHz. The electrical length of the delay section is 16.3
mm delay line, 0 to 1.0 GHz 8.2
~ 10.2GHz ・ 17.4〜19.4GHz ・ 26.6〜28.6GHz ・
In a case where a delay line having an electric length of 13.0 mm is used in each frequency range of 35.8 to 37.8 GHz and the delay section is 13.0 mm, 0 is used.
1.3GHz ・ 10.3〜12.8GHz ・ 21.8〜24.3GHz ・
In each frequency range of 33.32 to 35.9 GHz, the accuracy of extracting the propagation constant is reduced.

【0032】従って、これら3種類の遅延線路を用いて
伝搬定数を抽出する場合には、遅延部の電気長が20.4m
mの遅延線路での伝搬定数の抽出精度の低下する周波数
範囲を遅延部の電気長が16.3mmの遅延線路での抽出に
切り替え、さらに遅延部の電気長が20.4mmの遅延線路
と16.3mmの遅延線路での伝搬定数の抽出精度の低下す
る周波数範囲を遅延部の電気長が13.0mmの遅延線路で
の抽出に切り替えることによって、高精度に高周波測定
が行なえる周波数範囲として0.82〜40.0GHzの測定周
波数帯域を得ることができる。
Therefore, when the propagation constant is extracted using these three types of delay lines, the electric length of the delay unit is 20.4 m.
The frequency range where the extraction accuracy of the propagation constant in the m delay line is reduced is switched to the extraction in the delay line with the electrical length of the delay unit of 16.3 mm, and the electrical length of the delay unit is 20.4 mm with the delay line of 16.3 mm. By switching the frequency range in which the extraction accuracy of the propagation constant in the delay line decreases to the extraction in the delay line in which the electrical length of the delay unit is 13.0 mm, a frequency range of 0.82 to 40.0 GHz as a frequency range in which high-frequency measurement can be performed with high accuracy. A measurement frequency band can be obtained.

【0033】このような遅延線路および測定周波数帯域
の組合せを用いて高周波用伝送線路(上記マイクロスト
リップ線路)の単位長さ当たりの伝送損失として伝搬定
数αを抽出して求めた結果を、図2に図4と同様の周波
数特性の線図として示す。図2においても横軸は周波数
f(GHz)を、縦軸は伝搬定数のうちの減衰定数α
(dB/m)を表わしており、曲線Bは上記の条件下で
TRL校正法により抽出された高周波用伝送線路の単位
長さ当たりの減衰定数αの周波数特性曲線を示してい
る。
FIG. 2 shows the result obtained by extracting the propagation constant α as the transmission loss per unit length of the high-frequency transmission line (the microstrip line) using the combination of the delay line and the measurement frequency band. FIG. 4 shows a frequency characteristic diagram similar to that of FIG. Also in FIG. 2, the horizontal axis represents the frequency f (GHz), and the vertical axis represents the attenuation constant α of the propagation constant.
(DB / m), and a curve B indicates a frequency characteristic curve of the attenuation constant α per unit length of the high-frequency transmission line extracted by the TRL calibration method under the above conditions.

【0034】図2により分かるように、本発明の高周波
測定の校正標準器を用い、本発明の校正法によって校正
するとともに測定周波数帯域を得て、本発明の高周波用
伝送線路の伝送損失の測定方法によって伝送損失例えば
伝搬定数を求めることにより、得られた周波数帯域にお
いては周波数が高くなっても従来のように得られる伝搬
定数の変動が大きくなってその精度が低下することがな
くなり、高精度かつ正確に伝搬定数αが抽出でき、従っ
て正確な伝送損失を求めることができる。
As can be seen from FIG. 2, using the calibration standard for high frequency measurement of the present invention, calibration is performed by the calibration method of the present invention, a measurement frequency band is obtained, and the transmission loss of the high frequency transmission line of the present invention is measured. By obtaining the transmission loss, for example, the propagation constant by the method, even if the frequency becomes higher in the obtained frequency band, the fluctuation of the obtained propagation constant does not become large and the accuracy does not decrease as in the past, and the high accuracy can be obtained. In addition, the propagation constant α can be accurately extracted, so that an accurate transmission loss can be obtained.

【0035】なお、本発明は上記の例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲で種々の変更
・改良を施すことは何ら差し支えない。例えば、本発明
によれば伝搬定数のうちの位相定数βについても高精度
かつ正確に抽出でき、さらにその結果に基づいて実効比
誘電率εreffを求めることもできる。
It should be noted that the present invention is not limited to the above example, and that various changes and improvements can be made without departing from the spirit of the present invention. For example, according to the present invention, the phase constant β among the propagation constants can be extracted with high precision and accuracy, and the effective relative permittivity ε reff can be obtained based on the result.

【0036】[0036]

【発明の効果】本発明の高周波測定の校正標準器によれ
ば、TRL校正法で用いる校正標準器である測定基準面
間を接続する遅延線路が、誘電体基板上に線路導体が形
成されて成り、かつその遅延部の電気長が被測定周波数
の真空波長すなわち真空中の波長の半分よりも長いもの
であることから、ミリ波帯等の高周波に対しても、遅延
線路の遅延部の物理的長さが測定の確度に対して十分に
長いものとなって、高い精度で正確な遅延を得ることが
できるものとなり、より高精度で正確な校正を行なうこ
とができるものとなる。また、これらの遅延線路の遅延
部から抽出された伝搬定数が高精度で正確なものとな
り、従って正確な伝送損失を抽出して求めることができ
るものとなる。
According to the calibration standard for high-frequency measurement of the present invention, a delay line connecting between measurement reference planes, which is a calibration standard used in the TRL calibration method, is formed by forming a line conductor on a dielectric substrate. Since the electrical length of the delay section is longer than the vacuum wavelength of the frequency to be measured, that is, half of the wavelength in vacuum, the physical length of the delay section of the delay line is not affected by high frequencies such as the millimeter wave band. The length is sufficiently long with respect to the accuracy of the measurement, so that an accurate delay can be obtained with high accuracy, and a more accurate and accurate calibration can be performed. Further, the propagation constants extracted from the delay sections of these delay lines are accurate and accurate, and therefore, accurate transmission losses can be extracted and obtained.

【0037】また、本発明の高周波測定の校正法によれ
ば、TRL校正法で用いる測定基準面間を接続する遅延
線路として、誘電体基板上に線路導体が形成されて成
る、遅延部の電気長が被測定周波数の真空波長の半分よ
りも長い遅延線路を用いることから、ミリ波帯等の高周
波に対しても、遅延線路の遅延部の物理的長さが測定の
確度に対して十分に長いものとなって、高い精度で正確
な遅延を得ることができるものとなり、より高精度で正
確な校正ができるものとなる。また、この校正法によっ
ても、これらの遅延線路の遅延部から抽出された伝搬定
数が高精度で正確なものとなり、従って正確な伝送損失
を抽出して求めることができるものとなる。
Further, according to the calibration method for high-frequency measurement of the present invention, as a delay line connecting between the measurement reference planes used in the TRL calibration method, the electric power of the delay section is formed by forming a line conductor on a dielectric substrate. Since a delay line whose length is longer than half the vacuum wavelength of the frequency to be measured is used, the physical length of the delay section of the delay line is sufficient for the measurement accuracy even at high frequencies such as the millimeter wave band. As the length becomes longer, accurate delay can be obtained with high accuracy, and more accurate and accurate calibration can be performed. Also according to this calibration method, the propagation constants extracted from the delay sections of these delay lines become accurate and accurate, and therefore, accurate transmission loss can be extracted and obtained.

【0038】また、本発明の高周波用伝送線路の伝送損
失の測定方法によれば、測定基準面間を測定対象の高周
波用伝送線路と同じ電気長の伝送線路で直接接続した状
態での散乱パラメータ測定値と、測定基準面間を遅延線
路を介して接続した状態での散乱パラメータ測定値とを
用いてTRL校正法により高周波用伝送線路の伝送損失
を求めるのに際して、遅延線路として、誘電体基板上に
線路導体が形成されて成る、遅延部の電気長が被測定周
波数の真空波長の半分よりも長い遅延線路を用いること
から、ミリ波帯等の高周波に対しても、遅延線路の遅延
部の物理的長さが測定の確度に対して十分に長いものと
なって、高い精度で正確な遅延を得ることができて正確
な伝搬定数を得ることができるものとなり、より高精度
で正確な伝送損失の測定が行なえるものとなる。
According to the method for measuring the transmission loss of a high-frequency transmission line of the present invention, the scattering parameter when the measurement reference planes are directly connected by a transmission line having the same electrical length as the high-frequency transmission line to be measured. When the transmission loss of the high-frequency transmission line is determined by the TRL calibration method using the measured values and the measured values of the scattering parameters in a state where the measurement reference planes are connected via the delay line, a dielectric substrate is used as the delay line. Since a delay line having a line conductor formed thereon and having an electrical length longer than half the vacuum wavelength of the frequency to be measured is used, the delay portion of the delay line can be used for high frequencies such as the millimeter wave band. Physical length is sufficiently long for the accuracy of the measurement, so that accurate delay can be obtained with high accuracy and accurate propagation constant can be obtained, and more accurate and accurate Transmission loss Measurement becomes the thing done.

【0039】以上により、本発明によれば、高周波測定
における校正法として用いられるTRL校正法、すなわ
ち測定基準面間を測定対象の高周波用伝送線路と同じ電
気長の伝送線路で直接接続した状態での測定値と、測定
基準面間を遅延線路を介して接続した状態での測定値を
用いる校正法について、ミリ波帯等の高周波に対して
も、精度の低下が小さく、正確な遅延を得ることがで
き、高精度かつ高確度の校正を行なうことができる高周
波測定の校正標準器および高周波測定の校正法を提供す
ることができた。
As described above, according to the present invention, the TRL calibration method used as a calibration method in high-frequency measurement, that is, in a state where the measurement reference planes are directly connected by a transmission line having the same electrical length as the high-frequency transmission line to be measured. With respect to the calibration method using the measured value of the above and the measured value in a state where the measurement reference plane is connected via a delay line, even for a high frequency such as a millimeter wave band, a decrease in accuracy is small and an accurate delay is obtained. Thus, a calibration standard for high-frequency measurement and a calibration method for high-frequency measurement capable of performing high-accuracy and high-accuracy calibration can be provided.

【0040】また、本発明によれば、ミリ波帯等の高周
波に対してもTRL校正法によって伝搬定数を高精度で
正確に抽出することができ、伝送損失を正確に抽出する
ことができる高周波用伝送線路の伝送損失の測定方法を
提供することができた。
Further, according to the present invention, the propagation constant can be accurately and accurately extracted by the TRL calibration method even for a high frequency such as a millimeter wave band, and the transmission loss can be accurately extracted. And a method for measuring the transmission loss of the transmission line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(d)はそれぞれ本発明の高周波測定
の校正標準器の例を示す平面図である。
1 (a) to 1 (d) are plan views each showing an example of a calibration standard for high frequency measurement according to the present invention.

【図2】本発明の校正法ならびに測定方法により抽出さ
れた減衰定数αの周波数特性曲線の例を示す線図であ
る。
FIG. 2 is a diagram showing an example of a frequency characteristic curve of an attenuation constant α extracted by a calibration method and a measurement method of the present invention.

【図3】(a)〜(d)はそれぞれ本発明にかかるTR
L校正法における2つの端子間(測定基準面間)を接続
する構造の例を示す平面図である。
FIGS. 3A to 3D are TRs according to the present invention, respectively.
FIG. 9 is a plan view showing an example of a structure for connecting two terminals (between measurement reference planes) in the L calibration method.

【図4】従来のTRL校正法により抽出された減衰定数
αの周波数特性曲線の例を示す線図である。
FIG. 4 is a diagram showing an example of a frequency characteristic curve of an attenuation constant α extracted by a conventional TRL calibration method.

【符号の説明】[Explanation of symbols]

1、2、4、5、7、8、10、11・・・端子(測定基準
面) 3、9、12、15、17、21・・・・・・・伝送線路(線路
導体) 14、16、18、20・・・・・・・・・・・誘電体基板
1, 2, 4, 5, 7, 8, 10, 11 ... terminal (measurement reference plane) 3, 9, 12, 15, 17, 21, ... transmission line (line conductor) 14, 16, 18, 20: Dielectric substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定基準面間を高周波用伝送線路で直接
接続した状態での散乱パラメータ測定値と、測定基準面
間を遅延線路を介して接続した状態での散乱パラメータ
測定値とを用いるTRL校正法に使用される、高周波用
伝送線路の伝送特性に関する高周波測定の校正のための
高周波測定の校正標準器であって、前記遅延線路は誘電
体基板上に線路導体が形成されて成り、かつ遅延部の電
気長が被測定周波数の真空波長の半分よりも長いことを
特徴とする高周波測定の校正標準器。
1. A TRL that uses a measured value of a scattering parameter in a state where measurement reference planes are directly connected by a high-frequency transmission line and a measured value of a scattering parameter in a state where measurement reference planes are connected via a delay line. A calibration standard for high-frequency measurement for calibration of high-frequency measurement on transmission characteristics of a high-frequency transmission line used for the calibration method, wherein the delay line is formed by forming a line conductor on a dielectric substrate, and A calibration standard for high-frequency measurement, wherein the electrical length of the delay section is longer than half the vacuum wavelength of the frequency to be measured.
【請求項2】 測定基準面間を高周波用伝送線路で直接
接続した状態での散乱パラメータ測定値と、測定基準面
間を遅延線路を介して接続した状態での散乱パラメータ
測定値とを用いるTRL校正法による、高周波用伝送線
路の伝送特性に関する高周波測定の校正法において、前
記遅延線路として、誘電体基板上に線路導体が形成され
て成る、遅延部の電気長が被測定周波数の真空波長の半
分よりも長い遅延線路を用いることを特徴とする高周波
測定の校正法。
2. A TRL that uses a measured value of a scattering parameter when the measurement reference planes are directly connected by a high-frequency transmission line and a measured value of the scattering parameter when the measurement reference planes are connected via a delay line. In the calibration method of the high-frequency measurement related to the transmission characteristics of the high-frequency transmission line by the calibration method, the electrical length of the delay unit is formed by forming a line conductor on a dielectric substrate as the delay line. A calibration method for high frequency measurement, characterized in that a delay line longer than half is used.
【請求項3】 高周波用伝送線路の伝送損失を、測定基
準面間を前記高周波用伝送線路で直接接続した状態での
散乱パラメータ測定値と、測定基準面間を遅延線路を介
して接続した状態での散乱パラメータ測定値とを用いて
TRL校正法により求める測定方法であって、前記遅延
線路として、誘電体基板上に線路導体が形成されて成
る、遅延部の電気長が被測定周波数の真空波長の半分よ
りも長い遅延線路を用いることを特徴とする高周波用伝
送線路の伝送損失の測定方法。
3. A transmission loss of a high-frequency transmission line, a measured value of a scattering parameter in a state where the measurement reference planes are directly connected by the high-frequency transmission line, and a state in which the measurement reference planes are connected via a delay line. A TRL calibration method using the measured values of the scattering parameters at step (a), wherein the delay line is formed by forming a line conductor on a dielectric substrate, and the electrical length of the delay unit is a vacuum of the frequency to be measured. A method for measuring a transmission loss of a high-frequency transmission line, wherein a delay line longer than half the wavelength is used.
JP00255197A 1997-01-10 1997-01-10 Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency Expired - Fee Related JP3404238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00255197A JP3404238B2 (en) 1997-01-10 1997-01-10 Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00255197A JP3404238B2 (en) 1997-01-10 1997-01-10 Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency

Publications (2)

Publication Number Publication Date
JPH10197577A true JPH10197577A (en) 1998-07-31
JP3404238B2 JP3404238B2 (en) 2003-05-06

Family

ID=11532531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00255197A Expired - Fee Related JP3404238B2 (en) 1997-01-10 1997-01-10 Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency

Country Status (1)

Country Link
JP (1) JP3404238B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077106A (en) * 2000-01-31 2001-08-17 김용권 co-planar wave guide
JP2002005972A (en) * 2000-06-22 2002-01-09 Hitachi Chem Co Ltd Transmission loss analyzing method for transmission line and measurement jig used for it
WO2005029102A1 (en) * 2003-09-18 2005-03-31 Advantest Corporation Error factor acquisition device, method, program, and recording medium
WO2005101034A1 (en) * 2004-04-02 2005-10-27 Murata Manufacturing Co., Ltd. Method and instrument for measuring high-frequency electric characteristic of electronic component, and method for calibrating high-frequency electrical characteristic measuring instrument
WO2005101033A1 (en) * 2004-03-31 2005-10-27 Murata Manufacturing Co., Ltd. Method and device for measuring high-frequency electric characteristic of an electronic part and method for calibrating a high-frequency electric characteristic measurement device
US7375534B2 (en) 2004-04-02 2008-05-20 Murata Manufacturing Co., Ltd. Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JPWO2006090550A1 (en) * 2005-02-22 2008-07-24 株式会社村田製作所 Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
US7405576B2 (en) 2004-03-31 2008-07-29 Murata Manufacturing Co., Ltd. Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US7439748B2 (en) 2004-04-02 2008-10-21 Murata Manufacturing Co., Ltd. Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
CN104931911A (en) * 2015-06-12 2015-09-23 深圳供电局有限公司 Calibration device and method for ultrahigh frequency partial discharge sensor
CN106249187A (en) * 2016-08-30 2016-12-21 中国电子科技集团公司第十三研究所 Design and accurate definition method at sheet co-planar waveguide multi-thread TRL calibrating device
WO2018074646A1 (en) * 2016-10-17 2018-04-26 한국표준과학연구원 Electromagnetic impedance measurement device and electromagnetic impedance calibration method
CN108107392A (en) * 2017-11-20 2018-06-01 中国电子科技集团公司第十三研究所 Multi-thread TRL calibration methods and terminal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772172B (en) * 2016-10-25 2019-05-14 中国电子科技集团公司第十三研究所 In the design method of piece high/low temperature S parameter TRL calibration component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688844A (en) * 1992-09-04 1994-03-29 Kyocera Corp Measuring method for s' parameter of multiport circuit
JPH0969705A (en) * 1995-08-31 1997-03-11 Murata Mfg Co Ltd Tool and method for characteristic measurement of non-radioactive dielectric line parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688844A (en) * 1992-09-04 1994-03-29 Kyocera Corp Measuring method for s' parameter of multiport circuit
JPH0969705A (en) * 1995-08-31 1997-03-11 Murata Mfg Co Ltd Tool and method for characteristic measurement of non-radioactive dielectric line parts

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077106A (en) * 2000-01-31 2001-08-17 김용권 co-planar wave guide
JP2002005972A (en) * 2000-06-22 2002-01-09 Hitachi Chem Co Ltd Transmission loss analyzing method for transmission line and measurement jig used for it
KR100752252B1 (en) * 2003-09-18 2007-08-29 가부시키가이샤 아드반테스트 Error factor acquisition device, error factor acquisition method, and computer-readable recording medium recording program of instruction
WO2005029102A1 (en) * 2003-09-18 2005-03-31 Advantest Corporation Error factor acquisition device, method, program, and recording medium
CN100422752C (en) * 2003-09-18 2008-10-01 株式会社爱德万测试 Error factor acquisition device, method, program, and recording medium
US7348784B2 (en) 2003-09-18 2008-03-25 Advantest Corporation Error factor acquisition device, method, program, and recording medium
US7405576B2 (en) 2004-03-31 2008-07-29 Murata Manufacturing Co., Ltd. Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
WO2005101033A1 (en) * 2004-03-31 2005-10-27 Murata Manufacturing Co., Ltd. Method and device for measuring high-frequency electric characteristic of an electronic part and method for calibrating a high-frequency electric characteristic measurement device
US7439748B2 (en) 2004-04-02 2008-10-21 Murata Manufacturing Co., Ltd. Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US7375534B2 (en) 2004-04-02 2008-05-20 Murata Manufacturing Co., Ltd. Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
WO2005101035A1 (en) * 2004-04-02 2005-10-27 Murata Manufacturing Co.,Ltd. Method and instrument for measuring high-frequency electric characteristic of electronic component, and method for calibrating high-frequency electrical characteristic measuring instrument
WO2005101034A1 (en) * 2004-04-02 2005-10-27 Murata Manufacturing Co., Ltd. Method and instrument for measuring high-frequency electric characteristic of electronic component, and method for calibrating high-frequency electrical characteristic measuring instrument
JP4650487B2 (en) * 2005-02-22 2011-03-16 株式会社村田製作所 Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
JPWO2006090550A1 (en) * 2005-02-22 2008-07-24 株式会社村田製作所 Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
CN104931911A (en) * 2015-06-12 2015-09-23 深圳供电局有限公司 Calibration device and method for ultrahigh frequency partial discharge sensor
CN106249187A (en) * 2016-08-30 2016-12-21 中国电子科技集团公司第十三研究所 Design and accurate definition method at sheet co-planar waveguide multi-thread TRL calibrating device
WO2018074646A1 (en) * 2016-10-17 2018-04-26 한국표준과학연구원 Electromagnetic impedance measurement device and electromagnetic impedance calibration method
US10802064B2 (en) 2016-10-17 2020-10-13 Korea Research Institute Of Standards And Science Electromagnetic wave impedance measuring apparatus and calibration method of impedance
CN108107392A (en) * 2017-11-20 2018-06-01 中国电子科技集团公司第十三研究所 Multi-thread TRL calibration methods and terminal device
CN108107392B (en) * 2017-11-20 2020-03-24 中国电子科技集团公司第十三研究所 Multi-line TRL calibration method and terminal equipment

Also Published As

Publication number Publication date
JP3404238B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
JP3404238B2 (en) Calibration standard and calibration method for high frequency measurement and method for measuring transmission loss of transmission line for high frequency
CA2385337C (en) Measuring probe for measuring high frequencies and method of producing said probe
CN108152606B (en) Electric field passive probe
US4851794A (en) Microstrip to coplanar waveguide transitional device
CN111308221B (en) Characterization method for extracting broadband continuous dielectric characteristics of microwave dielectric substrate
US10802064B2 (en) Electromagnetic wave impedance measuring apparatus and calibration method of impedance
CN111880012B (en) Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate
US6172497B1 (en) High-frequency wave measurement substrate
Cai et al. Ungrounded coplanar waveguide based straight line methods for broadband and continuous dielectric characterization of microwave substrates
Huang et al. Causes of discrepancies between measurements and EM simulations of millimeter-wave antennas
US5151652A (en) Measuring position for microwave components
Sattler et al. Embedded Suspended Stripline Substrate Technology (ESSS) as a Catalyst for Low-loss PCB Structures in the Ka-Band
JP7370060B2 (en) Evaluation method, evaluation device, and evaluation system for dielectric materials
Post On determining the characteristic impedance of low‐loss transmission lines
Fischer et al. Causes of discrepancies between measurements and em simulations of millimeter-wave antennas [measurements corner]
JP3659461B2 (en) High frequency measurement board
Stanley et al. Determination of the permittivity of transmission lines at milli-Kelvin temperatures
JP2003513247A (en) Electromagnetic wave sensor
Sillanpää et al. A multiline material parameter extraction method
JPS6176964A (en) Measuring method of high frequency dielectric characteristic of thin film insulator
JP5566747B2 (en) Millimeter wave transmission line, circuit board using the same, and circuit board measurement method
Han et al. Impact of pad de-embedding on the extraction of interconnect parameters
JP2003023010A (en) Probing pad for high frequency
Laursen et al. Measurement of the electrical properties of high performance dielectric materials for multichip modules
Ponchak et al. Multiple modes on embedded inverted microstrip lines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees