JPH0688794A - Quality control system for descaling and pickling stainless steel material - Google Patents

Quality control system for descaling and pickling stainless steel material

Info

Publication number
JPH0688794A
JPH0688794A JP26539292A JP26539292A JPH0688794A JP H0688794 A JPH0688794 A JP H0688794A JP 26539292 A JP26539292 A JP 26539292A JP 26539292 A JP26539292 A JP 26539292A JP H0688794 A JPH0688794 A JP H0688794A
Authority
JP
Japan
Prior art keywords
concentration
stainless steel
pickling
descaling
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26539292A
Other languages
Japanese (ja)
Inventor
Shigeru Kitani
滋 木谷
Yoshio Hayashi
美生 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26539292A priority Critical patent/JPH0688794A/en
Publication of JPH0688794A publication Critical patent/JPH0688794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a quality control system for stably obtaining stainless steel material having excellent corrosion resistance and no quality variation by accurately detecting corrosion resistance (pickling degree) of the material after descaling and/or pickling step and feeding back it. CONSTITUTION:A quality control system for stainless steel material 1 descaled and/or pickled after heat treating comprises fluorescent X-ray analyzers 7, 8, 9, 10 for detecting 'Si and/or Cr concentration of the surface of the material' or 'the ratio of the Si and/or Cr concentration of the surface of the material to that of base metal', and a controller 11 for regulating conditions of the descaling or pickling based on the detected result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱処理後に脱スケ−
ル及び/又は酸洗したステンレス鋼材に本来の耐食性を
維持せしめるための、ステンレス鋼材の耐食性品質管理
システムに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a descaling after heat treatment.
The present invention relates to a corrosion resistance quality control system for a stainless steel material for maintaining the original corrosion resistance of a stainless steel material that has been pickled and / or pickled.

【0002】[0002]

【従来技術とその課題】一般に、JISに規格される2
B仕様のステンレス鋼板の如く“焼鈍の後脱スケ−ル・
酸洗によって表面が仕上げられるステンレス鋼材”は、
酸洗時間等の酸洗条件が不適当であると、焼鈍により生
じた酸化スケ−ルが表面に残存して耐食性の劣化を招
く。また、例え酸化スケ−ルは除去されても、その酸化
スケ−ルの下にあるCr欠乏層(Crが優先的に酸化してス
ケ−ル中へ移行したことにより生じたCr濃度の低い金属
層)の除去が不十分であると、やはりステンレス鋼材本
来の耐食性が発揮されないことも知られている。一方、
酸洗条件が厳し過ぎる場合には、過酸洗のために肌荒れ
した表面になるだけでなく、貴重な資源(ステンレス
鋼,酸,エネルギ−)を浪費することになる。
2. Description of the Related Art Generally, JIS standard 2
As with B specification stainless steel plate, "scale removal after annealing.
The stainless steel material whose surface is finished by pickling is
If the pickling conditions such as pickling time are inappropriate, the oxide scale produced by annealing remains on the surface, leading to deterioration of corrosion resistance. Further, even if the oxide scale is removed, a Cr-deficient layer below the oxide scale (a metal with a low Cr concentration caused by the preferential oxidation of Cr and transfer to the scale) It is also known that if the removal of the layer) is insufficient, the original corrosion resistance of the stainless steel material cannot be exhibited. on the other hand,
If the pickling conditions are too strict, not only will the surface become rough due to overpickling, but valuable resources (stainless steel, acid, energy) will be wasted.

【0003】従って、ステンレス鋼焼鈍・酸洗材では、
過不足なく酸洗を行うことが品質,コストの両面から望
まれるわけであるが、これまでこの酸洗の程度を迅速・
的確に判定する方法が確立されていなかった。
Therefore, in stainless steel annealing / pickling materials,
It is desirable to perform pickling without excess or deficiency from both aspects of quality and cost, but until now, the extent of this pickling has been rapid.
There was no established method for making an accurate judgment.

【0004】勿論、酸洗工程を経て製造されたステンレ
ス鋼材を実験室に持ち込み、この実験室で表面粗さ,光
沢,耐食性を調べれば酸洗の過不足は判定できるが、こ
れでは時間と手間がかかり過ぎて製造現場の要求に直ち
に応じることはできず、酸洗ラインでの製品品質安定化
への寄与は十分なものとは言えなかった。
Of course, if the stainless steel material manufactured through the pickling process is brought into a laboratory and the surface roughness, gloss, and corrosion resistance are examined in this laboratory, the excess or deficiency of the pickling can be determined, but this takes time and labor. Since it takes too much time to meet the demands of the manufacturing site immediately, it cannot be said that the contribution to the stabilization of product quality in the pickling line is sufficient.

【0005】このようなことから、本発明が目的とした
のは、脱スケ−ル及び/又は酸洗等の工程を経たステン
レス鋼材の「仕上がり程度」、即ち「そのステンレス鋼
本来の耐食性が保証される程度に脱スケ−ルや酸洗が行
われているかどうか」を迅速かつ的確に判定すると共
に、この判定結果を速やかに脱スケ−ル,酸洗条件の調
整要素として取り入れることによって、耐食性に優れ品
質ムラの無いステンレス鋼材が安定して得られるような
脱スケ−ル,酸洗工程での品質管理システムを確立する
ことである。
In view of the above, the object of the present invention is to "finish" the stainless steel material which has undergone the steps of descaling and / or pickling, that is, "the original corrosion resistance of the stainless steel is guaranteed. Corrosion resistance can be determined by quickly and accurately determining whether or not descaling or pickling has been performed to the extent that it is carried out, and by rapidly incorporating the results of this determination as an adjustment factor for descaling and pickling conditions. The goal is to establish a quality control system in the descaling and pickling processes that ensures stable and stable production of stainless steel products with excellent quality.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく様々な観点に立って鋭意研究を重ねた結
果、次のような知見を得ることができた。 a) ステンレス鋼材表面のSi濃度或いはCr濃度と酸洗仕
上がり程度(即ち耐食性)は非常に良く相関しており、
鋼材表面のSi濃度又はCr濃度を検出することによって脱
スケ−ル,酸洗の仕上がり程度(耐食性)が的確に把握
できる,
Means for Solving the Problems The inventors of the present invention have obtained the following findings as a result of earnest studies from various viewpoints in order to achieve the above object. a) The Si concentration or Cr concentration on the surface of stainless steel and the degree of pickling finish (that is, corrosion resistance) correlate very well,
By detecting the Si concentration or Cr concentration on the steel surface, it is possible to accurately grasp the finish degree (corrosion resistance) of descaling and pickling.

【0007】b) ステンレス鋼材表面のSi濃度又はCr濃
度の測定法としては、例えばSIMS(二次イオン質量
分析法),溶解して湿式分析する方法(ICP),SE
M走査型電子顕微鏡)とEDX(エネルギ−分散分析装
置)を併用する方法,蛍光X線分析法,誘導プラズマの
発光分析法等が考えられるが、これらの中でも蛍光X線
分析法は迅速かつ安価に分析・測定でき、オンラインで
の適用に極めて優れた方式と言える,
B) As the method for measuring the Si concentration or Cr concentration on the surface of the stainless steel material, for example, SIMS (Secondary Ion Mass Spectroscopy), method of melting and wet analysis (ICP), SE
M scanning electron microscope) and EDX (energy-dispersion analyzer) are used together, fluorescent X-ray analysis method, inductive plasma emission analysis method, and the like. Among them, the fluorescent X-ray analysis method is quick and inexpensive. It can be said that it is an excellent method for online application because it can analyze and measure

【0008】c) 従って、熱処理したステンレス鋼材の
脱スケ−ル及び/又は酸洗ラインにおいて、蛍光X線分
析装置により脱スケ−ル及び/又は酸洗後の鋼材の“表
面のSi濃度又はCr濃度”を検出してその耐食性の程度を
評価すると共に、この結果によって酸洗条件等の処理条
件を調整するようにすれば、ステンレス鋼本来の優れた
耐食性や光沢を有するステンレス鋼材を極めて安定に製
造することが可能になる。
C) Therefore, in the descaling and / or pickling line of the heat-treated stainless steel material, the "concentration of Si or Cr on the surface of the steel material after descaling and / or pickling by a fluorescent X-ray analyzer is used. By detecting the "concentration" and evaluating the degree of its corrosion resistance, and adjusting the treatment conditions such as pickling conditions based on this result, the stainless steel material with excellent corrosion resistance and luster inherent in stainless steel can be made extremely stable. It becomes possible to manufacture.

【0009】本発明は、上記知見事項等を基に更なる検
討を重ねて完成されたものであり、「熱処理後に脱スケ
−ル又は酸洗した(即ち脱スケ−ル及び/又は酸洗し
た)ステンレス鋼材の品質管理システムを、 “鋼材表面
のSi及び/又はCr濃度”或いは“鋼材表面のSi及び/又
はCr濃度と地金中のSi及び/又はCr濃度の比”を検出す
るための蛍光X線分析装置と、 この検出結果に基づいて
脱スケ−ル又は酸洗の条件を調整する制御装置とを備え
て成る構成とすることによって、 耐食性等の品質に優れ
たステンレス鋼材が安定に得られるようにした点」に大
きな特徴を有している。
The present invention has been completed by further studies based on the above findings and the like, and "is descaled or pickled (that is, descaled and / or pickled after heat treatment). ) A stainless steel quality control system for detecting "Si and / or Cr concentration on the steel surface" or "ratio of Si and / or Cr concentration on the steel surface and Si and / or Cr concentration in the metal" A fluorescent X-ray analyzer and a controller that adjusts the conditions of descaling or pickling based on the detection result are used to stabilize a stainless steel material with excellent quality such as corrosion resistance. It has a major feature in "the point that it has been obtained".

【0010】ところで、「鋼材表面のSi及び/又はCr濃
度」或いは「鋼材表面のSi及び/又はCr濃度と地金中の
Si及び/又はCr濃度の比」を指標とすることにより、
“熱処理後に脱スケ−ル又は酸洗したステンレス鋼材”
の耐食性を評価できる原理は次の通りである。
By the way, "Si and / or Cr concentration on steel surface" or "Si and / or Cr concentration on steel surface and
By using the ratio of Si and / or Cr concentration as an index,
"Stainless steel material that has been descaled or pickled after heat treatment"
The principle by which the corrosion resistance of can be evaluated is as follows.

【0011】即ち、ステンレス鋼材を製造する際には、
冷間圧延された鋼材を焼鈍によって軟化する工程が良く
行われる。例えば、SUS304の場合であれば、炭化
水素系ガスの燃焼雰囲気中において1100〜1150
℃程度の温度で1〜数分間加熱するのが一般的な方法で
ある。ところが、この過程でステンレス鋼材表面に酸化
スケ−ルが生成すると同時に、前述したようにそのスケ
−ルの下(地金側)にCr濃度が低い金属層が生じる。
That is, when manufacturing a stainless steel material,
A process of softening a cold-rolled steel material by annealing is often performed. For example, in the case of SUS304, 1100 to 1150 in the combustion atmosphere of hydrocarbon gas.
It is a general method to heat at a temperature of about ° C for 1 to several minutes. However, in this process, an oxide scale is generated on the surface of the stainless steel material, and at the same time, a metal layer having a low Cr concentration is formed under the scale (metal side) as described above.

【0012】そして、このCr欠乏層部位を詳細に調査す
ると、この層は地金と比較して明らかにSiが濃化した金
属層(以降、 単に“Si濃化層”と呼ぶ)となっているこ
とが分かる。
When the Cr-deficient layer site was investigated in detail, this layer became a metal layer in which Si was clearly enriched in comparison with the bare metal (hereinafter simply referred to as "Si enriched layer"). I know that

【0013】つまり、図2は、SUS304焼鈍材表面
部における化学組成の“深さ方向の変化”を調査した結
果を示しているが、この図2からも、最表面から約 0.5
μm深さまでの間にCr,Mn,Feの酸化物を主成分とする
酸化スケ−ルが存在し、その下に厚さ約 1.5μm程度の
Si濃化層が存在していることが認められる。
That is, FIG. 2 shows the results of the investigation of the “change in the depth direction” of the chemical composition on the surface portion of the SUS304 annealed material.
An oxide scale mainly composed of oxides of Cr, Mn, and Fe exists up to the depth of μm, and a thickness of about 1.5 μm exists under the scale.
It is recognized that the Si concentrated layer is present.

【0014】このようなステンレス鋼焼鈍材を、例えば
常法通りに中性塩電解法(ルスナ−法)と硝ふっ酸浸漬
法によって脱スケ−ル・酸洗すると、まずルスナ−法に
より酸化物層の主としてCrやMnの酸化物が溶解し、その
後硝ふっ酸によりSi濃化層が溶解する。
Such stainless steel annealed material is descaled and pickled by a neutral salt electrolysis method (Lusner method) and a nitric-hydrofluoric acid dipping method in the usual manner. Oxides of Cr and Mn mainly in the layer are dissolved, and then the Si concentrated layer is dissolved by nitric hydrofluoric acid.

【0015】ここで重要なことは、本発明者等が実験に
より確認したことであるが、「硝ふっ酸によるSi濃化層
の溶解が不十分であると孔食等の局部腐食が起こりやす
く、そのステンレス鋼本来の耐食性が保証できない」こ
とである。しかも、前記実験によって、このSi濃化層の
溶解程度はステンレス鋼材表面のSi濃度測定値と良く相
関する上、該ステンレス鋼材表面のSi濃度とステンレス
鋼材の耐食性とは非常に相関性が強く、Si濃度が低くな
ると相応して耐食性が向上するので、表面のSi濃度はス
テンレス鋼材の耐食性を評価する上での十分な指標にな
ることも確かめられた。
What is important here is that the present inventors have confirmed by experiments. "If the dissolution of the Si concentrated layer by nitric hydrofluoric acid is insufficient, local corrosion such as pitting corrosion easily occurs. , The original corrosion resistance of the stainless steel cannot be guaranteed. " Moreover, according to the above experiment, the degree of dissolution of this Si-enriched layer correlates well with the measured value of Si concentration on the surface of the stainless steel material, and the Si concentration on the surface of the stainless steel material and the corrosion resistance of the stainless steel material have a very strong correlation, It was also confirmed that the Si concentration on the surface is a sufficient index for evaluating the corrosion resistance of the stainless steel material, since the corrosion resistance is correspondingly improved when the Si concentration is lowered.

【0016】この理由は、おそらく、表面酸化スケ−ル
側からの酸素の拡散によってSiO2等の酸化物が生じ、
このためその近傍で金属組織の局部的欠陥や組成的不均
一が発生して孔食等の局部腐食の起点になるためと推測
される。そして、酸洗の進行と共に前記Si濃化層が除去
されて局部腐食の起点が減少し、十分な酸洗が行われる
と局部腐食の起点も無くなるので、ステンレス鋼材の耐
食性が向上するものと考えられる。
The reason for this is that the diffusion of oxygen from the surface oxidation scale side probably produces oxides such as SiO 2 .
Therefore, it is presumed that local defects or compositional nonuniformity of the metal structure occur in the vicinity thereof and become a starting point of local corrosion such as pitting corrosion. Then, with the progress of pickling, the Si concentrated layer is removed and the starting point of local corrosion is reduced, and since the starting point of local corrosion also disappears when sufficient pickling is performed, it is considered that the corrosion resistance of the stainless steel material is improved. To be

【0017】なお、Si濃度の分析結果を別途分析したそ
のステンレス鋼材の地金中Si濃度値と比較するようにす
れば表面のSi濃化の程度をより細かく判定でき、そのた
めこの“表面のSi濃度と地金中Si濃度との比”を指標に
することで耐食性の評価を一層的確に行うことができ
る。
By comparing the Si concentration analysis results with the separately analyzed Si concentration value in the metal of the stainless steel, the degree of Si enrichment on the surface can be determined more finely, and therefore the "surface Si The corrosion resistance can be evaluated more accurately by using the "ratio of the concentration and the Si concentration in the metal" as an index.

【0018】ところで、前記図2に示す分析結果からも
明らかなように、ステンレス鋼熱処理材の酸化スケ−ル
直下のSi濃化層はCr欠乏層でもあるので、ステンレス鋼
材表面の“Cr濃度”も“Si濃度”Si濃度と同様に耐食性
評価の指標になり得ることが分かる。ただ、Siの方が表
面への濃化度が大きいことからして、耐食性の指標とし
てはSi濃度の方がより優れていると言える。
By the way, as is clear from the analysis results shown in FIG. 2, since the Si-enriched layer directly below the oxidation scale of the heat-treated stainless steel is also a Cr-deficient layer, the "Cr concentration" on the surface of the stainless steel is It can be seen that can also be an index for corrosion resistance evaluation, like “Si concentration”. However, since Si has a higher degree of concentration on the surface, it can be said that Si concentration is a better indicator of corrosion resistance.

【0019】このように、Si又はCrの表面濃度を分析す
ることによりステンレス鋼焼鈍材の耐食性(酸洗程度)
を評価できるが、より正確な評価を行うには、ステンレ
ス鋼材表面のSiとCrの両方を分析・測定し、両者を指標
にすることがより望ましい。なぜなら、Si又はCrの単独
分析値は分析条件の変動(一次X線強度の変動,鋼材表
面粗さの変動,X線管や分光結晶とストリップ表面や角
度の変動等)の影響を受けやすいが、SiとCrの両分析値
を指標とすればこれらの影響が相殺できるので一層正確
に耐食性(酸洗程度)の評価を行うことができるからで
ある。また、表面からの深さが大きくなるにつれてSi濃
度が減少しCr濃度が増加するので、Si又はCr単独の濃度
よりも「Si濃度/Cr濃度の比」の方が変化率が大きく、
より高感度の判定を可能にする。
Thus, by analyzing the surface concentration of Si or Cr, the corrosion resistance of the annealed stainless steel material (degree of pickling)
However, in order to perform a more accurate evaluation, it is more desirable to analyze and measure both Si and Cr on the surface of the stainless steel material and use both of them as indexes. This is because the single analysis value of Si or Cr is easily affected by fluctuations in analysis conditions (variations in primary X-ray intensity, variations in steel surface roughness, variations in X-ray tube or dispersive crystal and strip surface, angles, etc.). This is because if both analysis values of Si, Cr and Si are used as indicators, these influences can be offset, so that the corrosion resistance (about pickling) can be evaluated more accurately. Also, since the Si concentration decreases and the Cr concentration increases as the depth from the surface increases, the “Si concentration / Cr concentration ratio” has a larger change rate than the concentration of Si or Cr alone,
Enables higher sensitivity judgment.

【0020】次に、実施例に基づき、本発明に係る脱ス
ケ−ル,酸洗ステンレス鋼材の品質管理システムをより
具体的に説明する。
Next, the quality control system for descaling and pickling stainless steel materials according to the present invention will be described in more detail based on examples.

【実施例】図1は、本発明に係る脱スケ−ル,酸洗ステ
ンレス鋼材の品質管理システムの1例(表面Si濃度検出
に基づいたもの)に関する概要説明図である。
FIG. 1 is a schematic explanatory view of an example (based on detection of surface Si concentration) of a quality control system for descaling and pickling stainless steel materials according to the present invention.

【0021】図1において、焼鈍等の熱処理が施された
ステンレス鋼のストリップ1は、酸槽(例えば 10%HN
3-1%HFを収容)2で脱スケ−ル及び/又は酸洗さ
れ、水洗槽4,乾燥装置5を通った後、テンションリ−
ル6で巻き取られて製品とされる。ここで、酸槽2から
テンションリ−ル6までの間でストリップ1の表面へ蛍
光X線分析装置10によりX線が照射され、表面から放出
されるSiの特性X線(蛍光X線)の強さを検出器9で検
出し、蛍光X線分析する。
In FIG. 1, a stainless steel strip 1 which has been subjected to heat treatment such as annealing is shown in an acid bath (eg 10% HN).
O 3 -1% HF is stored) 2, and desalted and / or pickled, and after passing through the washing tank 4 and the drying device 5, tension release
The product is rolled up by reel 6. Here, the surface of the strip 1 is irradiated with X-rays by the fluorescent X-ray analyzer 10 between the acid tank 2 and the tension reel 6, and the characteristic X-rays (fluorescent X-rays) of Si emitted from the surface are detected. The intensity is detected by the detector 9 and fluorescent X-ray analysis is performed.

【0022】なお、ステンレス鋼材表面のSi濃度の測定
法としてSIMS(二次イオン質量分析法),溶解して
湿式分析する方法(ICP),誘導プラズマの発光分析
法等も考えられるが、迅速かつ安価に分析・測定できる
という観点から蛍光X線分析法の採用は欠かせない。
As a method for measuring the Si concentration on the surface of the stainless steel material, SIMS (secondary ion mass spectrometry), a method of performing wet analysis by melting (ICP), an emission analysis method of inductive plasma, etc. are conceivable, but they are rapid and From the viewpoint of inexpensive analysis and measurement, it is essential to adopt the fluorescent X-ray analysis method.

【0023】つまり、蛍光X線分析法は a) 非破壊分析法であるため、酸洗後の製品を現場でそ
のままチェック分析できる, b) 高真空を必要としないので、鋼帯を連続焼鈍酸洗す
る製造ラインにおいてオンライン分析できる, c) 分析所要時間が短い, 等の長所を有しており、これらの長所を生かしてオンラ
イン分析を行うことで健全な製品の高能率生産を可能に
できるからである。
That is, since the fluorescent X-ray analysis method is a) nondestructive analysis method, the product after pickling can be checked and analyzed on-site as it is. B) Since high vacuum is not required, the steel strip is continuously annealed with acid. It has the advantages that online analysis can be performed in the washing production line, c) the analysis time is short, etc., and by making use of these advantages, online analysis can be performed to enable highly efficient production of sound products. Is.

【0024】ストリップ表面へX線を照射するX線管7
としては、Pt,Au,W,Rh等を対陰極としBe薄膜を窓と
するものが用いられる。分光結晶8は、ストリップ表面
から放出される種々の波長の特性X線の中からSiに特有
の波長のX線のみを取り出すための“回折格子”の役割
を成すものであり、X線のように波長の短い電磁波の場
合にはLiF,EDDT(エチレンジアミンジタ−タレイ
ト)等の結晶が用いられる。また、検出器9としてはシ
ンチレ−ションカウンタ−や比例係数管が用いられる。
X-ray tube 7 for irradiating the strip surface with X-rays
For this, one using Pt, Au, W, Rh, etc. as an anticathode and a Be thin film as a window is used. The dispersive crystal 8 functions as a "diffraction grating" for extracting only the X-rays having a wavelength unique to Si from the characteristic X-rays having various wavelengths emitted from the strip surface. In the case of an electromagnetic wave having a short wavelength, crystals such as LiF and EDDT (ethylenediamine ditertarate) are used. As the detector 9, a scintillation counter or a proportional coefficient tube is used.

【0025】なお、Siの特性X線(Kα1: 7.125Å)は
波長が比較的長いため空気による吸収減衰が比較的大き
い。従って、ストリップ表面から検出器9までの距離が
長い(例えば30cm)と、検出器9に入るまでに大部分
が吸収され検出感度が悪くなる。この対策として次の方
法が考えられる。
Since the characteristic X-ray of Si (Kα 1 : 7.125Å) has a relatively long wavelength, the absorption and attenuation by air is relatively large. Therefore, if the distance from the strip surface to the detector 9 is long (for example, 30 cm), most of it is absorbed by the time it enters the detector 9, and the detection sensitivity deteriorates. The following method can be considered as a countermeasure.

【0026】イ) 図1で示したように、X線の通路をシ
−ルド14で覆って真空にするか、He又はH2 ガスで空気
を置換する(走行するストリップ表面近傍を真空にする
のはかなり難しいので、 He又はH2 ガスで空気を置換す
る方法が現実的である)。ロ ) ストリップ表面と検出器の距離を出来るだけ短くす
る(距離が短いほど検出感度が上がるけれども、 ストリ
ップの平坦度等も考慮して分光結晶や検出器がストリッ
プに接触しない距離とする必要がある)。
(1) As shown in FIG. 1, the X-ray passage is covered with a shield 14 to create a vacuum, or the air is replaced with He or H 2 gas (a vacuum is generated near the surface of the running strip). Since it is quite difficult, it is realistic to replace the air with He or H 2 gas). (2) Make the distance between the strip surface and the detector as short as possible (the shorter the distance, the higher the detection sensitivity, but it is necessary to consider the flatness of the strip, etc. so that the dispersive crystal and the detector do not contact the strip). ).

【0027】ところで、ストリップ1の表面に照射する
一次X線の入射角が直角に近いと、X線はステンレス鋼
表面に深く侵入するのでより内部からの特性X線が多く
放出され、このため表面に近い部分のSi濃度は分かりに
くくなる。逆に、ストリップ表面に対する一次X線の入
射角が小さいほど表面付近のSi濃度が感度良く分析でき
る。従って、一次X線の入射角は、望ましくは10°以下
とするのが良い。しかし、ストリップの平坦度が悪い場
合にはX線の照射位置が動きやすく、特性X線の検出が
不安定になるので、或る程度は入射角を大きくする必要
が生じることもある。
By the way, when the incident angle of the primary X-rays irradiating the surface of the strip 1 is close to a right angle, the X-rays penetrate deeply into the surface of the stainless steel, and more characteristic X-rays are emitted from the inside. It becomes difficult to understand the Si concentration in the area close to. Conversely, the smaller the angle of incidence of the primary X-ray on the strip surface, the more sensitively the Si concentration near the surface can be analyzed. Therefore, the incident angle of the primary X-ray is preferably 10 ° or less. However, when the flatness of the strip is poor, the irradiation position of the X-rays is likely to move, and the detection of the characteristic X-rays becomes unstable. Therefore, it may be necessary to increase the incident angle to some extent.

【0028】蛍光X線分析により得られたSi濃度の情報
は、制御装置11へ送られ、予め適宜手段で分析し測定し
ておいたストリップ地金中のSi濃度と比較される。そし
て、その差(「〔表面Si%〕−〔地金中Si%〕」の値)
が目標値(耐食性の点から望ましくは0%)より大きい
場合には制御装置11から酸タンク12中の酸の温度や濃度
を上げるための指示が出され、このように調整された酸
が酸槽2へ送られる。この場合、酸槽2中の浸漬ロ−ル
3を下げることによって浸漬時間を長くする処置を採る
こともできる。
Information on the Si concentration obtained by the fluorescent X-ray analysis is sent to the control device 11 and compared with the Si concentration in the strip metal which has been analyzed and measured in advance by an appropriate means. And the difference (the value of "[Surface Si%]-[Si% in metal]]"
Is larger than the target value (preferably 0% from the viewpoint of corrosion resistance), the controller 11 gives an instruction to increase the temperature and concentration of the acid in the acid tank 12, and the acid adjusted in this way is used as the acid. It is sent to the tank 2. In this case, it is also possible to take a measure to extend the immersion time by lowering the immersion roll 3 in the acid tank 2.

【0029】もし、上記の操作によっても「〔表面Si
%〕−〔地金中Si%〕」の値が目標値より下がらない場
合は、ルスナ−電解電源制御系13へ指示を送り、電解電
流を増して酸化スケ−ルの溶解を速める。
Even if the above operation is performed, "[surface Si
%] − [Si% in metal] ”does not fall below the target value, an instruction is sent to the Lusner-electrolysis power supply control system 13 to increase the electrolysis current and accelerate the dissolution of the oxide scale.

【0030】逆に、前記「〔表面Si%〕−〔地金中Si
%〕」の値が目標値より小さい場合には、酸タンク12中
の酸の温度や濃度を下げたり、酸槽2中の浸漬ロ−ル3
を上げて浸漬時間を短くする処置等が採られる。
On the contrary, the above-mentioned "[Surface Si%]-[Si in metal]
%] ”Is smaller than the target value, the temperature or concentration of the acid in the acid tank 12 is lowered, or the dip roll 3 in the acid tank 2 is used.
Is raised to shorten the immersion time.

【0031】上述した例ではステンレス鋼材表面の分析
元素がSiの場合について述べたが、前述したように、ス
テンレス鋼焼鈍材の酸化スケ−ル直下のSi濃度層はCr欠
乏層でもあるので、表面のCr濃度を蛍光X線分析するこ
とによっても脱スケ−ル,酸洗条件のコントロ−ルが可
能である。ただ、CrはSiより表面濃度の変化率が小さい
のが不利な点であるが、反面では特性X線(Kα1: 2.2
90Å)の波長が短いので、空気による吸収減衰が少ない
という長所がある。これらの点も含め、ステンレス鋼材
表面のSi濃度とCr濃度の両方を分析・測定し、両者を指
標にすることがより望ましいことも前述した通りであ
る。
In the above-mentioned example, the case where the analytical element on the surface of the stainless steel material is Si has been described. However, as described above, the Si concentration layer immediately below the oxidation scale of the annealed stainless steel material is also a Cr-deficient layer, Descaling and pickling conditions can also be controlled by fluorescent X-ray analysis of the Cr concentration of. However, Cr has a disadvantage that the rate of change in surface concentration is smaller than that of Si, but on the other hand, characteristic X-rays (Kα 1 : 2.2
Since the wavelength of 90Å) is short, it has the advantage that absorption and attenuation by air is small. As described above, it is more desirable to analyze and measure both the Si concentration and the Cr concentration on the surface of the stainless steel including these points and use both of them as indexes.

【0032】次いで、蛍光X線分析によるステンレス鋼
材表面の例えばSi濃度の分析値が該ステンレス鋼材の耐
食性(酸洗程度)との相関性が強く、十分に耐食性(酸
洗程度)評価の指標となり得ることの確認試験例を紹介
する。
Next, the analysis value of, for example, the Si concentration on the surface of the stainless steel material by fluorescent X-ray analysis has a strong correlation with the corrosion resistance (pickling degree) of the stainless steel material, and serves as an index for sufficiently evaluating the corrosion resistance (pickling degree). Here is an example of a confirmation test for obtaining.

【0033】まず、SUS304冷間圧延鋼板(板厚:
0.5mm)にプロパンガス燃焼雰囲気中で1100℃×1.5
minの焼鈍を施し、これを供試材とした。次に、上記供
試材より50mm×100mmの試験片を切り出し、下記条
件の“ルスナ−法”と“硝ふっ酸浸漬”とにより脱スケ
−ル及び酸洗を行った後、下記条件の "蛍光X線分析",
"発銹試験" 及び "孔食電位の測定" を実施した。
First, SUS304 cold rolled steel sheet (sheet thickness:
0.5mm) in propane gas combustion atmosphere 1100 ℃ × 1.5
It was annealed for min and used as a test material. Next, a test piece of 50 mm × 100 mm was cut out from the above-mentioned test material, subjected to descaling and pickling by the “Lusner method” and “nitric hydrofluoric acid immersion” under the following conditions, and then under the following conditions. X-ray fluorescence analysis ",
"Rusting test" and "Measurement of pitting potential" were conducted.

【0034】ルスナ−法条件 80℃の20%Na2SO4 中にて、電流密度80 mA/cm2
2秒間の陽極電解と1秒間の陰極電解の繰り返しで交番
電解する。硝ふっ酸浸漬条件 50℃の8%HNO3-0.7%HF水溶液に浸漬する。
Lusner method conditions In 20% Na 2 SO 4 at 80 ° C., alternating electrolysis is carried out by repeating anodic electrolysis for 2 seconds and cathodic electrolysis for 1 second at a current density of 80 mA / cm 2 . Nitrofluoric acid immersion condition Immerse in 8% HNO 3 -0.7% HF aqueous solution at 50 ° C.

【0035】蛍光X線分析条件 島津製作所製のX線カントメ−タ「VXQ-150型」を使
用した。X線管は米国MACHLETT社製の「OEG75H−
2A型」を用い、管電圧40 kV,管電流60 mAで測
定した。なお、Siの検出器はNeイグザトロンである。
Fluorescent X-ray analysis conditions An X-ray canometer "VXQ-150 type" manufactured by Shimadzu Corporation was used. The X-ray tube is "OEG75H-" manufactured by MACHLETT of the United States.
2A type ", and the tube voltage was 40 kV and the tube current was 60 mA. The detector of Si is Ne Exatron.

【0036】発銹試験条件 人工海水液をスプレ−噴霧して試験片に一定量付着させ
た後、赤外線ランプ照射して乾燥させる(但し、 乾燥後
の人工海水塩の付着量が 0.5±0.05mg/cm2となるように
調整)。続いて、これを恒温恒湿槽(温度30℃,相対湿
度50%)に入れ3日間保持して発銹させ、水洗・乾燥後
に発銹の程度をJIS H8502に規定されるレイティン
グナンバ−により評価(0〜10の数字の大きい方が発銹
は少ない)。
Scoring test conditions: An artificial seawater solution was sprayed and deposited on a test piece in a fixed amount, and then dried by irradiation with an infrared lamp (however, the amount of the artificial seawater salt deposited after drying was 0.5 ± 0.05 mg). Adjust to be / cm 2. ) Then, put this in a thermo-hygrostat (temperature 30 ° C, relative humidity 50%), hold it for 3 days to rust, and after washing and drying, evaluate the degree of rust by the rating number specified in JIS H8502. (The larger the number from 0 to 10, the less rusting).

【0037】孔食電位の調査条件 JIS G0577に準拠し、30℃の3.5%NaCl水溶液中で
測定。但し、試験片の不働態化処理や測定前の研磨は行
われず、酸洗肌のままで測定した。また、測定は各条件
につき2回繰り返した。
Measurement conditions of pitting potential : Measured in 3.5% NaCl aqueous solution at 30 ° C. according to JIS G0577. However, the passivation treatment of the test piece and the polishing before the measurement were not performed, and the measurement was performed with the pickled skin as it was. The measurement was repeated twice for each condition.

【0038】上記試験結果を表1に示す。なお、表1に
は、ルスナ−法の処理時間が48秒のみの例を示した
が、これは48秒の処理によって酸化スケ−ルの溶解が
完了し、それ以上処理時間を長くしても何も溶解しない
ことが別途行った実験により確認されたからである。
The test results are shown in Table 1. Although Table 1 shows an example in which the treatment time of the Lusner method is only 48 seconds, the dissolution of the oxide scale is completed by the treatment of 48 seconds, and even if the treatment time is further extended, This is because it was confirmed by a separate experiment that nothing dissolved.

【0039】[0039]

【表1】 [Table 1]

【0040】表1に示される結果から明らかなように、
硝ふっ酸浸漬時間が長くなるにつれて蛍光X線分析によ
るSiの定量分析値が小さくなり、30秒以降は0.55%に
なった(ここで、 この供試材のSi含有率は0.55%である
ことを別途行った湿式分析法によって確認済である)。
これは、硝ふっ酸浸漬を行わない(浸漬時間0sec.)も
のは、焼鈍によって生成したSi濃化層が表面に存在して
いるのでこのSi濃化層の溶解が起こり、そのためSi分析
値が次第に低下して行って完全にSi濃化層が溶解すると
地金のSi含有率と同じ0.55%になるものと考えられる。
As is clear from the results shown in Table 1,
The quantitative analysis value of Si by fluorescent X-ray analysis became smaller as the nitric-hydrofluoric acid immersion time became longer, and became 0.55% after 30 seconds (Here, the Si content of this sample is 0.55%. Has been confirmed by a wet analysis method separately performed).
This is because the Si-enriched layer that is not soaked with nitric-hydrofluoric acid (immersion time 0 sec.) Has a Si-enriched layer formed by annealing on the surface, so that the Si-enriched layer is dissolved, so that the Si analysis value is It is considered that when it gradually decreases and the Si-enriched layer is completely dissolved, it becomes 0.55%, which is the same as the Si content of the ingot.

【0041】なお、言うまでもないことであるが、表1
のSiの蛍光X線分析値は、ステンレス鋼板表面から或る
程度の深さまでのSiの平均含有率を示しており、最表面
のSi含有率は更に高い筈である。勿論、この“深さ”が
浅いほど精度の良い検出ができる訳であるが、今回行っ
た蛍光X線の分析条件でも十分にSi濃度の深さ方向の変
化は検出できた。
Needless to say, Table 1
The X-ray fluorescence analysis value of Si indicates the average content of Si from the surface of the stainless steel plate to a certain depth, and the content of Si on the outermost surface should be higher. Of course, the shallower this "depth" is, the more accurately the detection can be performed, but the change in the Si concentration in the depth direction could be detected sufficiently even under the fluorescent X-ray analysis conditions used this time.

【0042】さて、発銹試験のレイティングナンバ−は
硝ふっ酸浸漬時間が長くなると大きな値となり、発銹が
減少することを示しているが、これはステンレス鋼板表
面のSi濃度の低下傾向と非常に良く一致している。ま
た、孔食電位は硝ふっ酸浸漬時間が長くなると貴な値と
なり、孔食が起こりにくくなることを示していて、これ
もステンレス鋼板表面のSi濃度の低下傾向に良く相応し
ている。
By the way, the rating number of the rusting test shows a large value as the nitric acid / hydrofluoric acid immersion time becomes longer, and shows that the rusting is reduced, which is due to the tendency that the Si concentration on the surface of the stainless steel plate is lowered and that it is extremely low. Is in good agreement with. Further, the pitting corrosion potential becomes a noble value as the nitric-hydrofluoric acid immersion time becomes longer, indicating that pitting corrosion does not easily occur, which also corresponds well to the tendency for the Si concentration on the surface of the stainless steel plate to decrease.

【0043】これらの結果からも、蛍光X線分析による
ステンレス鋼板表面のSi分析値は耐銹性及び耐孔食性と
の相関性が強く、十分に耐食性評価の指標となり得るこ
とを確認できる。また、ステンレス鋼板表面のCr分析値
を基にした試験でも、分析値(濃度)の大小は逆であっ
たがほぼ同様の結果を得られたことは言うまでもない。
From these results, it can be confirmed that the Si analysis value on the surface of the stainless steel sheet by the fluorescent X-ray analysis has a strong correlation with the rust resistance and the pitting corrosion resistance, and can be sufficiently used as an index for evaluating the corrosion resistance. Further, in the test based on the Cr analysis value on the surface of the stainless steel sheet, it is needless to say that almost the same result was obtained although the magnitude of the analysis value (concentration) was opposite.

【0044】[0044]

【効果の総括】以上に説明した如く、この発明によれ
ば、焼鈍等の熱処理を経たステンレス鋼材の脱スケ−ル
及び/又は酸洗を的確に行い、耐食性に優れると共に品
質ムラの無いステンレス鋼材を安定して提供できる脱ス
ケ−ル,酸洗工程での品質管理システムを実現できるな
ど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a stainless steel material that has undergone heat treatment such as annealing is accurately scaled and / or pickled, and is excellent in corrosion resistance and has uniform quality. It is possible to provide industrially useful effects such as the ability to provide a stable quality control system for descaling and pickling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る脱スケ−ル,酸洗ステンレス鋼材
の品質管理システムの1例に関する概要説明図である。
FIG. 1 is a schematic explanatory view of an example of a quality control system for descaling and pickling stainless steel according to the present invention.

【図2】SUS304焼鈍材の表面部における化学組成
の“深さ方向の変化”を調査した結果を示すグラフであ
る。
FIG. 2 is a graph showing the results of investigating the “change in the depth direction” of the chemical composition in the surface portion of the SUS304 annealed material.

【符号の説明】[Explanation of symbols]

1 ストリップ 2 酸槽 3 浸漬ロ−ル 4 水洗槽 5 乾燥装置 6 テンションリ−ル 7 X線管 8 分光結晶 9 検出器 10 蛍光X線分析装置 11 制御装置 12 酸タンク 13 ルスナ−電解電源制御系 14 シ−ルド 1 Strip 2 Acid Tank 3 Immersion Roll 4 Water Wash Tank 5 Drying Device 6 Tension Roll 7 X-ray Tube 8 Spectroscopic Crystal 9 Detector 10 Fluorescent X-ray Analyzer 11 Controller 12 Acid Tank 13 Lusner-Electrolytic Power Supply Control System 14 shields

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱処理後に脱スケ−ル又は酸洗したステ
ンレス鋼材の品質管理システムであって、“鋼材表面の
Si濃度”又は“鋼材表面のSi濃度と地金中Si濃度の比”
を検出するための蛍光X線分析装置と、この検出結果に
基づいて脱スケ−ル又は酸洗の条件を調整する制御装置
とを備えて成ることを特徴とする、ステンレス鋼材の耐
食性品質管理システム。
1. A quality control system for stainless steel material that has been descaled or pickled after heat treatment, comprising:
"Si concentration" or "ratio of Si concentration on steel surface and Si concentration in metal"
A fluorescent X-ray analyzer for detecting the presence of a corrosion-resistant material, and a controller for adjusting the conditions of descaling or pickling based on the detection result. .
【請求項2】 熱処理後に脱スケ−ル又は酸洗したステ
ンレス鋼材の品質管理システムであって、“鋼材表面の
Cr濃度”又は“鋼材表面のCr濃度と地金中Cr濃度の比”
を検出するための蛍光X線分析装置と、この検出結果に
基づいて脱スケ−ル又は酸洗の条件を調整する制御装置
とを備えて成ることを特徴とする、ステンレス鋼材の耐
食性品質管理システム。
2. A quality control system for stainless steel material that has been descaled or pickled after heat treatment, comprising:
"Cr concentration" or "ratio of Cr concentration on steel surface to Cr concentration in metal"
A fluorescent X-ray analyzer for detecting the presence of a corrosion-resistant material, and a controller for adjusting the conditions of descaling or pickling based on the detection result. .
【請求項3】 熱処理後に脱スケ−ル又は酸洗したステ
ンレス鋼材の品質管理システムであって、“鋼材表面の
Si及びCr濃度”又は“鋼材表面のSi及びCr濃度と地金中
のSi及びCr濃度の比”を検出するための蛍光X線分析装
置と、この検出結果に基づいて脱スケ−ル又は酸洗の条
件を調整する制御装置とを備えて成ることを特徴とす
る、ステンレス鋼材の耐食性品質管理システム。
3. A quality control system for stainless steel material that has been descaled or pickled after heat treatment, comprising:
X-ray fluorescence analyzer for detecting "Si and Cr concentration" or "ratio of Si and Cr concentration on steel surface to Si and Cr concentration in metal", and descaling or acid removal based on this detection result A corrosion resistance quality control system for stainless steel, comprising a control device for adjusting washing conditions.
JP26539292A 1992-09-08 1992-09-08 Quality control system for descaling and pickling stainless steel material Pending JPH0688794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26539292A JPH0688794A (en) 1992-09-08 1992-09-08 Quality control system for descaling and pickling stainless steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26539292A JPH0688794A (en) 1992-09-08 1992-09-08 Quality control system for descaling and pickling stainless steel material

Publications (1)

Publication Number Publication Date
JPH0688794A true JPH0688794A (en) 1994-03-29

Family

ID=17416542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26539292A Pending JPH0688794A (en) 1992-09-08 1992-09-08 Quality control system for descaling and pickling stainless steel material

Country Status (1)

Country Link
JP (1) JPH0688794A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208013A (en) * 2005-01-25 2006-08-10 Jfe Steel Kk Measuring instrument of adhesion amount of surface-treated film on metal strip and measuring method
US7103267B2 (en) 1997-01-27 2006-09-05 Fuji Photo Film Co., Ltd. Camera which records positional data of GPS unit
JP2010014721A (en) * 2009-08-28 2010-01-21 Jfe Steel Corp Quality control method and manufacturing method of steel plate with oxide film on surface
JP2012041591A (en) * 2010-08-17 2012-03-01 Fuji Xerox Co Ltd Carbon film forming apparatus, carbon film forming method, member, tool, elastic member, and electrode member
JP2016218022A (en) * 2015-05-26 2016-12-22 国立研究開発法人物質・材料研究機構 Corrosion resistance evaluation method of oxide
WO2021167362A1 (en) * 2020-02-18 2021-08-26 주식회사 포스코 Process control system and operating method therefor
WO2023090093A1 (en) * 2021-11-18 2023-05-25 株式会社神戸製鋼所 Method for calculating film thickness of grain boundary oxide layer, method for determining platability, method for producing plated steel sheet, and apparatus for calculating film thickness

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103267B2 (en) 1997-01-27 2006-09-05 Fuji Photo Film Co., Ltd. Camera which records positional data of GPS unit
JP2006208013A (en) * 2005-01-25 2006-08-10 Jfe Steel Kk Measuring instrument of adhesion amount of surface-treated film on metal strip and measuring method
JP2010014721A (en) * 2009-08-28 2010-01-21 Jfe Steel Corp Quality control method and manufacturing method of steel plate with oxide film on surface
JP2012041591A (en) * 2010-08-17 2012-03-01 Fuji Xerox Co Ltd Carbon film forming apparatus, carbon film forming method, member, tool, elastic member, and electrode member
JP2016218022A (en) * 2015-05-26 2016-12-22 国立研究開発法人物質・材料研究機構 Corrosion resistance evaluation method of oxide
WO2021167362A1 (en) * 2020-02-18 2021-08-26 주식회사 포스코 Process control system and operating method therefor
WO2023090093A1 (en) * 2021-11-18 2023-05-25 株式会社神戸製鋼所 Method for calculating film thickness of grain boundary oxide layer, method for determining platability, method for producing plated steel sheet, and apparatus for calculating film thickness

Similar Documents

Publication Publication Date Title
St-Onge et al. Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel
Liao et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer
KR0159783B1 (en) System for making an on-line determination of degree of alloying in galvannealed steel sheets
CN102269565A (en) Test method of metal transition layer thickness
JPH0688794A (en) Quality control system for descaling and pickling stainless steel material
Wienströer et al. Zinc/Iron phase transformation studies on galvannealed steel coatings by X-ray diffraction
Din et al. Performance comparison of steam-based and chromate conversion coatings on aluminum alloy 6060
JP3817812B2 (en) Calibration method for annealing furnace radiation thermometer
US7646846B2 (en) Method for evaluating press-formability of galvanized steel sheet
JPH07270130A (en) Method of measuring thickness of oxide film
JPH0682363A (en) Evaluation of corrosion resistance of stainless steel pickled material
JP4513425B2 (en) Evaluation method of press formability of galvanized steel sheet
JP4411918B2 (en) Quality control method and manufacturing method of steel sheet having oxide film on surface
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
WO2023090093A1 (en) Method for calculating film thickness of grain boundary oxide layer, method for determining platability, method for producing plated steel sheet, and apparatus for calculating film thickness
JP2018100922A (en) Method of measuring amount of oxide, primary recrystallization annealing method of directional electromagnetic steel sheet, and method of producing directional electromagnetic steel sheet
TWI812437B (en) Method for rapidly evaluating surface discoloration of hot-dip galvanized steel
JP2023075027A (en) Film thickness calculation method for grain boundary oxide layer, plating property determination method, manufacturing method for plated sheet steel, and film thickness calculation device
JP2001033389A (en) Method and apparatus for evaluating corrosion resistance of steel product
RU2811625C1 (en) Method for monitoring presence of chlorides on etched strip
JP6094155B2 (en) Iron oxide analysis method
JP3239793B2 (en) Method for determining the surface properties of chromium-based stainless steel sheets
Suzuki et al. Characterization of surface oxide layers formed on Fe Al alloys by annealing under different atmospheres
JP3318393B2 (en) Measuring method of element concentration on surface of alloy
JP3801037B2 (en) Quantitative analysis method of surface concentrated carbon content of titanium plate and quality control method of titanium product