JPH0687080B2 - Storage facility for spent nuclear fuel in gas - Google Patents

Storage facility for spent nuclear fuel in gas

Info

Publication number
JPH0687080B2
JPH0687080B2 JP63300709A JP30070988A JPH0687080B2 JP H0687080 B2 JPH0687080 B2 JP H0687080B2 JP 63300709 A JP63300709 A JP 63300709A JP 30070988 A JP30070988 A JP 30070988A JP H0687080 B2 JPH0687080 B2 JP H0687080B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
spent nuclear
gas
storage
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63300709A
Other languages
Japanese (ja)
Other versions
JPH02147996A (en
Inventor
和生 吉田
泉 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP63300709A priority Critical patent/JPH0687080B2/en
Publication of JPH02147996A publication Critical patent/JPH02147996A/en
Publication of JPH0687080B2 publication Critical patent/JPH0687080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は使用済み原子燃料のガス中貯蔵設備、特に原子
燃料からの崩壊熱除去に関するものである。
TECHNICAL FIELD The present invention relates to a facility for storing spent nuclear fuel in gas, and more particularly to decay heat removal from nuclear fuel.

(従来技術とその問題点) 再処理までの使用済み燃料の貯蔵方式として、使用済み
原子燃料集合体を除熱性の高い水、或いは液体金属中に
浸漬する方法が従来一般的に行われているが、最近これ
に代るものとして不活性ガス,空気などのガス中に貯蔵
する方法が提案されている。
(Prior art and its problems) As a method of storing spent fuel until reprocessing, a method of immersing spent nuclear fuel assemblies in highly heat-removing water or liquid metal has been generally used. However, recently, a method of storing in a gas such as an inert gas or air has been proposed as an alternative.

これは例えば第1図に示すように所要厚のコンクリート
により形成された燃料貯蔵セル(1)中に通ずる、放射
性塵の除去フィルタ(2)、ガス冷却器(3)、循環用
ブロア(4)などからなるガス冷却循環系を設けて、移
送機(5)によりセル(1)内の貯蔵ラック(6)、即
ち第2図に示す部分図のようにガス流路(6a)をそれぞ
れ有する上下支持板(6b)(6c)および仕切板(6d)と
からなる貯蔵ラック(6)に保持された使用済み原子燃
料集合体(7)(以下使用済み原子燃料(7)という)
の周囲に、共通ガス通路(6e)を介して下方から上方に
冷却ガス(8)を循環させる。そしてこの冷却ガス流に
より使用済み原子燃料(7)内に生じた崩壊熱をセル
(1)外に運び去って安全に保管しようとするものであ
る。
This is, for example, as shown in FIG. 1, a radioactive dust removal filter (2), a gas cooler (3), a circulation blower (4) communicating with a fuel storage cell (1) formed of concrete of a required thickness. By providing a gas cooling circulation system consisting of, etc., a storage rack (6) in the cell (1) by the transfer machine (5), that is, a top and bottom having gas flow paths (6a) as shown in the partial view of FIG. A spent nuclear fuel assembly (7) (hereinafter referred to as a spent nuclear fuel (7)) held on a storage rack (6) including a support plate (6b) (6c) and a partition plate (6d).
A cooling gas (8) is circulated from the lower side to the upper side through a common gas passage (6e). Then, the decay heat generated in the spent nuclear fuel (7) by this cooling gas flow is carried away to the outside of the cell (1) for safe storage.

この方式は液体による貯蔵方式と比較して設備を簡素化
を図りうることなどから、合理的な貯蔵方式として注目
され、将来の導入が検討されている。
This method has attracted attention as a rational storage method because it can simplify the equipment compared to the liquid storage method, and its introduction in the future is under consideration.

しかし周知のようにガスは液体に比較して除熱性能が劣
るため、使用済み原子燃料(7)を貯蔵に安全な温度に
保つためには、それだけ容量の大きいガス冷却系統を設
けるほか、冷却系統の容量に合わせて貯蔵すべき使用済
み原子燃料(7)の数を少なくなるなどの手段をとる必
要があり、それだけ貯蔵コストの増大を招く。
However, as is well known, the heat removal performance of gas is inferior to that of liquid, so in order to maintain the temperature at which the spent nuclear fuel (7) is safe for storage, a gas cooling system with a correspondingly large capacity must be installed and cooling must be performed. It is necessary to take measures such as reducing the number of spent nuclear fuels (7) to be stored according to the capacity of the system, which leads to an increase in storage cost.

(発明の目的) 本発明は貯蔵セル内に簡単な手段を設けるのみで、貯蔵
能力の増大を図りうる使用済み原子燃料の貯蔵設備を提
供し、液体貯蔵に対するガス貯蔵性の優位性を更に向上
しうるようにしたものである。
(Object of the Invention) The present invention provides a storage facility for spent nuclear fuel capable of increasing the storage capacity only by providing a simple means in the storage cell, and further improves the gas storage property superior to the liquid storage. It was made possible.

(問題点を解決するための本発明の手段) 本発明の特徴とするところは次の点にある。即ち一実施
例を示す第3図(a)および(b)の縦断面図及び断面
平面図(第1図,第2図と同一符号部分は同等部分を示
す)のように、使用済み原子燃料(7)のそれより径が
大きく両端に開口部(9a)(9b)を持つ筒状の高空隙多
孔質体、例えば空隙率が90%或いはそれ以上の多孔質体
または層状に金網を重ねた筒状の多孔質体(9)を、貯
蔵ラック(6)の上下支持板(6b)(6c)により支持し
て各貯蔵部の冷却ガス通路内に設ける。そしてその内部
に間隔をおいて貯蔵すべき使用済み原子燃料(7)を差
し込んで周面を包みこむようにして、第4図に示す伝熱
メカニズムが形成されるようにした点にある。
(Means of the Present Invention for Solving Problems) The features of the present invention are as follows. That is, as shown in the longitudinal sectional view and sectional plan view of FIGS. 3 (a) and 3 (b) showing one embodiment (the same reference numerals as those in FIGS. 1 and 2 denote the same parts), the spent nuclear fuel A cylindrical high void porous body having a diameter larger than that of (7) and having openings (9a) and (9b) at both ends, for example, a porous body having a porosity of 90% or more or layered wire mesh. The cylindrical porous body (9) is supported by the upper and lower support plates (6b) (6c) of the storage rack (6) and provided in the cooling gas passage of each storage unit. Then, the spent nuclear fuel (7) to be stored is inserted into the inside thereof to wrap around the peripheral surface so that the heat transfer mechanism shown in FIG. 4 is formed.

このようにすれば第4図のAに示す、使用済み原子燃料
(7)のチャンネルボックス或いはラッパー管(7a)の
燃料崩壊熱(a)による加熱より生ずる下方から上方へ
の自然対流の他に、図中Bに示すように燃料崩壊熱
(a)にもとづく輻射熱(b)により加熱されて高温と
なる筒状高空隙多孔質体(9)周面の活発な上昇自然対
流を生ずる。即ち、高空隙多孔質体(9)は通常の板材
の表面積に比較して極めて高い倍率の表面積を有するも
ので、高温面からの輻射を受ける面積が大きく、輻射に
よる伝熱が促進されると共に3次元的にランダムな網目
構造であり、表面の向きが一定でないため乱反射の効果
により、平坦な面を持つ板と比較して高温面方向に反射
する輻射の量が小さく、結果として輻射を吸収し易くな
る(放射率を高める)という効果を有する。そしてこれ
らの熱は使用済み原子燃料(7)と高空隙多孔質体
(9)間、および高空隙多孔質体(9)と貯蔵ラックの
仕切板(6d)間をそれぞれ上昇する冷却ガス(8)によ
り貯蔵セル(1)外に運び去られる。また、自然対流に
よる伝熱が促進されることにより、高空隙多孔質体
(9)側の温度が低下し、使用済み原子燃料(7)側と
の温度差が大きくなり、輻射による伝熱がさらに促進さ
れるという作用も奏する。従って高空隙多孔質体(9)
を設けることにより崩壊熱の除熱機能を従来のものより
増進させることが可能となる。
In this way, in addition to the natural convection from the lower side to the upper side, which is caused by the heating of the spent nuclear fuel (7) in the channel box or the wrapper tube (7a) by the fuel decay heat (a) shown in A of FIG. As shown by B in the figure, active natural convection on the peripheral surface of the cylindrical high void porous body (9) is generated, which is heated by the radiant heat (b) based on the fuel decay heat (a) to reach a high temperature. That is, the highly void porous body (9) has a surface area with an extremely high magnification as compared with the surface area of a normal plate material, has a large area to receive radiation from a high temperature surface, and promotes heat transfer by radiation. It has a three-dimensionally random mesh structure, and the direction of the surface is not constant, so due to the effect of diffuse reflection, the amount of radiation reflected in the direction of the high temperature surface is small compared to a plate with a flat surface, and as a result, the radiation is absorbed. This has the effect of making it easier (increasing the emissivity). Then, these heats rise between the spent nuclear fuel (7) and the high void porous body (9), and between the high void porous body (9) and the partition plate (6d) of the storage rack (8). ) Is carried away from the storage cell (1). Further, by promoting heat transfer by natural convection, the temperature on the high void porous body (9) side decreases, the temperature difference with the spent nuclear fuel (7) side increases, and heat transfer by radiation is increased. It also has the effect of being further promoted. Therefore, high void porous body (9)
With the provision of, it becomes possible to improve the heat removal function of decay heat more than the conventional one.

第5図は同一発熱量の使用済み原子燃料集合体を貯蔵時
の熱流束と使用済み原子燃料(7)の表面温度との関係
を筒状高空隙多孔質体(9)の有無について実験的に求
めた図である。なおこの場合高空隙多孔質体(9)とし
て住友電気工業株式会社製セルメット(商品名)により
作られたものを用いた。
Fig. 5 shows the relationship between the heat flux and the surface temperature of the spent nuclear fuel (7) during storage of spent nuclear fuel assemblies with the same heating value, in the presence or absence of the cylindrical high void porous body (9). It is the figure asked for. In this case, the high void porous material (9) used was made by Sumitomo Electric Industries, Ltd. Celmet (trade name).

このセルメットは、ニッケルをベースとした合金を3次
元の骨格構造に成形したものであり、軽量であって単位
体積当りの表面積が大きいという特長を持っている。即
ち、板厚5mmのセルメットの場合、通常の板材の約15倍
の表面積を持っており、厚さを増せばこの比率はさらに
大きくなるものである。
This celmet is a nickel-based alloy molded into a three-dimensional skeleton structure, and is characterized by being lightweight and having a large surface area per unit volume. That is, in the case of Celmet having a plate thickness of 5 mm, the surface area is about 15 times as large as that of a normal plate material, and if the thickness is increased, this ratio is further increased.

これから明らかなように代表的な使用済み原子燃料集合
体のガス貯蔵時の発熱量に相当する熱流束(8KW/cm2
における使用済み原子燃料集合体の表面温度は、高空隙
多孔質体無設置の場合には図中のA曲線から約370℃、
設置した場合には図中B曲線から約320℃となり、高空
隙多孔質体の使用によって貯蔵される使用済み原子燃料
集合体の表面温度を約50℃と大幅に低くすることが可能
となる。従ってそれだけガス冷却容量の増大を少なくで
きる。また高空隙多孔質体は安価軽量であって構造も簡
単で実施が容易であるので、試算によれば同一表面温度
だけ低下させるに必要なガス冷却容量の増大に比較し
て、要する費用は格段に安価である。これに加えて高空
隙多孔質体は駆動電力を全く必要としないため、高空隙
多孔質体による表面温度の低下を冷却ガスにより行う場
合に比べて要する電力は少なくなり、運転費の低減が可
能となる。
As is clear from this, the heat flux (8KW / cm 2 ) corresponding to the heat value of typical spent nuclear fuel assemblies during gas storage.
The surface temperature of the spent nuclear fuel assembly in the above is about 370 ° C from the curve A in the figure when the high void porous body is not installed,
When installed, the temperature is about 320 ° C. from the curve B in the figure, and the surface temperature of the spent nuclear fuel assembly stored by using the high void porous body can be significantly reduced to about 50 ° C. Therefore, the increase in gas cooling capacity can be reduced accordingly. In addition, since the highly voided porous body is cheap and lightweight, has a simple structure, and is easy to implement, according to a trial calculation, the cost required is much higher than the increase in the gas cooling capacity required to lower the same surface temperature. It is cheap. In addition, the high void porous body does not require any driving power, so less power is required compared to the case where the cooling gas is used to lower the surface temperature due to the high void porous body, and the operating cost can be reduced. Becomes

以上本発明を一実施例について説明したが、第3図中で
点線で示すように高空隙多孔質体(9)を複数段(図で
は2段)設けて除熱効果を増すことができる。
Although the present invention has been described with reference to one embodiment, the heat removal effect can be enhanced by providing a plurality of highly void porous bodies (9) in a plurality of stages (two stages in the figure) as shown by a dotted line in FIG.

(発明の効果) 以上の説明から明らかなように本発明によれば、従来の
ものより貯蔵性能のすぐれたガス使用済み原子燃料貯蔵
設備を提供しうるすぐれた効果が得られる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the excellent effect of providing a gas spent nuclear fuel storage facility having better storage performance than the conventional one can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はガス使用済み原子燃料貯蔵設備の
説明図、第3図は本発明の一実施例図の説明図,第4図
はその伝熱メカニズム図、第5図は伝熱促進効果を示す
実験例図である。 (1)……貯蔵セル、(2)……除塵フィルタ、(3)
……ガス冷却器、(4)……循環用ブロア、(5)……
移送器、(6)……貯蔵ラック、(6a)……ガス流路、
(6b)(6c)……支持板、(6d)……仕切板、(6e)…
…共通ガス通路、(7)……使用済み原子燃料集合体、
(7a)……チャンネルボックス,ラッパー管等、(8)
……冷却ガス、(9)……筒状高空隙多孔質体、(9a)
(9b)……開口部。
1 and 2 are explanatory views of a spent nuclear fuel storage facility for gas, FIG. 3 is an explanatory view of an embodiment of the present invention, FIG. 4 is its heat transfer mechanism diagram, and FIG. 5 is heat transfer. It is an experimental example figure which shows a promotion effect. (1) ... storage cell, (2) ... dust filter, (3)
…… Gas cooler, (4) …… Circulation blower, (5) ……
Transfer device, (6) …… Storage rack, (6a) …… Gas flow path,
(6b) (6c) …… Support plate, (6d) …… Partition plate, (6e)…
… Common gas passage, (7) …… Spent nuclear fuel assembly,
(7a) …… Channel box, wrapper tube, etc. (8)
…… Cooling gas, (9) …… Cylindrical high void porous body, (9a)
(9b) …… Aperture.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】使用済み原子燃料の貯蔵セル内に冷却ガス
を供給して使用済み原子燃料を貯蔵する設備において、
前記使用済み原子燃料の周囲の冷却ガス通路に、該使用
済み原子燃料を囲むように筒状の高空隙多孔質体を設け
たことを特徴とする使用済み原子燃料のガス中貯蔵設
備。
1. A facility for storing a spent nuclear fuel by supplying a cooling gas into a spent nuclear fuel storage cell,
A storage facility for spent nuclear fuel in a gas, characterized in that a cylindrical high void porous body is provided in a cooling gas passage around the spent nuclear fuel so as to surround the spent nuclear fuel.
JP63300709A 1988-11-30 1988-11-30 Storage facility for spent nuclear fuel in gas Expired - Lifetime JPH0687080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300709A JPH0687080B2 (en) 1988-11-30 1988-11-30 Storage facility for spent nuclear fuel in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300709A JPH0687080B2 (en) 1988-11-30 1988-11-30 Storage facility for spent nuclear fuel in gas

Publications (2)

Publication Number Publication Date
JPH02147996A JPH02147996A (en) 1990-06-06
JPH0687080B2 true JPH0687080B2 (en) 1994-11-02

Family

ID=17888147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300709A Expired - Lifetime JPH0687080B2 (en) 1988-11-30 1988-11-30 Storage facility for spent nuclear fuel in gas

Country Status (1)

Country Link
JP (1) JPH0687080B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117996A (en) * 1984-07-04 1986-01-25 株式会社日立製作所 Method of storing heat-generating radioactive substance

Also Published As

Publication number Publication date
JPH02147996A (en) 1990-06-06

Similar Documents

Publication Publication Date Title
JP5837981B2 (en) Improvement for solar collector receiver tube
JP2001033577A (en) Corrosion reducing system for liquid metal reactor provided with passive decay heat removal system
JPS5952796B2 (en) Insulation device for reactor main vessel
JPH0687080B2 (en) Storage facility for spent nuclear fuel in gas
BR112020001382A2 (en) nuclear fusion reactor, thermal device, external combustion engine, power generation device and moving object
JPS6147360B2 (en)
US3627633A (en) Unique metal hydride controlled reactors
RU2187853C2 (en) Method and device for initiating reaction between hydrogen and oxygen in reactor containment
JP6670005B2 (en) Post-Use Nuclear Fuel Passive Cooling System Using Heat Pipe
JPH06294891A (en) Storage facility for spent fuel
US4038135A (en) Plate type nuclear fuel element and a method of fabrication of said element
JPH0213888A (en) Controller for nuclear reactor capsulated with neutron absorbing substance
JP2004324715A (en) Hydrogen supply unit
US3769161A (en) Reactor vessel supporting device
JPH0452213A (en) Vacuum furnace
JPS61244997A (en) Hydrogen gas storage container
JPS63311046A (en) Thermal accumulation type hot water feeding method and its apparatus
JPH0565037B2 (en)
JPS62167202A (en) Device for recovering, storing, and supplying hydrogen isotope
RU2222062C2 (en) Nuclear reactor for space nuclear power plant
JPH0151947B2 (en)
JPS6222883A (en) Rapid heating device
JP2000337709A (en) Heat storage apparatus
JPH10268082A (en) Spent nuclear fuel storing facility
JPS62151793A (en) In-pile fuel storage device