JPH0686223B2 - Power steering device - Google Patents

Power steering device

Info

Publication number
JPH0686223B2
JPH0686223B2 JP58086598A JP8659883A JPH0686223B2 JP H0686223 B2 JPH0686223 B2 JP H0686223B2 JP 58086598 A JP58086598 A JP 58086598A JP 8659883 A JP8659883 A JP 8659883A JP H0686223 B2 JPH0686223 B2 JP H0686223B2
Authority
JP
Japan
Prior art keywords
oil passage
oil
pressure
valve
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58086598A
Other languages
Japanese (ja)
Other versions
JPS59213564A (en
Inventor
元 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP58086598A priority Critical patent/JPH0686223B2/en
Priority to KR1019840000454A priority patent/KR890001395B1/en
Priority to US06/599,673 priority patent/US4621704A/en
Priority to GB08410787A priority patent/GB2141083B/en
Priority to FR8407735A priority patent/FR2546121B1/en
Priority to DE19843418563 priority patent/DE3418563A1/en
Publication of JPS59213564A publication Critical patent/JPS59213564A/en
Publication of JPH0686223B2 publication Critical patent/JPH0686223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Description

【発明の詳細な説明】 本発明は、ハウジング内に同軸的に回動自在に支持され
且つ互いに相対回動可能にトーションバーを介して弾性
的に連結された入力軸と出力軸、ステアリングハンドル
操舵操作に伴う前記入力軸と前記出力軸との相対回転に
応じて同出力軸にアシスト力を作用するパワーシリンダ
への作動油の給排を制御する油路切換弁、オイルポンプ
から前記油路切換弁へ延びた高圧油路、前記油路切換弁
からオイルタンクへ延びた低圧油路、前記高圧油路を流
れる作動油の一部が反力ピストンに導かれて同作動油の
油圧力により同反力ピストンが少なくとも入力軸或いは
出力軸の径方向に駆動して前記トーションバーの捩れを
規制する反力機構とを具えたパワーステアリング装置に
おいて、前記高圧油路から前記反力ピストンへ延びた油
路の途中から岐れた並列油路と、同並列油路の一方に設
けた第2のオリフィスと、前記並列油路の双方からの作
動油の排出量を車速に応じて可変とする流量制御バルブ
と、同流量制御バルブの下流側の前記オイルタンクへ延
びる油路に設けられ流量に応じた主パイロット圧を生じ
させる第1のオリフイスと、同主パイロット圧により作
動して前記第2オリフイス上流の前記反力ピストンへの
油圧を車速毎一定に且つ高速時ほど高くなるように制御
する圧力制御バルブとを具えている。
The present invention relates to an input shaft and an output shaft, which are coaxially and rotatably supported in a housing and elastically coupled to each other via a torsion bar, and a steering wheel steering wheel. An oil passage switching valve that controls the supply and discharge of hydraulic oil to and from a power cylinder that exerts an assist force on the output shaft according to the relative rotation of the input shaft and the output shaft due to operation, and the oil passage is switched from an oil pump. The high pressure oil passage extending to the valve, the low pressure oil passage extending from the oil passage switching valve to the oil tank, and a part of the hydraulic oil flowing through the high pressure oil passage is guided to the reaction force piston to generate the same pressure due to the hydraulic pressure of the hydraulic oil. In a power steering device including a reaction force mechanism in which a reaction force piston is driven at least in a radial direction of an input shaft or an output shaft to restrict torsion of the torsion bar, a power steering device extends from the high pressure oil passage to the reaction force piston. The parallel oil passage diverged from the middle of the parallel oil passage, the second orifice provided in one of the parallel oil passages, and the discharge amount of the hydraulic oil from both of the parallel oil passages are made variable according to the vehicle speed. A flow rate control valve, a first orifice provided in an oil passage extending to the oil tank downstream of the flow rate control valve to generate a main pilot pressure according to a flow rate, and the second orifice operated by the main pilot pressure. And a pressure control valve for controlling the hydraulic pressure to the reaction force piston upstream of the orifice so that it is constant at each vehicle speed and becomes higher at higher vehicle speeds.

また本発明は、ハウジング内に同軸的に回動自在に支持
され且つ互いに相対回動可能にトーションバーを介して
弾性的に連結された入力軸と出力軸、ステアリングハン
ドル操舵操作に伴う前記入力軸と前記出力軸との相対回
転に応じて同出力軸にアシスト力を作用するパワーシリ
ンダへの作動油の給排を制御する油路切換弁、オイルポ
ンプから前記油路切換弁へ延びた高圧油路、前記油路切
換弁からオイルタンクへ延びた低圧油路、前記高圧油路
を流れる作動油の一部が反力ピストンに導かれて同作動
油の油圧力により同反力ピストンが少なくとも入力軸或
いは出力軸の径方向に駆動して前記トーションバーの捩
れを規制する反力機構とを具えたパワーステアリング装
置において、前記高圧油路から前記反力ピストンへ延び
た油路の途中から岐れた並列油路と、同並列油路の一方
に設けた第2のオリフィスと、前記並列油路の双方から
の作動油の排出量を車速に応じて可変とする流量制御バ
ルブと、同流量制御バルブの下流側の前記オイルタンク
へ延びる油路に設けられ流量に応じた主パイロット圧を
生じさせる第1のオリフイスと、同主パイロット圧によ
り作動して前記第2オリフイス上流の前記反力ピストン
への油路の油圧を車速毎一定に且つ高速時ほど高くなる
ように制御する圧力制御バルブと、前記反力ピストンへ
延びる油路と前記高圧油路との間に設けられ高速時の操
舵しない中立位置近傍のときだけ前記並列油路の一方に
設けた第2のオリフイスと前記流量制御バルブとの間に
生じるパイロット圧により閉方向に作動して前記反力ピ
ストンへの油路の油圧を所定値上昇させるチェンジ・オ
ーバ・バルブとを具えている。
The present invention also provides an input shaft and an output shaft, which are coaxially rotatably supported in a housing and elastically coupled to each other via a torsion bar so that they can rotate relative to each other, and the input shaft associated with a steering handle steering operation. And an oil passage switching valve that controls the supply and discharge of hydraulic oil to and from a power cylinder that applies an assisting force to the output shaft according to the relative rotation between the output shaft and the output shaft, and high-pressure oil that extends from the oil pump to the oil passage switching valve. Passage, a low-pressure oil passage extending from the oil passage switching valve to the oil tank, and part of the hydraulic oil flowing in the high-pressure oil passage is guided to the reaction force piston, and at least the reaction force piston is input by the oil pressure of the operation oil. In a power steering device including a reaction force mechanism that drives in a radial direction of a shaft or an output shaft to regulate the torsion of the torsion bar, in an oil passage extending from the high pressure oil passage to the reaction force piston Parallel oil passage, a second orifice provided in one of the parallel oil passages, a flow rate control valve for varying the discharge amount of hydraulic oil from both of the parallel oil passages according to the vehicle speed, and the same flow rate. A first orifice provided in an oil passage extending to the oil tank downstream of the control valve to generate a main pilot pressure according to a flow rate, and the reaction piston upstream of the second orifice operated by the main pilot pressure. Is provided between the pressure control valve that controls the oil pressure of the oil passage to the vehicle to be constant at each vehicle speed and becomes higher at higher speeds, and the oil passage extending to the reaction force piston and the high pressure oil passage, and does not steer at high speed. Only in the vicinity of the neutral position, the pilot pressure generated between the second orifice provided in one of the parallel oil passages and the flow control valve operates in the closing direction to set the oil pressure of the oil passage to the reaction piston to a predetermined value. Price increase And it includes a change-over valve to.

また本発明は、ハウジング内に同軸的に回動自在に支持
され且つ互いに相対回動可能にトーションバーを介して
弾性的に連結された入力軸と出力軸と、ステアリングハ
ンドル操舵操作に伴う前記入力軸と前記出力軸との相対
回転に応じて同出力軸にアシスト力を作用するパワーシ
リンダへの作動油の給排を制御する油路切換弁、オイル
ポンプから前記油路切換弁へ延びた高圧油路、前記油路
切換弁からオイルタンクへ延びた低圧油路、前記高圧油
路を流れる作動油の一部が反力ピストンに導かれて同作
動油の油圧力により同反力ピストンが少なくとも入力軸
或いは出力軸の径方向に駆動して前記トーションバーの
捩れを制する反力機構とを具えたパワーステアリング装
置において、前記高圧油路から前記反力ピストンへ延び
た油路の途中から岐れた並列油路と、同並列油路の一方
に設けた第2のオリフイスと、前記並列油路の双方から
の作動油の排出量を車速に応じて可変とする流量制御バ
ルブと、同流量制御バルブの下流側の前記オイルタンク
へ延びる油路に設けられ流量に応じた主パイロット圧を
生じさせる第1のオリフイスと、同主パイロット圧によ
り作動して前記第2オリフイス上流の前記反力ピストン
への油圧を車速毎一定に且つ高速時ほど高くなるように
制御する圧力制御バルブと、同圧力制御バルブ下流側に
延びる油路と前記流量制御バルブの下流側の前記オイル
タンクに延びる油路とを結ぶ油路の途中に設けられ前記
圧力制御バルブの下流側から低圧油路への流量を前記流
量制御バルブ下流側の第1のオリフイスから前記低圧油
路への増域に対応してそれが減少すれば増やすように調
整する第3のオリフイスとを具えている。
Further, according to the present invention, an input shaft and an output shaft, which are coaxially rotatably supported in a housing and elastically connected to each other via a torsion bar so as to be rotatable relative to each other, and the input according to a steering operation of a steering wheel. Oil passage switching valve that controls the supply and discharge of hydraulic oil to and from a power cylinder that applies an assist force to the output shaft in accordance with the relative rotation between the output shaft and the output shaft, and a high pressure that extends from the oil pump to the oil passage switching valve. Part of the hydraulic oil flowing through the oil passage, the low-pressure oil passage extending from the oil passage switching valve to the oil tank, and the high-pressure oil passage is guided to the reaction force piston, and the reaction force piston causes at least the reaction force piston to move at least. In a power steering device including a reaction force mechanism that drives in a radial direction of an input shaft or an output shaft to control the torsion of the torsion bar, in an oil passage extending from the high pressure oil passage to the reaction force piston Parallel oil passage, a second orifice provided on one of the parallel oil passages, a flow control valve for varying the discharge amount of hydraulic oil from both of the parallel oil passages according to the vehicle speed, and the same flow rate. A first orifice provided in an oil passage extending to the oil tank downstream of the control valve to generate a main pilot pressure according to a flow rate, and the reaction piston upstream of the second orifice operated by the main pilot pressure. A pressure control valve for controlling the oil pressure to the vehicle so that it is constant at each vehicle speed and becomes higher at higher speeds; an oil passage extending downstream of the pressure control valve; and an oil passage extending to the oil tank downstream of the flow control valve. Corresponding to an increase in the flow rate from the downstream side of the pressure control valve to the low pressure oil passage, which is provided in the middle of the oil passage connecting to the low pressure oil passage, from the first orifice on the downstream side of the flow control valve to the low pressure oil passage. Decrease And comprising a third orifice to adjust to increase if.

本発明の目的とする処は、停車・低速時には反力ピスト
ンへの油圧を低く一定に保持して軽い操舵感を持たせ、
逆に高速時には油圧を高く一定に保持して適度な手応え
を持たせることができる。また高速時に操舵しないステ
アンリグハンドルの中立位置近傍でも、オイルポンプか
らの吐出圧を積極的に増加させることができて、剛性感
を得ることができる。さらに高圧油路から油路切換弁へ
の作動油の流れを一定にできて、油路切換弁の制御特性
を安定化できるパワーステアリング装置を提供しようと
する点にある。
The object of the present invention is to keep the hydraulic pressure to the reaction force piston low and constant at the time of stopping and low speed to give a light steering feeling,
On the contrary, at high speeds, the hydraulic pressure can be kept high and constant to provide an appropriate response. Further, the discharge pressure from the oil pump can be positively increased even in the vicinity of the neutral position of the steering rig handle that is not steered at high speed, and a sense of rigidity can be obtained. Further, another object of the present invention is to provide a power steering device that can make the flow of hydraulic oil from the high-pressure oil passage to the oil passage switching valve constant and stabilize the control characteristics of the oil passage switching valve.

次に本発明のパワーステアリング装置を第1図乃至第25
図示す一実施例により説明する。先ず第1図によりその
概略を説明すると,(1)がエンジン(図示せず)によ
り駆動されるオイルポンプで,同オイルポンプ(1)
は,流量が一定(7/min程度)の,吐出圧が可変(5k
g/cm2〜70kg/cm2)のオイルポンプである。また(2)
が四方向油路切換弁(ロータリバルブ),(3)が操舵
用パワーシリンダ,(4)がオイルタンク,(5)が複
数個の反力ピストン,(6)が同各反力ピストン(5)
の背後に形成したチヤンバー,(7a)が上記オイルポン
プ(1)から上記油路切換弁(2)へ延びた高圧油路,
(8a)が同油路切換弁(2)から上記オイルタンク
(4)へ延びた低圧油路,(9a)(10a)が上記油路切
換弁(2)から上記パワーシリンダ(3)へ延びた油
路,(a)が上記高圧油路(7a)の途中に設けた主オリ
フイス,(7b)が同主オリフイス(a)の上流側及び下
流側の高圧油路(7a)に接続したバイパス油路,(11)
が同バイパス油路(7a)の途中に介装した油圧増大手段
を構成するチエンジ・オーバ・バルブ(COV),(12)
が同チエンジ・オーバ・バルブ(11)の上流側の油路
(7b)に油路(7c)を介して接続した圧力制御バルブ,
(13)が流量制御バルブ,(7d)が上記圧力制御バルブ
(12)から延びた油路で,同油路(7d)から岐れた一対
の並列油路(7e)(7e′)が上記ソレノイドバルブ(1
3)へ延びている。また(7d1)が上記油路(7d)の途中
から上記圧力制御バルブ(12)へ延びた副パイロット油
路,(7d2)が上記油路(7d)の途中から前記反力ピス
トン(5)の背後のチヤンバー(6)へ延びた油路,
(7d3)が上記油路(7d)の途中から低圧油路(8b)へ
延びた油路,(b)(c)がそれぞれ上記油路(7e)の
途中に設けた第2,第4のオリフイス,(7e1)が同オリ
フイス(b)(c)の間の油路(7e)から前記チエンジ
・オーバ・バルブ(COV)(11)へ延びたCOVパイロツト
油路,(e)が上記油路(7d3)の途中に設けた第3の
オリフイス,(7f)が上記ソレノイドバルブ(13)から
上記低圧油路(8b)へ延びた油路,(d)が同油路(7
f)の途中に設けた第1のオリフイス,(7f1)が同第1
のオリフイス(d)の上流側の油路(7f)から前記圧力
制御バルブ(12)へ延びた主パイロット油路,(14)が
車速センサー,(15)が制御装置,(16)がイグニシヨ
ンスイツチ,(17)がイグニシヨンコイル,(18a)(1
8b)が上記制御装置(15)から上記ソレノイドバルブ
(13)の電磁コイルへ延びた配線で,上記車速センサー
(14)は,車速を検出し,その結果得られたパルス信号
(車速に応じたパルス信号)を制御装置(15)へ送出す
るように,また同制御装置(15)は,同パルス信号に対
応した電流(所定の高速時の電流零(i=0)から停止
車時の電流最大(i=1)までの車速に対応した電流)
をソレノイドバルブ(13)の電磁コイル(57)へ送出し
て,ソレノイドバルブ(13)のプランジヤ(52)及びス
プール(51)を上記電流値に応じた所定位置に保持する
ようになっている。
Next, the power steering device of the present invention will be described with reference to FIGS.
This will be described with reference to an embodiment shown in the figure. First, the outline will be described with reference to FIG. 1. (1) is an oil pump driven by an engine (not shown).
Has a constant flow rate (about 7 / min) and a variable discharge pressure (5k
It is an oil pump of g / cm 2 to 70 kg / cm 2 . Also (2)
Is a four-way oil passage switching valve (rotary valve), (3) is a power cylinder for steering, (4) is an oil tank, (5) is a plurality of reaction force pistons, and (6) is each reaction force piston (5 )
A chamber (7a) formed behind the high pressure oil passage extending from the oil pump (1) to the oil passage switching valve (2),
(8a) extends from the oil passage switching valve (2) to the oil tank (4), and low pressure oil passages (9a) and (10a) extends from the oil passage switching valve (2) to the power cylinder (3). Oil passage, (a) is a main orifice provided in the middle of the high pressure oil passage (7a), and (7b) is a bypass connected to the high pressure oil passage (7a) upstream and downstream of the main orifice (a). Oilways, (11)
Is a changeover valve (COV), (12) that constitutes hydraulic pressure increasing means interposed in the middle of the bypass oil passage (7a)
Is a pressure control valve connected to the oil passage (7b) upstream of the changeover valve (11) via the oil passage (7c),
(13) is a flow control valve, (7d) is an oil passage extending from the pressure control valve (12), and a pair of parallel oil passages (7e) (7e ') diverged from the oil passage (7d) are the above. Solenoid valve (1
It extends to 3). Further, (7d 1 ) is a sub pilot oil passage extending from the middle of the oil passage (7d) to the pressure control valve (12), and (7d 2 ) is a portion of the oil passage (7d) from the reaction piston (5). ), An oil passage extending to the chamber (6) behind
(7d 3 ) is an oil passage extending from the middle of the oil passage (7d) to the low pressure oil passage (8b), and (b) and (c) are second and fourth oil passages provided in the middle of the oil passage (7e), respectively. Is the COV pilot oil passage (7e 1 ) extending from the oil passage (7e) between the orifices (b) and (c) to the changeover valve (COV) (11), and (e) is the above. A third orifice provided in the middle of the oil passage (7d 3 ), an oil passage (7f) extending from the solenoid valve (13) to the low pressure oil passage (8b), and (d) an oil passage (7).
The first orifice, (7f 1 ), provided in the middle of f), is the first
Main pilot oil passage extending from the oil passage (7f) upstream of the orifice (d) to the pressure control valve (12), (14) a vehicle speed sensor, (15) a control device, and (16) an ignition. Switch, (17) is ignition coil, (18a) (1
8b) is a wiring extending from the control device (15) to the electromagnetic coil of the solenoid valve (13), the vehicle speed sensor (14) detects the vehicle speed, and a pulse signal (responding to the vehicle speed) obtained as a result is detected. So that the pulse signal) is sent to the control device (15), and the control device (15) responds to the current corresponding to the pulse signal (current zero at a predetermined high speed (i = 0) to current when the vehicle is stopped). (Current corresponding to vehicle speed up to maximum (i = 1))
Is sent to the electromagnetic coil (57) of the solenoid valve (13) to hold the plunger (52) and the spool (51) of the solenoid valve (13) at a predetermined position according to the current value.

次に前記油路切換弁(2)とチエンジ・オーバ・バルブ
(11)と圧力制御バルブ(12)とソレノイドバルブ(1
3)とを第2図乃至第21図により具体的に説明する。第
2図乃至第7図の(20)がバルブハウジングで,上記各
バルブ(2)(11)(12)(13)は同バルブハウジング
(20)内に組み込まれている。
Next, the oil passage switching valve (2), the changeover valve (11), the pressure control valve (12), and the solenoid valve (1
3) and will be specifically described with reference to FIGS. 2 to 21. 2 to 7 shows a valve housing (20), and the valves (2), (11), (12) and (13) are incorporated in the valve housing (20).

先ず油路切換弁(2)を第2図により具体的に説明する
と,(21)がステアリングハンドル(図示せず)により
操作される入力軸,第2,3図の(23)が上下の軸受によ
りバルブハウジング(20)内に回転可能に支持された出
力軸を構成するシリンダブロツク,(22)が上記入力軸
(21)内に挿入したトーシヨンバーで,同トーシヨンバ
ー(22)は,その上部が入力軸(21)の上部に,その下
部がシリンダブロツク(23)に,それぞれ固定され,同
トーシヨンバー(22)の捩じれによる入力軸(21)とシ
リンダブロツク(23)との相対的な回転角度差を許容す
るように構成されている。また(21a)が上記入力軸(2
1)の下部外周面に設けた複数個の縦溝で,上記シリン
ダブロツク(23)には,同各縦溝(21a)に対向してシ
リンダが設けられ,同各シリンダに前記反力ピストン
(5)が嵌挿されて,同各反力ピストン(5)の先端に
設けた突起が同各縦溝(21a)に係合している。また同
各反力ピストン(5)の背後のチヤンバー(6)は,シ
リンダブロツク(23)とバルブハウジング(20)との間
に形成されており,環状溝(6′)に連通している。ま
た(23a)が上記シリンダブロツク(23)に一体のピニ
オン,(24a)が同ピニオン(23a)に噛合したラツク,
(24)がラツクサポート,(26)がキヤツプ,(25)が
同キヤツプ(26)と上記ラツクサポート(24)との間に
介装したバネ,(28)が上記シリンダブロツク(23)の
直上のバルブハウジング(20)内に固定した油路切換弁
(2)のスリーブ,(28a)(28b)(28c)が同スリー
ブ(28)の外周面に設けた油路,(27)が同スリーブ
(28)と上記入力軸(21)との間に嵌挿されたバルブボ
デイ,(23b)が同バルブボデイ(27)の下端部と上記
シリンダブロツク(23)の上端部とを連結するピン,
(27a)(27b)(27c)が上記バルブボデイ(27)の外
周面に設けた油路である。上記構成において,ステアリ
ングハンドルが中立位置にあるときには,高圧油路(7
a)がバルブボデイ(27)の油路(27a)とスリーブ(2
8)の油路(28a)とを介して入力軸(21)とトーシヨン
バー(22)との間のチヤンバー(29)に連通して,オイ
ルポンプ(1)からの作動油が高圧油路(7a)→油路
(28a)→油路(27a)→チヤンバー(29)(なお油路
(27a)とチヤンバー(29)との間の油路は図示せず)
→低圧油路(8a)→オイルタンク(4)→オイルポンプ
(1)に循環するようになっている。またステアリング
ハンドルを右に切って,入力軸(21)をバルブボデイ
(27)に対して相対的に右に回転すると,高圧油路(7
a)がバルブボデイ(27)の油路(27a)(27b)及びス
リーブ(28)の油路(28b)を介してパワーシリンダ
(3)の油路(9a)に,低圧油路(8a)がチヤンバー
(29)とバルブボデイ(27)の油路(27c)とスリーブ
(28)の油路(28c)とを介してパワーシリンダ(3)
の油室(10a)に,それぞれ連通して,オイルポンプ
(1)からの作動油が高圧油路(7a)→油路(27a)→
油路(28b)→油路(9a)→パワーシリンダ(3)の左
室へ送られる一方,パワーシリンダ(3)の右室の油が
油路(10a)→油路(28c)→油路(27c)→チヤンバー
(29)→低圧油路(8a)→タンク(4)へ戻され,パワ
ーシリンダ(3)のピストンロツドが右へ移動して,右
方向への操舵が行われる。またステアリングハンドルを
左に切って,入力軸(21)をバルブボデイ(27)に対し
て相対的に左に回転すると、高圧油路(7a)がバルブボ
デイ(27)の油路(27a)とスリーブ(28)の油路(28
c)とを介してパワーシリンダ(3)の油路(10a)に,
低圧油路(8a)チヤンバー(29)とバルブボデイ(27)
の油路(27b)とスリーブ(28)の油路(28b)とを介し
てパワーシリンダ(3)の油路(9a)に,それぞれ連通
して,オイルポンプ(1)からの作動油が高圧油路(7
a)→油路(27a)→油路(28a)→油路(10a)→パワー
シリンダ(3)の右室へ送られる一方,パワーシリンダ
(3)の左室の油が油路(9a)→油路(28b)→油路(2
7b)→チヤンバー(29)→低圧油路(8a)→タンク
(4)へ戻され,パワーシリンダ(3)のピストンロツ
ドが左へ移動して,左方向への操舵が行われるようにな
っている。
First, the oil passage switching valve (2) will be described in detail with reference to FIG. 2. (21) is an input shaft operated by a steering handle (not shown), and (23) in FIGS. 2 and 3 are upper and lower bearings. A cylinder block (22) constituting an output shaft rotatably supported in the valve housing (20) by means of a torsion bar inserted in the input shaft (21), and the upper portion of the torsion bar (22) is the input. The upper part of the shaft (21) is fixed to the cylinder block (23), and the lower part is fixed to the cylinder block (23). The relative rotation angle difference between the input shaft (21) and the cylinder block (23) due to the torsion of the torsion bar (22) is shown. It is configured to allow. Also, (21a) is the input shaft (2
The cylinder block (23) is provided with a plurality of vertical grooves on the lower outer peripheral surface of 1) so as to face the vertical grooves (21a), and the reaction pistons ( 5) is inserted and the projection provided at the tip of each reaction force piston (5) is engaged with each vertical groove (21a). The chamber (6) behind each reaction piston (5) is formed between the cylinder block (23) and the valve housing (20) and communicates with the annular groove (6 '). Further, (23a) is a pinion integrated with the cylinder block (23), (24a) is a rack meshing with the pinion (23a),
(24) is a rack support, (26) is a cap, (25) is a spring interposed between the cap (26) and the rack support (24), and (28) is directly above the cylinder block (23). Of the oil passage switching valve (2) fixed in the valve housing (20) of (2), oil passages (28a) (28b) (28c) provided on the outer peripheral surface of the sleeve (28), and (27) of the same sleeve. A valve body (23b) fitted between (28) and the input shaft (21) connects a lower end of the valve body (27) with an upper end of the cylinder block (23),
(27a) (27b) (27c) are oil passages provided on the outer peripheral surface of the valve body (27). In the above configuration, when the steering handle is in the neutral position, the high pressure oil passage (7
a) is the valve body (27) oil passage (27a) and sleeve (2)
The hydraulic oil from the oil pump (1) communicates with the chamber (29) between the input shaft (21) and the torsion bar (22) via the oil passage (28a) in (8). ) → Oil passage (28a) → Oil passage (27a) → Chamber (29) (The oil passage between the oil passage (27a) and the chamber (29) is not shown)
→ The low pressure oil passage (8a) → the oil tank (4) → the oil pump (1) circulates. When the steering handle is turned to the right and the input shaft (21) is rotated to the right relative to the valve body (27), the high pressure oil passage (7
a) is through the oil passages (27a) (27b) of the valve body (27) and the oil passage (28b) of the sleeve (28) to the oil passage (9a) of the power cylinder (3), and the low pressure oil passage (8a) is The power cylinder (3) through the oil passage (27c) of the chamber (29), the valve body (27) and the oil passage (28c) of the sleeve (28).
Hydraulic fluid from the oil pump (1) communicates with the respective oil chambers (10a) of the high pressure oil passage (7a) → oil passage (27a) →
Oil passage (28b) → oil passage (9a) → oil in the right chamber of the power cylinder (3) is sent to the left chamber of the power cylinder (3) while oil passage (10a) → oil passage (28c) → oil passage (27c) → Chamber (29) → Low pressure oil passage (8a) → Return to tank (4), piston rod of power cylinder (3) moves to the right, and steering to the right is performed. When the steering handle is turned to the left and the input shaft (21) is rotated to the left relative to the valve body (27), the high pressure oil passage (7a) causes the oil passage (27a) of the valve body (27) and the sleeve ( 28) oil passage (28
c) to the oil passage (10a) of the power cylinder (3),
Low pressure oil passage (8a) Chamber (29) and valve body (27)
The hydraulic oil from the oil pump (1) communicates with the oil passage (9a) of the power cylinder (3) through the oil passage (27b) and the oil passage (28b) of the sleeve (28), respectively. Oil passage (7
a) → oil passage (27a) → oil passage (28a) → oil passage (10a) → sent to the right chamber of the power cylinder (3), while the oil in the left chamber of the power cylinder (3) flows to the oil passage (9a) → oil passage (28b) → oil passage (2
7b) → chamber (29) → low pressure oil passage (8a) → returned to the tank (4), the piston rod of the power cylinder (3) moves to the left, and steering to the left is performed. .

次に前記油圧増大手段を構成するチエンジ・オーバ・バ
ルブ(11)を具体的に説明すると,同チエンジ・オーバ
・バルブ(11)は,第4,7図から明らかなように,オリ
フイス(a)のバイパス油路(7b)の途中に介装されて
いる。同チエンジ・オーバ・バルブ(11)は,環状溝
(30a)(なおこの環状溝(30a)は油路(7b)の一部)
をもつスプール(30)(なおこのスプール(30)は高速
時で操舵されていないときの位置を示している)とキヤ
ツプ(31)とこれらのスプール(30)及びキヤツプ(3
1)の間に介装したバネ(33)とOリング(34)とを有
し,パイロツト油路(7e1)(第1図参照)の油圧が高
まると,スプール(30)がバネ(33)に抗し前進して,
バイパス油路(7b)を開くように,またパイロツト油路
(7e1)の油圧が低下すると,スプール(30)がバネ(3
3)により後退して,バイパス油路(7b)を閉じるよう
になっている。
Next, the changeover valve (11) that constitutes the hydraulic pressure increasing means will be described in detail. The changeover valve (11) is, as shown in FIGS. 4 and 7, an orifice (a). It is installed in the middle of the bypass oil passage (7b). The changeover valve (11) has an annular groove (30a) (this annular groove (30a) is part of the oil passage (7b)).
Spool (30) (note that this spool (30) shows the position when not steered at high speed), cap (31) and these spools (30) and cap (3
1) has a spring (33) and an O-ring (34) interposed, and when the oil pressure in the pilot oil passage (7e 1 ) (see FIG. 1 ) increases, the spool (30) causes the spring (33) ) To move forward,
When the oil pressure in the pilot oil passage (7e 1 ) decreases so that the bypass oil passage (7b) is opened, the spool (30) causes the spring (3
It retreats by 3) and closes the bypass oil passage (7b).

次に前記圧力制御バルブ(12)を具体的に説明すると,
同圧力制御バルブ(12)は,第5,6,7,8図から明らかな
ように,スリーブ(40)とスプール(41)とキヤツプ
(42)とストツパ(43)とこれらのスプール(41)及び
ストツパ(43)の間に介装したバネ(44)とスプール
(41)内に固定した第1のオリフイス(d)とを有して
いる。また上記スプール(41)には,第9,10,11図に示
すように,3つの環状溝(41a)(41b)(41c)が設けら
れ,環状溝(41a)が前記バイパス油路(7b)のチエン
ジ・オーバ・バルブ(11)の上流側から岐れた油路(7
c)に対向している。また(41d)が上記第1のオリフイ
ス(d)から上記スプール(41)内を上方へ延びたチヤ
ンバー,(41e)が同チヤンバー(41d)と上記環状溝
(41c)とを繋ぐ油路(なおこれらの(41d)(41e)(4
1c)は低圧油路(8b)の一部)で,同環状溝(41c)
は,第2図に示した油路切換弁(2)のバルブボデイ
(27)の直上に形成した低圧油路(8b)から第6図に示
すように斜め下方に延びたバルブハウジング(20)側の
低圧油路(8b)に対向している。
Next, specifically explaining the pressure control valve (12),
The pressure control valve (12) includes a sleeve (40), a spool (41), a cap (42), a stopper (43), and these spools (41), as is clear from FIGS. 5, 6, 7, and 8. And a spring (44) interposed between the stopper (43) and a first orifice (d) fixed in the spool (41). As shown in FIGS. 9, 10, and 11, the spool (41) is provided with three annular grooves (41a) (41b) (41c), and the annular groove (41a) is provided in the bypass oil passage (7b). ) Changeover valve (11) upstream from the oil passage (7
Facing c). Further, (41d) is a chamber that extends upward from the first orifice (d) in the spool (41), and (41e) is an oil passage that connects the chamber (41d) and the annular groove (41c). These (41d) (41e) (4
1c) is a part of the low-pressure oil passage (8b), and has the same annular groove (41c)
Is a valve housing (20) side that extends obliquely downward from the low pressure oil passage (8b) formed immediately above the valve body (27) of the oil passage switching valve (2) shown in FIG. 2 as shown in FIG. It faces the low pressure oil passage (8b).

また上記環状溝(41a)は第3のオリフイス(e)を介
して上記チヤンバー(41d)に連通している。また上記
スリーブ(40)には,第11図乃至第17図に示すよう,外
周面円周方向に位相を異にして上部から下部へ貫通孔
(40d′)をもつ切欠部(40d)と貫通孔(40c′)(40
c″)をもつ切欠部(40c)と第2のオリフイス(b)を
もつ切欠部(40d)と貫通孔(40e′)をもつ切欠部(40
e)が設けられている。
The annular groove (41a) communicates with the chamber (41d) via a third orifice (e). Further, as shown in FIGS. 11 to 17, the sleeve (40) has a notch portion (40d) having a through hole (40d ′) and a through hole (40d ′) with different phases in the circumferential direction of the outer peripheral surface. Hole (40c ') (40
notch (40c) having a c ″), a notch (40d) having a second orifice (b), and a notch (40) having a through hole (40e ′).
e) is provided.

上記各溝等は,貫通孔(40a′)をもつ切欠部(40a)が
スプール(41)の環状溝(41c)とバルブハウジング(2
0)側の低圧油路(8b)とを繋ぎ,貫通孔(40b′)をも
つ切欠部(40b)がスプール(41)の環状溝(41a)とバ
ルブハウジング(20)側の油路(7c)とを繋ぎ,貫通孔
(40c′)(40c″)をもつ切欠部(40c)がスプール(4
1)の環状溝(41a)(41b)を繋ぎ,第2のオリフイス
(b)をもつ切欠部(40d)がスプール(41)の環状溝
(41b)とバルブハウジング(20)側の油路(7e)とを
繋ぎ,貫通孔(40e′)をもつ切欠部(40e)がスプール
(41)の環状溝(41b)と第3,5図に示したバルブハウジ
ング(20)側の油路(7d)とを繋いでいる。そして第1
のオリフイス(d)からスプール(41)のチヤンバー
(41d)へ出た油が油路(41e)→環状溝(41c)→貫通
孔(40a′)→切欠部(40a)→バルブハウジング(20)
側の低圧油路(8b)を経てオイルタンク(4)に戻る。
またバイパス油路(7b)から油路(7c)を経て切欠部
(40b)に入った作動油が貫通孔(40b′)→環状溝(41
a)→切欠部(40c)→貫通孔(40c″)→環状溝(41b)
→貫通孔(40e′)→切欠部(40e)→バルブハウジング
(20)側の油路(7d)を経てソレノイドバルブ(13)の
方向に向かうように構成され,上記切欠部(40c)から
は油路(7d2)を介して反力ピストン(5)の方向に向
かうように構成されている。また上記環状溝(41b)内
を流れる作動油の一部がオリフイス(b)→切欠部(40
d)→バルブハウジング(20)側の油路(7e)を経て前
記チエンジ・オーバ・バルブ(11)のスプール(30)の
背後にパイロツト圧として作用し(第5図の(7e1)参
照),さらに同スプール(30)の後端部に設けた油路
(30b)(第7図参照)→バルブハウジング(20)側の
油路(7e)を経てソレノイドバルブ(13)の方向に向か
うようになっている。
In the above grooves and the like, the notch (40a) having the through hole (40a ') has an annular groove (41c) of the spool (41) and a valve housing (2
The notch (40b) connecting the low pressure oil passage (8b) on the 0) side and having the through hole (40b ') has the annular groove (41a) of the spool (41) and the oil passage (7c on the valve housing (20) side. ) And the notch (40c) with the through holes (40c ′) (40c ″) is connected to the spool (4
The notch (40d) connecting the annular grooves (41a) and (41b) of 1) and having the second orifice (b) has an oil groove (41b) on the spool (41) and an oil passage (20) on the valve housing (20) side. 7e) and a notch (40e) having a through hole (40e ′) is formed in the annular groove (41b) of the spool (41) and the oil passage (7d on the valve housing (20) side shown in FIGS. ) Is connected to. And the first
Oil from the orifice (d) to the chamber (41d) of the spool (41) is oil passage (41e) → annular groove (41c) → through hole (40a ') → notch (40a) → valve housing (20)
Return to the oil tank (4) via the low pressure oil passage (8b).
Further, the hydraulic oil that has entered the cutout portion (40b) from the bypass oil passage (7b) through the oil passage (7c) passes through the through hole (40b ') → the annular groove (41
a) → notch (40c) → through hole (40c ″) → annular groove (41b)
→ through hole (40e ′) → notch (40e) → configured to go toward the solenoid valve (13) through the oil passage (7d) on the valve housing (20) side, and from the notch (40c) It is configured to go toward the reaction force piston (5) via the oil passage (7d 2 ). Further, a part of the hydraulic oil flowing in the annular groove (41b) is transferred from the orifice (b) to the notch (40
d) → acts as pilot pressure behind the spool (30) of the changeover valve (11) via the oil passage (7e) on the valve housing (20) side (see (7e 1 ) in Fig. 5) , And further toward the solenoid valve (13) via the oil passage (30b) provided at the rear end of the spool (30) (see FIG. 7) → the oil passage (7e) on the valve housing (20) side. It has become.

次に前記ソレノイドバルブ(13)を具体的に説明する
と,同ソレノイドバルブ(13)は,第5,8,21図に示すよ
うに,前記圧力制御バルブ(12)の直下に互いの軸線が
一致するように配設されている。同ソレノイドバルブ
(13)は,スリーブ(50)とスプール(51)と非磁性材
製プランジヤ(52)と同プランジヤ(52)に一体の磁性
材製部材(53)と上記スプール(51)を上記プランジヤ
(52)に締付け固定するロツクナツト(54)と前記圧力
制御バルブ(12)のスリーブ(40)に当接する座板(5
5)と同座板(55)及び上記スリーブ(40)の間に介装
したバツクアツプスプリング(56)と電磁コイル(57)
と同電磁コイル(57)側のケーシングに固定したナツト
(58)と同ナツト(58)に螺合したプランジヤ押圧力調
整ボルト(59)と同ボルト(59)及び上記プランジヤ
(52)の間に介装したバネ(60)とソレノイドバルブ
(13)の組立体をバルブハウジング(20)に締付け固定
するロツクナツト(61)とを有している。上記スリーブ
(50)は,第21図に示すように,バルブハウジング(2
0)側の油路(7e′)(第5図参照)に連通する環状の
油路(50a)とバルブハウジング(20)側の油路(7e)
に連通する環状の油路(50b)とを有し,同油路(50b)
にオリフイス(c)が設けられている。また上記スプー
ル(51)には,円周方向の一部のみに形成された斜めの
溝(51a′)を有するとともに全周に形成された環状の
油路(51a)と貫通孔(51b)とがあり,上記プランジヤ
(52)には,同貫通孔(51b)に連通する油路(52a)と
貫通孔(52b)と軸方向の油路(52c)とがある。
Next, the solenoid valve (13) will be described in detail. As shown in FIGS. 5, 8, and 21, the solenoid valve (13) has its axes aligned directly below the pressure control valve (12). It is arranged to do. The solenoid valve (13) includes a sleeve (50), a spool (51), a non-magnetic material plunger (52), a magnetic material member (53) integrated with the plunger (52), and the spool (51). A lock nut (54) tightened and fixed to the plunger (52) and a seat plate (5) abutting against the sleeve (40) of the pressure control valve (12).
5) a backup spring (56) and an electromagnetic coil (57) interposed between the seat plate (55) and the sleeve (40).
Between the nut (58) fixed to the casing of the same electromagnetic coil (57) and the plunger pressing force adjusting bolt (59) screwed to the nut (58), the bolt (59) and the plunger (52). It has a spring (60) and a lock nut (61) for fixing the assembly of the solenoid valve (13) to the valve housing (20) by fastening. The sleeve (50) is attached to the valve housing (2) as shown in Fig. 21.
An annular oil passage (50a) communicating with the oil passage (7e ′) on the 0) side (see FIG. 5) and an oil passage (7e) on the valve housing (20) side
And an annular oil passage (50b) communicating with the oil passage (50b)
There is an orifice (c). Further, the spool (51) has an oblique groove (51a ') formed only in a part in the circumferential direction and has an annular oil passage (51a) and a through hole (51b) formed all around. The plunger (52) has an oil passage (52a) communicating with the through hole (51b), a through hole (52b), and an oil passage (52c) in the axial direction.

既に述べたように第5図に示すバルブハウジング(20)
側の油路(7d)から(7e′)を介してソレノイドバルブ
(13)に向かう作動油は第21図の油路(50a)に入り,
第5図に示すバルブハウジング(20)側の油路(7e)を
ソレノイドバルブ(13)に向かう作動油は第21図の油路
(50b)に入る。同第21図は,高速時の状態を示してい
る。この状態では,油路(50b)に入った作動油だけが
第4のオリフイス(c)→油路(51a)→貫通孔(51b)
→油路(52a)→貫通孔(52b)→油路(52c)を経てオ
リフイス(d)側の部材(45)に向かうことになる。ま
た高速時→低速時には,スプール(51)が下降し,オリ
フイス(c)の開口量が減少する一方,油路(50a)の
開口量が増大して,停止車には,同油路(50a)のみが
開口する。
As already mentioned, the valve housing (20) shown in FIG.
The hydraulic oil flowing from the side oil passage (7d) to the solenoid valve (13) via (7e ') enters the oil passage (50a) in FIG.
The hydraulic oil flowing through the oil passage (7e) on the valve housing (20) side shown in FIG. 5 toward the solenoid valve (13) enters the oil passage (50b) shown in FIG. FIG. 21 shows the state at high speed. In this state, only the hydraulic oil entering the oil passage (50b) is in the fourth orifice (c) → oil passage (51a) → through hole (51b).
→ Oil passage (52a) → Through hole (52b) → Oil passage (52c) to the member (45) on the orifice (d) side. Also, at high speed → low speed, the spool (51) descends and the opening amount of the orifice (c) decreases, while the opening amount of the oil passage (50a) increases, so that the stopped vehicle is equipped with the oil passage (50a). ) Only open.

第1図のQ0はオイルポンプ(1)の吐出側の流量,Q1
高圧油路(7a)の油量,Q2は油路(7c)の流量,Q3は油路
(7d)(油路(50a))の流量,Q4はオリフイス(c)下
流側の流量,Q5はオリフイス(e)下流側の流量を示し
ており,Q1:Q2は6:1程度である。また油路(7c)の流量Q
2は,Q2=Q3+Q4+Q5である(第30図参照)。
In Fig. 1, Q 0 is the flow rate on the discharge side of the oil pump (1), Q 1 is the amount of oil in the high pressure oil passage (7a), Q 2 is the flow rate in the oil passage (7c), and Q 3 is the oil passage (7d). (Oil passage (50a) flow rate, Q 4 is the flow rate on the downstream side of orifice (c), Q 5 is the flow rate on the downstream side of orifice (e), and Q 1 : Q 2 is about 6: 1. . Also, the flow rate Q of the oil passage (7c)
2 is Q 2 = Q 3 + Q 4 + Q 5 (see Fig. 30).

またソレノイドバルブ(13)のスリーブ(50)の径は,
第21図に示すように,上部,中部,下部で異なり,上部
ほど小さく,それぞれの間には(D1)(D2)の差があ
る。一方,バルブハウジング(20)側のスリーブ嵌挿孔
もそれに一致するようにあけられている。このようにし
たのは,スリーブ(50)をOリング(62)とともにスリ
ーブ(50)に嵌挿する際,摩擦抵抗を少なくして,スリ
ーブ(50)をスリーブ嵌挿孔に入れ易くするとともに,
各Oリング(62)がスリーブ(50)嵌挿時に,はみ出し
て,スリーブ(50)とバルブハウジング(20)との間に
かみ込まれることを防止するためである。また第22,23,
24図にフイルター(70)を示した。このフイルター(7
0)は,枠体(71)と金網(72)とよりなり,圧力制御
バルブ(12)のスリーブ(40)に設けた切欠部(40b)
(第9,13図参照),即ち,制御系油路の入口に嵌挿され
て,ゴミ等の異物が制御系油路に侵入するのを防止す
る。なおゴミ等の異物の制御系油路への侵入は,この種
のフイルターをバルブケーシング(20)に設けた高圧油
路(7a)の入口(第4図の矢印部分参照)に設けて,防
止するようにしてもよいが,この場合には,ポンプの全
吐出流量が通過するため,大型のフイルターを使用する
必要があり,図示のスペーサでは、同フイルターの収納
が困難になる。なお上記高圧油路(7a)の入口を大径化
しているのは,ここからドリルを挿入して,2方向に分岐
したオリフイス(a)と油路(7b)とを加工し易くする
と同時に配管(図示せず)との結合作業を容易に行なえ
るようにするためである。またその他の油路(7b)(チ
エンジ・オーバ・バルブ(11)下流側の油路(7b))7
c)(7d)(7e)等も第3,4,5図から明らかなように,バ
ルブハウジング(20)に縦横方向から孔をあけて,栓を
することで,形成されており,この点でも油路の加工が
容易になっている。なお第2,3,4,6,7図のZは油路切換
弁(2)の中心軸線,第2,5図のZ1はピニオン(23a)の
中心である。
The diameter of the sleeve (50) of the solenoid valve (13) is
As shown in FIG. 21, the upper part, the middle part, and the lower part are different, and the upper part is smaller, and there is a difference (D 1 ) (D 2 ) between them. On the other hand, the sleeve fitting hole on the side of the valve housing (20) is also formed so as to match it. This is because when the sleeve (50) is inserted into the sleeve (50) together with the O-ring (62), the frictional resistance is reduced to facilitate the insertion of the sleeve (50) into the sleeve fitting hole.
This is to prevent each O-ring (62) from protruding and being caught between the sleeve (50) and the valve housing (20) when the sleeve (50) is inserted. Also the 22,23,
Figure 24 shows the filter (70). This filter (7
0) consists of a frame (71) and a wire mesh (72), and is a notch (40b) provided in the sleeve (40) of the pressure control valve (12).
(See FIGS. 9 and 13) That is, it is inserted into the inlet of the control system oil passage to prevent foreign matters such as dust from entering the control system oil passage. It should be noted that foreign matter such as dust is prevented from entering the control system oil passage by providing this kind of filter at the inlet of the high pressure oil passage (7a) (see the arrow in Fig. 4) provided in the valve casing (20). However, in this case, since the entire discharge flow rate of the pump passes, it is necessary to use a large filter, and the spacer shown makes it difficult to store the filter. Note that the inlet of the high-pressure oil passage (7a) has a large diameter because a drill is inserted from here to facilitate the machining of the orifice (a) and the oil passage (7b) branched in two directions, and at the same time the piping This is for facilitating the connection work with (not shown). In addition, other oil passages (7b) (oil passage (7b) downstream of the changeover valve (11)) 7
c) (7d), (7e), etc. are also formed by making holes in the valve housing (20) from the vertical and horizontal directions and plugging them, as is clear from Figs. However, processing of oil passages is easy. Incidentally, Z in FIGS. 2, 3, 4, 6, and 7 is the central axis of the oil passage switching valve (2), and Z 1 in FIGS. 2 and 5 is the center of the pinion (23a).

また前記制御装置(15)の一例を第25図に示した。(8
0)が定電圧電源回路,(81)が車速に比例した電圧を
送出するパルス・電圧変換回路,(82)が誤差増幅回
路,(83)がトランジスタ,(84)が車速零以外でタイ
マ回路(87)をリセツトし,車速零でタイマ回路(87)
をセツトするリセツト回路,(85)がエンジン回転数に
比例した電圧を送出するパルス・電圧変換回路,(86)
がエンジン回転数2000rpm以上のときにタイマ回路(8
7)を始動状態にし,エンジン回転数2000rpm以下のとき
にタイマ回路(87)をOFFにするエンジン回転数設定回
路,(88)が車速パルスなしでON状態の車速入力断線検
出回路,(89)がトランジスタ,(90)がリレー,(9
1)がソレノイドバルブ(13)の電磁コイル(57)に流
れる電流を安定させるネガテイブフイードバツク回路で
ある。一般に車速零でエンジン回転数が2000rpm以上の
状態は通常あり得ない。そのため,この状態が5〜10秒
以上継続したら,何等かの故障(例えば車速パルス系の
故障)が生じたものと判断し,リレー(90)をONにし
て,ソレノイドバルブ(13)(電磁コイル(57))への
通電を停止する。
An example of the control device (15) is shown in FIG. (8
0) is a constant voltage power supply circuit, (81) is a pulse / voltage conversion circuit that sends out a voltage proportional to the vehicle speed, (82) is an error amplification circuit, (83) is a transistor, and (84) is a timer circuit when the vehicle speed is not zero. (87) Reset the timer circuit at zero vehicle speed (87)
Reset circuit for resetting the voltage, (85) pulse-voltage conversion circuit for sending a voltage proportional to the engine speed, (86)
When the engine speed is 2000 rpm or more, the timer circuit (8
Engine speed setting circuit that turns the timer circuit (87) to OFF when the engine speed is 2000 rpm or less, and the vehicle speed input disconnection detection circuit that the (88) is ON without the vehicle speed pulse, (89) Is a transistor, (90) is a relay, (9
1) is a negative feedback circuit that stabilizes the current flowing through the electromagnetic coil (57) of the solenoid valve (13). In general, it is usually impossible for the vehicle speed to be zero and the engine speed to be 2000 rpm or more. Therefore, if this state continues for 5 to 10 seconds or longer, it is judged that some kind of failure (for example, failure of the vehicle speed pulse system) has occurred, the relay (90) is turned on, and the solenoid valve (13) (electromagnetic coil Stop energizing (57)).

従って本制御回路によれば,故障時にソレノイドバルブ
(13)への通電が停止され,高速時にハンドル操作が重
くなって(フエイルセーフ機能を有して),安全であ
る。
Therefore, according to this control circuit, the solenoid valve (13) is de-energized at the time of failure, and the steering wheel operation becomes heavy at a high speed (having a fail-safe function), which is safe.

次に前記パワーステアリング装置の作用を説明する。油
路切換弁(2)の出力油圧(オイルポンプ(1)の吐出
圧)PPは,ステアリングハンドルを中立位置から右また
は左に切って,入力軸(21)のバルブボデイ(27)に対
する相対角度が大きくなれば,第26図のように2次曲線
を描いて上昇する。このオイルポンプ(1)の吐出圧PP
の影響は,油路(7a)(7b)(7c)と圧力制御バルブ
(12)とを介して下流側の油路(7d)(オリフイス
(b)(e)とソレノイドバルブ(13)と反力ピストン
側チヤンバー(6)とに対しては上流側の油路(7d))
に,同様の傾向をもって表れて,同油路(7d)の油圧PC
が同様に上昇する。上記圧力制御バルブ(12)はそれ自
体の下流側の副パイロット油路(7d1)でオイルポンプ
(1)の吐出圧PPを制御して,所定の最高油圧以下に制
限した制御油圧PCとし,且つ,流量制御バルブ(13)下
流側の油路(7f1)の主パイロツト油圧により上記制御
油圧PCの最高油圧を第29図に示すように制御する。そし
て自動車が停止していれば,制御装置(15)は車速セン
サー(14)からのパルス信号を受けて,i=1A(第29図参
照)の電流をソレノイドバルブ(13)へ送り,プランジ
ヤ(52)及びスプール(51)を下限位置まで下降させ
(第1図ではL位置に移動させ),第21図の油路(50
a)のみをスプール(51)側の油路(51a)(51b)(51
c)を介して第1のオリフイス(d)の上流側の油路(7
f)に連通させて,同油路(7f)の油圧を油路(7d)の
油圧PCと同じ値にする。以上の停車時にステアリングハ
ンドルを右(または左)に切り始めると,油路(7d)の
油圧PCが上昇を始める。そうすると,油路(7f)の油圧
も同じ傾向で上昇する。この油圧は,主パイロツト油路
(7f1)を介し圧力制御バルブ(12)のスプール(41)
(スプール(41)の小径側)にそのまま伝えられて,ス
プール(41)が第10図の矢印方向に押される。同時にス
プール(41)の環状溝(41b)を通る作動油の油圧PC
受圧面積の差からスプール(41)を第10図の矢印方向に
押す。一方,バネ(44)側は低圧油路(8b)に通じてお
り,スプール(41)がバネ(44)に抗し次第に上昇し
て,貫通孔(40b′)の開度が次第に小さくなってゆ
き,上記矢印方向に押す油圧とバネ力とが釣り合うと,
スプール(41)が停止する。この状態では,油路(7d)
(反力ピストン側チヤンバー(6))の油圧PCの最大値
が最も低くなる。この状態はそれからも同じで,ステア
リングハンドルをさらに右(または左)に切って,油路
(7a)(7b)(7c)の吐出油圧PPがさらに上昇すると,
圧力制御バルブ(12)は環状溝(41b)に作用する同吐
出油圧PPの受圧面積の差によって貫通孔(40b′)の開
度さらに閉じる方向に移動させて,油路(7d)の油圧PC
が引続き上記低い一定のレベルに保持される。従って前
記相対角度を大きくして,大きな吐出油圧PPを得るとき
に,反力ピストン側チヤンバー(6)の油圧PCとトーシ
ヨンバー(22)の捩じれ角度とで決まるハンドルトルク
Tが大きくならない(第27図の(イ)参照),以上の据
え切り時には,既に述べたように油路(7d)の油圧PC
低いといえども,スプール(51)(第21図参照)が下降
しているため,第4のオリフイス(c)は閉鎖されて,
油路(7e)に作動油は流れない。従ってCOVパイロツト
油路(7e1)の圧力は,Pcと同じ圧力になるが,この圧力
により,チエンジ・オーバ・バルブ(11)はバネ(33)
の弾力に打ち勝ってバイパス油路(7b)を開き,第1図
のL位置に保持される。なお第1図はH位置を示してい
る。
Next, the operation of the power steering device will be described. The output hydraulic pressure (discharging pressure of the oil pump (1)) P P of the oil passage switching valve (2) is set to the relative angle of the input shaft (21) with respect to the valve body (27) by turning the steering handle from the neutral position to the right or left. When becomes larger, it rises by drawing a quadratic curve as shown in Fig. 26. Discharge pressure P P of this oil pump (1)
Is influenced by the oil passages (7a), (7b) and (7c) and the pressure control valve (12) and the oil passage (7d) (orifice (b) (e) and solenoid valve (13) on the downstream side. Oil passage (7d) upstream from the force piston side chamber (6)
The oil pressure P C of the oil passage (7d) appears with the same tendency.
Will rise as well. The pressure control valve (12) controls the discharge pressure P P of the oil pump (1) by the sub pilot oil passage (7d 1 ) on the downstream side of the pressure control valve (12) to limit the control oil pressure P C to a predetermined maximum oil pressure or less. In addition, the maximum hydraulic pressure of the control hydraulic pressure P C is controlled as shown in FIG. 29 by the main pilot hydraulic pressure of the oil passage (7f 1 ) downstream of the flow control valve (13). When the vehicle is stopped, the control device (15) receives a pulse signal from the vehicle speed sensor (14) and sends a current of i = 1A (see Fig. 29) to the solenoid valve (13) to cause the plunger ( 52) and the spool (51) are lowered to the lower limit position (moved to the L position in FIG. 1) and the oil passage (50
Oil only (a) on the spool (51) side (51a) (51b) (51
via the oil passage (7) upstream of the first orifice (d)
The hydraulic pressure of the oil passage (7f) is set to the same value as the hydraulic pressure P C of the oil passage (7d) by communicating with the oil passage (7f). When the steering handle is turned to the right (or left) when the vehicle is stopped, the hydraulic pressure P C of the oil passage (7d) starts to rise. Then, the oil pressure in the oil passage (7f) also rises with the same tendency. This oil pressure is transferred to the spool (41) of the pressure control valve (12) via the main pilot oil passage (7f 1 ).
It is directly transmitted to (the small diameter side of the spool (41)) and the spool (41) is pushed in the direction of the arrow in FIG. At the same time, the hydraulic pressure P C of the hydraulic oil passing through the annular groove (41b) of the spool (41) pushes the spool (41) in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring (44) side communicates with the low pressure oil passage (8b), the spool (41) gradually rises against the spring (44), and the opening degree of the through hole (40b ') gradually decreases. Yuki, when the hydraulic pressure pushing in the direction of the arrow and the spring force balance,
The spool (41) stops. In this state, the oil passage (7d)
The maximum value of the hydraulic pressure P C of (the reaction force piston side chamber (6)) becomes the lowest. This state is the same from then on, when the steering wheel is further turned to the right (or left) and the discharge hydraulic pressure P P of the oil passages (7a) (7b) (7c) further rises,
The pressure control valve (12) is moved in the direction to further close the opening of the through hole (40b ') due to the difference in pressure receiving area of the discharge hydraulic pressure P P acting on the annular groove (41b), and the hydraulic pressure of the oil passage (7d) is moved. P C
Is maintained at the above low constant level. Therefore, when the relative angle is increased to obtain a large discharge hydraulic pressure P P , the handle torque T determined by the hydraulic pressure P C of the reaction force piston side chamber (6) and the twist angle of the torsion bar (22) does not increase ( (See (a) in Fig. 27). At the above stationary operation, the spool (51) (see Fig. 21) is descending even though the oil pressure P C of the oil passage (7d) is low as described above. Therefore, the fourth orifice (c) is closed,
No hydraulic oil flows into the oil passage (7e). Therefore, the pressure in the COV pilot oil passage (7e 1 ) becomes the same as Pc, but this pressure causes the changeover valve (11) to spring (33).
The bypass oil passage (7b) is opened by overcoming the resilience of (1) and held at the L position in FIG. Note that FIG. 1 shows the H position.

また自動車が低速走行状態に入れば,制御装置(15)
は,車速センサー(14)からのパルス信号を受けて,そ
のときの車速に対応した電流,例えばi=0.8の電流を
ソレノイドバルブ(13)へ送り,プランジヤ(52)及び
スプール(51)を下限位置から上記電流値に対応した距
離だけ上昇させ(第1図では右向きに移動させ),第21
図に示すスリーブ(50)側油路(50a)の開口量を減少
させる。このとき,第4のオリフイス(c)(スリーブ
(50)側油路(50b))は未だ閉鎖されたままで,油路
(50a)の開口量の減少分により,第1のオリフイス
(d)を通過する流量Q3(Q4はこの状態では略零)は,
前記停車時の油路(50a)からの流量よりも減少する。
なおこの減少分は,第3のオリフイス(e)から低圧油
路(8b)への流量Q5が増大して,吸収する。以上のよう
にソレノイドバルブ(13)を出る流量Q3(Q4≒0)が前
記停車時の油路(50a)からの流量Q3よりも減少するの
で,第1のオリフイス(d)の上流側の油路(7f)の油
圧が停車時よりも低くなる。
In addition, if the car enters a low speed running state, the control device (15)
Receives a pulse signal from the vehicle speed sensor (14), sends a current corresponding to the vehicle speed at that time, for example, a current of i = 0.8 to the solenoid valve (13), and lowers the plunger (52) and spool (51) to the lower limit. Raise from the position by the distance corresponding to the above current value (moved to the right in FIG. 1),
The opening amount of the oil passage (50a) on the sleeve (50) side shown in the figure is reduced. At this time, the fourth orifice (c) (sleeve (50) side oil passage (50b)) is still closed, and the first orifice (d) is changed due to the decrease in the opening amount of the oil passage (50a). The passing flow rate Q 3 (Q 4 is almost zero in this state) is
It is smaller than the flow rate from the oil passage (50a) when the vehicle is stopped.
The reduced amount is absorbed by the increase in the flow rate Q 5 from the third orifice (e) to the low pressure oil passage (8b). As described above, the flow rate Q 3 (Q 4 ≈ 0) exiting the solenoid valve (13) is smaller than the flow rate Q 3 from the oil passage (50a) when the vehicle is stopped, so that the first upstream of the orifice (d) Oil pressure on the side oil passage (7f) becomes lower than when the vehicle was stopped.

以上の低速時にステアリングハンドルを右(または左)
に切り始めると,油路(7d)の油圧PCが上昇を始める。
そうすると,油路(7f)の主パイロツト油圧も上昇す
る。この油圧は,主パイロツト油路(7f1)を介して圧
力制御バルブ(12)のスプール(41)(スプール(41)
の小径端)にそのまま伝えられて,同スプール(41)が
第10図の矢印方向に押される。同時にスプール(41)の
環状溝(41b)を通る作動油が受圧面積の差からスプー
ル(41)を第10図の矢印方向に押す。一方,バネ(44)
側は低圧油路(8b)に通じており,スプール(41)がバ
ネ(44)を抗して次第に上昇し,貫通孔(40b′)の開
度が次第に小さくなってゆき,上記矢印方向に押す油圧
とバネ力とが釣り合うと,スプール(41)が停止する。
が,前記スプール(41)の小径端を押す油圧は前記停車
時よりも低く,スプール(41)の上昇量がその分だけ少
なくて(貫通孔(40b′)の開口量がその分だけ多く
て),油路(7d)(反力ピストン側チヤンバー(6))
の油圧PCが前記停車時よりも高くなる。この状態は,そ
れからも同じで,ステアリングハンドルをさらに右(ま
たは左)に切って,油路(7a)(7b)(7c)の油圧PP
さらに上昇して,環状溝(41b)の油圧が増大しようと
すると,圧力制御バルブ(12)はスプール(41)をさら
に移動させ,貫通孔(40b′)の開度を制限して,油路
(7d)の油圧PCが引続き停車時よりも高い一定レベルに
保持される。
At the above low speed, turn the steering handle to the right (or left)
When it starts to turn off, the oil pressure P C of the oil passage (7d) starts to rise.
Then, the main pilot oil pressure in the oil passage (7f) also rises. This oil pressure is transferred to the spool (41) (spool (41) of the pressure control valve (12) via the main pilot oil passage (7f 1 ).
(Small diameter end) of the spool (41) is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove (41b) of the spool (41) pushes the spool (41) in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. Meanwhile, springs (44)
The side communicates with the low-pressure oil passage (8b), the spool (41) gradually rises against the spring (44), and the opening of the through hole (40b ') gradually decreases. When the pushing hydraulic pressure and the spring force balance, the spool (41) stops.
However, the hydraulic pressure pushing the small diameter end of the spool (41) is lower than when the vehicle is stopped, and the amount of rise of the spool (41) is smaller by that much (the amount of opening of the through hole (40b ') is larger by that much). ), Oil passage (7d) (reaction force piston side chamber (6))
The oil pressure P C becomes higher than that when the vehicle is stopped. This state is the same from then on, turning the steering handle further to the right (or left), the oil pressure P P in the oil passages (7a) (7b) (7c) further rises, and the oil pressure in the annular groove (41b) increases. When the pressure is increasing, the pressure control valve (12) further moves the spool (41) to limit the opening of the through hole (40b '), and the hydraulic pressure P C of the oil passage (7d) continues to be higher than when the vehicle was stopped. Is also maintained at a high constant level.

従って前記相対角度を大きくして,大きな吐出油圧PP
得るときには,ハンドルトルクTが停車時よりも大きく
なるが,後記高速時のようには大きくならない。
Therefore, when the relative angle is increased to obtain a large discharge hydraulic pressure P P , the steering wheel torque T becomes larger than that when the vehicle is stopped, but it does not become large as in the high speed described later.

また自動車が所定速度の高速状態に入れば,制御装置
(15)は車速センサー(14)からのパルス信号を受け
て,i=0(第29図参照)の電流をソレノイドバルブ(1
3)へ送り,フランジヤ(52)及びスプール(51)をバ
ネ(60)により,上限位置まで上昇させ(第1図では図
示のH位置に移動させ),第21図の第4のオリフイス
(c)のみをスプール(51)側の油路(51a)(51b)
(52b)を介して第1のオリフイス(d)の上流側の油
路(7f)に連通させる。このとき,第4のオリフイス
(c)は全開になって,第4のオリフイス(c)の流量
Q4は増加するが,前記低速時に比べると僅かしか増加し
ない。一方,油路(50a)の流量Q3は略零になるので,
この系統の流量は最も少なくなる。なおこの減少分は,
第3のオリフイス(e)から低圧油路(8b)への流量Q5
がさらに増大して,吸収する(第31図参照)。以上のよ
うにソレノイドバルブ(13)を出る流量が最も減少する
ので,第1のオリフイス(d)の上流側の油路(7f)の
主パイロツト油圧が最も低くなる。この油圧が油路(7f
1)を介して圧力制御バルブ(12)に供給されるため,
同圧力制御バルブ(12)により最高圧力が制限された油
圧PCの最高圧力は最大になる(第29図参照)。
When the vehicle enters a high speed state of a predetermined speed, the control device (15) receives a pulse signal from the vehicle speed sensor (14) and applies a current of i = 0 (see FIG. 29) to the solenoid valve (1).
3), the flanger (52) and the spool (51) are raised by the spring (60) to the upper limit position (moved to the H position shown in FIG. 1), and the fourth orifice (c) shown in FIG. ) Only spool (51) side oil passage (51a) (51b)
It communicates with the oil passage (7f) on the upstream side of the first orifice (d) via (52b). At this time, the fourth orifice (c) is fully opened, and the flow rate of the fourth orifice (c) is increased.
Q 4 are increased, but only a slight increase compared to the time of the low speed. On the other hand, the flow rate Q 3 of the oil passage (50a) becomes almost zero, so
This system has the lowest flow rate. This reduction is
Flow rate Q 5 from the third orifice (e) to the low pressure oil passage (8b)
Is further increased and absorbed (see FIG. 31). As described above, the flow rate leaving the solenoid valve (13) is reduced most, so that the main pilot oil pressure in the oil passage (7f) on the upstream side of the first orifice (d) becomes the lowest. This hydraulic pressure is applied to the oil passage (7f
Since it is supplied to the pressure control valve (12) via 1 ),
The maximum pressure of the hydraulic pressure P C , which is limited by the pressure control valve (12), becomes maximum (see Fig. 29).

以上の高速時にステアリングハンドルを右(または左)
に切り始めると,油路(7d)の油圧PCが上昇を始める。
そうるすと,油路(7f)の油圧も上昇する。が,油路
(50a)が閉塞されているため,その上昇分は極めて僅
かである。この油圧は主パイロツト(7f1)を介して圧
力制御バルブ(12)のスプール(41)(スプール(41)
小径端)にそのまま伝えられて,同スプール(41)が第
10図の矢印方向に押される。同時にスプール(41)の環
状溝(41b)を通る作動油が受圧面積の差からスプール
(41)を第10図の矢印方向に押す。一方,バネ(44)側
は低圧油路(8b)に通じており,スプール(41)がバネ
(44)に抗して次第に上昇し(第1図ではL方向に移動
し),貫通孔(40b′)の開度が次第に小さくなってゆ
き,上記矢印方向に押す油圧とバネ力とが釣り合うと,
スプール(41)が停止する。が,前記スプール(41)の
小径端を押す油圧は最も低く,スプール(41)の上昇量
がごく僅かで(貫通孔(40b)の開口量が大で),油路
(7d)(反力ピストン側チヤンバー(6))の油圧PC
最高圧力が最も高くなる。一方,第4のオリフイス
(c)が油路(51a)に開口しているため,特にステア
リングハンドルが中立位置付近であって,吐出圧PP自体
が低いときには,第2,第4のオリフイス(b)(c)間
の油路(7e)のCOVパイロツト圧力が下がり,これがCOV
パイロツト油路(7e1)を介してチエンジ・オーバ・バ
ルブ(11)のスプール(30)に伝えられ,同スプール
(30)が下降し(第1図でH位置を選択し),バイパス
油路(7b)が閉じられ,オイルポンプ(1)からの作動
油が主オリフイス(a)を経て油路切換弁(2)へ送ら
れて,吐出圧PPが設定圧だけ上昇する。このことは,高
速時に操舵しないとき(ハンドル中立位置)でも,油路
(7a)(7b)(7c)の吐出圧PPが停車時や低速時よりも
上昇することであり(第27図のPP1参照),この油圧は
圧力制御バルブ(12)及び油路(7a)(7d2)を介し反
力ピストン側のチヤンバー(6)に伝えられて,高速時
の微小操舵時の反力感(手応え)が向上する。ステアリ
ングハンドルをさらに右(または左)に切り続けると,
油路(7a)(7b)(7c)の吐出圧PPがさらに上昇して,
油路(7d)の油圧PCがさらに上昇することは前述の通り
であり,オリフイス(b)(c)間の油路(7e)の油圧
が設定値以上に上昇して,パイロツト油路(7e1)を介
してスプール(30)に作用する力がバネ(33)の力より
も大きくなると,チエンジ・オーバ・バルブ(11)のス
プール(30)が上昇し(第1図ではL位置を選択し),
バイパス油路(7b)が開かれる。またこの状態になって
も,ステアリングハンドルを右(または左)に切り続け
れば,油路(7a)(7b)(7c)の油圧PPがさらに上昇し
てゆくが,圧力制御バルブ(12)は貫通孔(40b′)の
開度を開閉制御して,油路(7d)の油圧PCが引続き最も
高い一定レベルに保持される。従つて前記相対角度を大
きくして,大きな出力油圧PPを得るためのハンドルトル
クTが大きくなる(第27図の(ロ)参照)。
At the above high speeds, turn the steering wheel to the right (or left)
When it starts to turn off, the oil pressure P C of the oil passage (7d) starts to rise.
Then, the oil pressure in the oil passage (7f) also rises. However, since the oil passage (50a) is blocked, the amount of rise is extremely small. This hydraulic pressure is transmitted through the main pilot (7f 1 ) to the spool (41) (spool (41) of the pressure control valve (12).
It is directly transmitted to the small diameter end) and the spool (41) is
10 Pushed in the direction of the arrow in the figure. At the same time, the hydraulic oil passing through the annular groove (41b) of the spool (41) pushes the spool (41) in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring (44) side communicates with the low pressure oil passage (8b), the spool (41) gradually rises (moves in the L direction in FIG. 1) against the spring (44), and the through hole ( When the opening of 40b ') becomes gradually smaller and the hydraulic pressure and spring force pushed in the direction of the above arrow balance,
The spool (41) stops. However, the hydraulic pressure that pushes the small diameter end of the spool (41) is the lowest, the amount of rise of the spool (41) is very small (the opening of the through hole (40b) is large), and the oil passage (7d) (reaction force) The maximum pressure of the hydraulic pressure P C of the piston side chamber (6) is the highest. On the other hand, since the fourth orifice (c) is opened to the oil passage (51a), particularly when the steering handle is near the neutral position and the discharge pressure P P itself is low, the second and fourth orifices ( The COV pilot pressure in the oil passage (7e) between b) and c) decreases and this is the COV
It is transmitted to the spool (30) of the changeover valve (11) via the pilot oil passage (7e 1 ), the spool (30) descends (H position is selected in Fig. 1), and the bypass oil passage (7b) is closed, the hydraulic oil from the oil pump (1) is sent to the oil passage switching valve (2) via the main orifice (a), and the discharge pressure P P rises by the set pressure. This means that the discharge pressure P P of the oil passages (7a) (7b) (7c) rises more than when the vehicle is stopped or at low speed even when steering is not performed at high speed (handle neutral position) (Fig. 27). P reference P1), the hydraulic pressure is transmitted to the pressure control valve (12) and the oil passage (7a) (through 7d 2) reaction piston side Chiyanba (6), anti force sensation of the micro steering at the time of high speed (Response) is improved. Continue turning the steering wheel further to the right (or left),
The discharge pressure P P of the oil passages (7a) (7b) (7c) further increases,
As described above, the oil pressure P C of the oil passage (7d) further rises, and the oil pressure of the oil passage (7e) between the orifices (b) and (c) rises above the set value, and the pilot oil passage ( When the force acting on the spool (30) via 7e 1 ) becomes larger than the force of the spring (33), the spool (30) of the changeover valve (11) rises (the L position in FIG. Selected),
The bypass oil passage (7b) is opened. Even in this state, if the steering wheel is kept turned to the right (or left), the oil pressure P P in the oil passages (7a) (7b) (7c) will rise further, but the pressure control valve (12) Controls the opening of the through hole (40b ') to keep the hydraulic pressure P C of the oil passage (7d) at the highest constant level. Therefore, the steering wheel torque T for increasing the relative angle and obtaining the large output hydraulic pressure P P increases (see (b) in FIG. 27).

本発明は、ステアリングハンドルの動きをトーションバ
ーを介し油路切換弁に伝えてオイルポンプから油路切換
弁へ延びた高圧油路と、油路切換弁からオイルタンクへ
延びた低圧油路とを切換えてパワーシリンダを所定の操
舵方向に作動させると共に、高圧油路を流れる作動油の
一部を反力ピストンへ導いてトーションバーの捩じれを
規制することにより、ハンドルの操舵力を制御するもの
である。
The present invention provides a high pressure oil passage extending from the oil pump to the oil passage switching valve by transmitting the movement of the steering wheel to the oil passage switching valve via the torsion bar, and a low pressure oil passage extending from the oil passage switching valve to the oil tank. The steering force of the steering wheel is controlled by switching the power cylinder to operate in a predetermined steering direction and guiding a part of the hydraulic oil flowing through the high pressure oil passage to the reaction force piston to control the torsion of the torsion bar. is there.

そして、高圧油路から反力ピストンへ延びた油路の途中
から岐れた並列油路の一方に第2のオリフイスを設け、
しかも並列油路の双方からの作動油の排出量を車速に応
じて可変とする流量制御バルブを設けたことにより、流
量制御バルブの下流側に発生する主パイロット圧を車速
に応じて変化させ、しかも主パイロット圧により圧力制
御バルブは作動するので、反力ピストンへの油圧が車速
毎一定に且つ高速時ほど高くなるように制御することが
可能となるものである。そのため、停車・低速時には反
力ピストンへの油圧を低く一定に保持して軽い操舵感を
持たせ、逆に高速時には油圧を高く一定に保持して適度
な手応えを持たせることができる。
Then, a second orifice is provided on one of the parallel oil passages extending from the middle of the oil passage extending from the high pressure oil passage to the reaction piston.
Moreover, by providing a flow rate control valve that makes the discharge amount of hydraulic oil from both parallel oil passages variable according to the vehicle speed, the main pilot pressure generated downstream of the flow rate control valve is changed according to the vehicle speed, Moreover, since the pressure control valve is operated by the main pilot pressure, it is possible to control the hydraulic pressure to the reaction force piston so that it is constant at each vehicle speed and becomes higher at higher vehicle speeds. Therefore, when the vehicle is stopped or at a low speed, the hydraulic pressure to the reaction force piston can be kept low and constant to give a light steering feeling, and conversely, when the vehicle is high speed, the hydraulic pressure can be kept constant to a high level to provide an appropriate response.

また反力ピストンへ延びる油路と前記高圧油路との間に
設けられ、高速時の操舵しない中立位置近傍のときだけ
並列油路の一方に設けた第2のオリフイスと流量制御バ
ルブとの間に生じるパイロット圧により周方向に作動し
て反力ピストンへの油路の油圧を所定値上昇させるチェ
ンジ・オーバ・バルブを設けたことにより、高速時に操
舵しないステアリングハンドルの中立位置近傍でも、オ
イルポンプからの吐出圧を積極的に増加させることがで
きて、剛性感を得ることができるものである。
Further, between the second orifice and the flow control valve, which are provided between the oil passage extending to the reaction force piston and the high-pressure oil passage, and which are provided on one side of the parallel oil passage only near the neutral position where steering is not performed at high speed. A changeover valve that operates in the circumferential direction by the pilot pressure generated at the wheel to raise the oil pressure in the oil passage to the reaction piston by a specified value is provided so that the oil pump can be operated even near the neutral position of the steering wheel that does not steer at high speed. The discharge pressure from can be positively increased, and a feeling of rigidity can be obtained.

また圧力制御バルブ下流側に延びる油路と流量制御バル
ブの下流側のオイルタンクに延びる油路とを結ぶ油路の
途中に設けられ圧力制御バルブの下流側から低圧油路へ
の流量を流量制御バルブの下流側の第1のオリフイスか
ら低圧油路への増減に対応してそれが減少すれば増やす
ように調整する第3のオリフイスを設けたことにより、
反力ピストンへの油路から低圧油路への総流量を略一定
にでき、つまり高圧油路から反力ピストンへの作動流量
が略一定になるので、高圧油路から油路切換弁への作動
油の流れを一定にできて、油路切換弁の制御特性を安定
化できる効果がある。
Further, the flow rate of the flow from the downstream side of the pressure control valve to the low pressure oil path is controlled by being provided in the middle of the oil path connecting the oil path extending to the downstream side of the pressure control valve and the oil path extending to the oil tank on the downstream side of the flow rate control valve. By providing the third orifice which adjusts so as to increase if it decreases in response to the increase or decrease from the first orifice on the downstream side of the valve to the low pressure oil passage,
The total flow rate from the oil passage to the reaction force piston to the low pressure oil passage can be made almost constant, that is, the working flow rate from the high pressure oil passage to the reaction force piston becomes substantially constant, so that the high pressure oil passage to the oil passage switching valve This has the effect of making the flow of hydraulic oil constant and stabilizing the control characteristics of the oil passage switching valve.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わるパワーステアンリング装置の一
実施例を示す油圧回路図,第2図は油路切換弁の縦断側
面図,第3図はその下部横断平面図,第4図はその上部
横断平面図,第5図はチエンジ・オーバ・バルブと圧力
制御弁とソレノイドバルブとの縦断一側面図,第6図は
油路切換弁と圧力制御弁との縦断他側面図,第7図は油
路切換弁とチエンジ・オーバ・バルブとの縦断他側面
図,第8図(I)はチエンジ・オーバ・バルブと圧力制
御弁とソレノイドバルブとの拡大縦断一側面図,第8図
(II)はソレノイドバルブの端面図,第9図は圧力制御
弁の拡大縦断一側面図,第10図はその拡大縦断他側面
図,第11図は圧力制御弁のスリーブの拡大平面図,第12
図はその拡大縦断一側面図,第13図はその拡大縦断他側
面図,第14図は第12図の矢視XIV−XIV線に沿う横断平面
図,第15図は第13図の矢視XV−XV線に沿う横断平面図,
第16図は第12図の矢視XVI−XVI線に沿う横断平面図,第
17図は第13図の矢視XVII−XVII線に沿う横断平面図,第
18図は同圧力制御弁のスリーブの一側面図,第19図はそ
のスリーブ及びスプールを示す縦断一側面図,第20図は
同スプールを示す側面図,第21図はソレノイドバルブの
スリーブとスプールとの拡大縦断側面図,第22図はフイ
ルターの横断平面図,第23図はその正面図,第24図はそ
の装着状態を示す横断平面図,第25図は制御装置の回路
図,第26図は油路切換弁の出力油圧(ポンプ吐出圧)と
トーシヨンバーの捩じれ角度(油路切換弁のスプールと
スリーブとの相対角度)との関係を示す説明図,第27図
は出力油圧とハンドルトルクとの関係を示す説明図,第
28図は反力フランジヤ側チヤンバー油圧(ハンドルトル
ク)とトーシヨンバーの捩じれ角度との関係を示す説明
図,第29図は反力プランジヤ側チヤンバーの油圧と出力
油圧との関係を示す説明図,第30図はハンドルトルクと
トーシヨンバーの捩じれ角度との関係を示す説明図,第
31図は制御系入口側の流量と制御系内各部の流量とを示
す説明図である。 (1)……オイルポンプ,(2)……油路切換弁,
(3)……パワーシリンダ,(4)……オイルタンク,
(5)……反力ピストン,(7a)……高圧油路,(7b)
(7c)(7d)……高圧油路(7a)から反力ピストン
(5)へ延びた油路,(7e)(7e′)……並列油路,
(8a)(8b)……低圧油路,(11)……チエンジ・オー
バ・バルブ,(12)……圧力制御バルブ,(13)……流
量制御バルブ,(a)……主オリフイス,(b)……第
2のオリフイス,(c)……第4のオリフイス,(d)
……第1のオリフイス,(e)……第3のオリフイス。
FIG. 1 is a hydraulic circuit diagram showing an embodiment of a power steering device according to the present invention, FIG. 2 is a vertical sectional side view of an oil passage switching valve, FIG. 3 is a bottom transverse plan view thereof, and FIG. FIG. 5 is a vertical cross-sectional side view of the changeover valve, pressure control valve and solenoid valve, and FIG. 6 is a vertical cross-sectional side view of the oil passage switching valve and pressure control valve. Is a vertical cross-sectional side view of the oil passage switching valve and the changeover valve, and FIG. 8 (I) is an enlarged vertical cross-sectional side view of the changeover valve, the pressure control valve, and the solenoid valve. ) Is an end view of the solenoid valve, FIG. 9 is an enlarged longitudinal side view of the pressure control valve, FIG. 10 is an enlarged longitudinal side view of the same, FIG. 11 is an enlarged plan view of the sleeve of the pressure control valve, and FIG.
Fig. 1 is a side view of the enlarged longitudinal section, Fig. 13 is another side view of the enlarged longitudinal section, Fig. 14 is a cross-sectional plan view taken along the line XIV-XIV in Fig. 12, and Fig. 15 is an arrow in the direction of Fig. 13. A cross-sectional plan view along the line XV-XV,
FIG. 16 is a cross-sectional plan view taken along the line XVI-XVI in FIG.
17 is a cross-sectional plan view taken along the line XVII-XVII in FIG.
Fig. 18 is a side view of the sleeve of the pressure control valve, Fig. 19 is a side view of the sleeve and spool showing the spool, Fig. 20 is a side view showing the spool, and Fig. 21 is a sleeve and spool of the solenoid valve. Fig. 22 is an enlarged vertical side view of Fig. 22, Fig. 22 is a cross-sectional plan view of the filter, Fig. 23 is a front view thereof, Fig. 24 is a cross-sectional plan view showing the mounted state thereof, Fig. 25 is a circuit diagram of the control device, and Fig. 26. The figure shows the relationship between the output oil pressure of the oil passage switching valve (pump discharge pressure) and the torsion angle of the torsion bar (relative angle between the spool of the oil passage switching valve and the sleeve). Figure 27 shows the output oil pressure and the handle torque. Explanatory diagram showing the relationship with
Fig. 28 is an explanatory diagram showing the relationship between reaction force flange side hydraulic pressure (handle torque) and torsion bar twist angle, and Fig. 29 is an explanatory diagram showing the relationship between reaction force plunger side hydraulic pressure and output hydraulic pressure, 30th. The figure is an explanatory diagram showing the relationship between the handle torque and the torsion angle of the torsion bar,
FIG. 31 is an explanatory diagram showing the flow rate on the inlet side of the control system and the flow rate of each part in the control system. (1) …… Oil pump, (2) …… Oil passage switching valve,
(3) …… Power cylinder, (4) …… Oil tank,
(5) …… Reaction force piston, (7a) …… High pressure oil passage, (7b)
(7c) (7d) ... oil passage extending from the high-pressure oil passage (7a) to the reaction piston (5), (7e) (7e ') ... parallel oil passage,
(8a) (8b) …… Low pressure oil passage, (11) …… Changing over valve, (12) …… Pressure control valve, (13) …… Flow control valve, (a) …… Main orifice, ( b) ... the second orifice, (c) ... the fourth orifice, (d)
…… The first orifice, (e) …… the third orifice.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ハウジング内に同軸的に回動自在に支持さ
れ且つ互いに相対回動可能にトーションバーを介して弾
性的に連結された入力軸と出力軸、ステアリングハンド
ル操舵操作に伴う前記入力軸と前記出力軸との相対回転
に応じて同出力軸にアシスト力を作用するパワーシリン
ダへの作動油の給排を制御する油路切換弁、オイルポン
プから前記油路切換弁へ延びた高圧油路、前記油路切換
弁からオイルタンクへ延びた低圧油路、前記高圧油路を
流れる作動油の一部が反力ピストンに導かれて同作動油
の油圧力により同反力ピストンが少なくとも入力軸或い
は出力軸の径方向に駆動して前記トーションバーの捩れ
を規制する反力機構とを具えたパワーステアリング装置
において、前記高圧油路から前記反力ピストンへ延びた
油路の途中から岐れた並列油路と、同並列油路の一方に
設けた第2のオリフイスと、前記並列油路の双方からの
作動油の排出量を車速に応じて可変とする流量制御バル
ブと、同流量制御バルブの下流側の前記オイルタンクへ
延びる油路に設けられ流量に応じた主パイロット圧を生
じさせる第1のオリフイスと、同主パイロット圧により
作動して前記第2のオリフイス上流の前記反力ピストン
への油圧を車速毎一定に且つ高速時ほど高くなるように
制御する圧力制御バルブとを具えていることを特徴とし
たパワーステアリング装置。
1. An input shaft and an output shaft, which are coaxially rotatably supported in a housing and elastically coupled to each other via a torsion bar so as to be rotatable relative to each other, and the input shaft associated with a steering handle steering operation. And an oil passage switching valve that controls the supply and discharge of hydraulic oil to and from a power cylinder that applies an assisting force to the output shaft according to the relative rotation between the output shaft and the output shaft, and high-pressure oil that extends from the oil pump to the oil passage switching valve. Passage, a low-pressure oil passage extending from the oil passage switching valve to the oil tank, and part of the hydraulic oil flowing in the high-pressure oil passage is guided to the reaction force piston, and at least the reaction force piston is input by the oil pressure of the operation oil. In a power steering device including a reaction force mechanism that drives a shaft or an output shaft in a radial direction to restrict twist of the torsion bar, a power steering device extends from the middle of an oil passage extending from the high pressure oil passage to the reaction force piston. Parallel oil passage, a second orifice provided on one side of the parallel oil passage, a flow control valve for varying the discharge amount of hydraulic oil from both of the parallel oil passages according to the vehicle speed, and the same flow control A first orifice provided in an oil passage extending to the oil tank downstream of the valve to generate a main pilot pressure according to a flow rate, and the reaction piston upstream of the second orifice operating by the main pilot pressure. A power steering device, comprising: a pressure control valve for controlling the hydraulic pressure to the vehicle so that it is constant at each vehicle speed and becomes higher at higher vehicle speeds.
【請求項2】ハウジング内に同軸的に回動自在に支持さ
れ且つ互いに相対回動可能にトーションバーを介して弾
性的に連結された入力軸と出力軸、ステアリングハンド
ル操舵操作に伴う前記入力軸と前記出力軸との相対回転
に応じて同出力軸にアシスト力を作用するパワーシリン
ダへの作動油の給排を制御する油路切換弁、オイルポン
プから前記油路切換弁へ延びた高圧油路、前記油路切換
弁からオイルタンクへ延びた低圧油路、前記高圧油路を
流れる作動油の一部が反力ピストンに導かれて同作動油
の油圧力により同反力ピストンが少なくとも入力軸或い
は出力軸の径方向に駆動して前記トーションバーの捩れ
を規制する反力機構とを具えたパワーステアリング装置
において、前記高圧油路から前記反力ピストンへ延びた
油路の途中から岐れた並列油路と、同並列油路の一方に
設けた第2のオリフイスと、前記並列油路の双方からの
作動油の排出量を車速に応じて可変とする流量制御バル
ブと、同流量制御バルブの下流側の前記オイルタンクへ
延びる油路に設けられ流量に応じた主パイロット圧を生
じさせる第1のオリフイスと、同主パイロット圧により
作動して前記第2のオリフイス上流の前記反力ピストン
への油路の油圧を車速毎一定に且つ高速時ほど高くなる
ように制御する圧力制御バルブと、前記反力ピストンへ
延びる油路と前記高圧油路との間に設けられ高速時の操
舵しない中立位置近傍のときだけ前記並列油路の一方に
設けた第2のオリフイスと前記流量制御バルブとの間に
生じるパイロット圧により閉方向に作動して前記反力ピ
ストンへの油路の油圧を所定値上昇させるチェンジ・オ
ーバ・バルブとを具えていることを特徴としたパワース
テアリング装置。
2. An input shaft and an output shaft, which are coaxially rotatably supported in a housing and elastically coupled to each other via a torsion bar so as to be rotatable relative to each other, and the input shaft associated with a steering operation of a steering wheel. And an oil passage switching valve that controls the supply and discharge of hydraulic oil to and from a power cylinder that applies an assisting force to the output shaft according to the relative rotation between the output shaft and the output shaft, and high-pressure oil that extends from the oil pump to the oil passage switching valve. Passage, a low-pressure oil passage extending from the oil passage switching valve to the oil tank, and part of the hydraulic oil flowing in the high-pressure oil passage is guided to the reaction force piston, and at least the reaction force piston is input by the oil pressure of the operation oil. In a power steering device including a reaction force mechanism that drives a shaft or an output shaft in a radial direction to restrict twist of the torsion bar, a power steering device extends from the middle of an oil passage extending from the high pressure oil passage to the reaction force piston. Parallel oil passage, a second orifice provided on one side of the parallel oil passage, a flow control valve for varying the discharge amount of hydraulic oil from both of the parallel oil passages according to the vehicle speed, and the same flow control A first orifice provided in an oil passage extending to the oil tank downstream of the valve to generate a main pilot pressure according to a flow rate, and the reaction piston upstream of the second orifice operating by the main pilot pressure. Is provided between the pressure control valve that controls the oil pressure of the oil passage to the vehicle to be constant at each vehicle speed and becomes higher at higher speeds, and the oil passage extending to the reaction force piston and the high pressure oil passage, and does not steer at high speed. Only in the vicinity of the neutral position, the pilot pressure generated between the second orifice provided in one of the parallel oil passages and the flow control valve operates in the closing direction to set the oil pressure of the oil passage to the reaction piston to a predetermined value. Price increase Power steering apparatus characterized in that it comprises a change-over valve which.
【請求項3】ハウジング内に同軸的に回動自在に支持さ
れ且つ互いに相対回動可能にトーションバーを介して弾
性的に連結された入力軸と出力軸、ステアリングハンド
ル操舵操作に伴う前記入力軸と前記出力軸との相対回転
に応じて同出力軸にアシスト力を作用するパワーシリン
ダへの作動油の給排を制御する油路切換弁、オイルポン
プから前記油路切換弁へ延びた高圧油路、前記油路切換
弁からオイルタンクへ延びた低圧油路、前記高圧油路を
流れる作動油の一部が反力ピストンに導かれて同作動油
の油圧力により同反力ピストンが少なくとも入力軸或い
は出力軸の径方向に駆動して前記トーションバーの捩れ
を規制する反力機構とを具えたパワーステアリング装置
において、前記高圧油路から前記反力ピストンへ延びた
油路の途中から岐れた並列油路と、同並列油路の一方に
設けた第2のオリフイスと、前記並列油路の双方からの
作動油の排出量を車速に応じて可変とする流量制御バル
ブと、同流量制御バルブの下流側の前記オイルタンクへ
延びる油路に設けられ流量に応じた主パイロット圧を生
じさせる第1のオリフイスと、同主パイロット圧により
作動して前記第2オリフイス上流の前記反力ピストンへ
の油圧を車速毎一定に且つ高速時ほど高くなるように制
御する圧力制御バルブと、同圧力制御バルブ下流側に延
びる油路と前記流量制御バルブの下流側の前記オイルタ
ンクに延びる油路とを結ぶ油路の途中に設けられ前記圧
力制御バルブの下流側から低圧油路への流量を前記流量
制御バルブ下流側の第1のオリフイスから前記低圧油路
への増域に対応してそれが減少すれば増やすように調整
する第3のオリフイスとを具えていることを特徴とした
パワーステアリング装置。
3. An input shaft and an output shaft, which are coaxially rotatably supported in a housing and elastically connected to each other via a torsion bar so as to be rotatable relative to each other, and the input shaft associated with a steering handle steering operation. And an oil passage switching valve that controls the supply and discharge of hydraulic oil to and from a power cylinder that applies an assisting force to the output shaft according to the relative rotation between the output shaft and the output shaft, and high-pressure oil that extends from the oil pump to the oil passage switching valve. Passage, a low-pressure oil passage extending from the oil passage switching valve to the oil tank, and part of the hydraulic oil flowing in the high-pressure oil passage is guided to the reaction force piston, and at least the reaction force piston is input by the oil pressure of the operation oil. In a power steering device including a reaction force mechanism that drives a shaft or an output shaft in a radial direction to restrict twist of the torsion bar, a power steering device extends from the middle of an oil passage extending from the high pressure oil passage to the reaction force piston. Parallel oil passage, a second orifice provided on one side of the parallel oil passage, a flow control valve for varying the discharge amount of hydraulic oil from both of the parallel oil passages according to the vehicle speed, and the same flow control A first orifice provided in an oil passage extending to the oil tank on the downstream side of the valve to generate a main pilot pressure according to a flow rate, and to the reaction piston upstream of the second orifice operating by the main pilot pressure. A pressure control valve for controlling the hydraulic pressure of the vehicle so as to be constant at each vehicle speed and to become higher as the vehicle speed increases, an oil passage extending downstream of the pressure control valve and an oil passage extending to the oil tank downstream of the flow control valve. The flow rate from the downstream side of the pressure control valve to the low pressure oil passage, which is provided in the middle of the connecting oil passage, is reduced corresponding to the increase in the area from the first orifice on the downstream side of the flow control valve to the low pressure oil passage. Passing Power steering apparatus is characterized in that third and comprises a orifice to be adjusted to increase.
JP58086598A 1983-05-19 1983-05-19 Power steering device Expired - Lifetime JPH0686223B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58086598A JPH0686223B2 (en) 1983-05-19 1983-05-19 Power steering device
KR1019840000454A KR890001395B1 (en) 1983-05-19 1984-02-01 Power steering system
US06/599,673 US4621704A (en) 1983-05-19 1984-04-12 Power steering system
GB08410787A GB2141083B (en) 1983-05-19 1984-04-27 Power steering system
FR8407735A FR2546121B1 (en) 1983-05-19 1984-05-18 POWER STEERING SYSTEM
DE19843418563 DE3418563A1 (en) 1983-05-19 1984-05-18 SERVOLINE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086598A JPH0686223B2 (en) 1983-05-19 1983-05-19 Power steering device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4730990A Division JPH02262470A (en) 1990-03-01 1990-03-01 Power steering device

Publications (2)

Publication Number Publication Date
JPS59213564A JPS59213564A (en) 1984-12-03
JPH0686223B2 true JPH0686223B2 (en) 1994-11-02

Family

ID=13891444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086598A Expired - Lifetime JPH0686223B2 (en) 1983-05-19 1983-05-19 Power steering device

Country Status (1)

Country Link
JP (1) JPH0686223B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193968A (en) * 1985-02-21 1986-08-28 Toyoda Mach Works Ltd Steering force controller for power steering
GB2179900B (en) * 1985-07-31 1988-06-02 Mitsubishi Motors Corp Power steering system
JPH0649494Y2 (en) * 1985-07-31 1994-12-14 三菱自動車工業株式会社 Power steering device
JPS6284581U (en) * 1985-11-19 1987-05-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519679A (en) * 1978-07-31 1980-02-12 Honda Motor Co Ltd Power steering gear

Also Published As

Publication number Publication date
JPS59213564A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
JPH02155879A (en) Hydraulic driving device for crawler type construction vehicle
KR890001337B1 (en) Power steering system
JPH0316305B2 (en)
JPH0696387B2 (en) Power steering device
JPH09249136A (en) Flow control device
JPS62152972A (en) Hydraulic reactional controller for steering force
US5346175A (en) Variable assist steering control valve
US4621704A (en) Power steering system
JPH10157643A (en) Steering device
JPH0686223B2 (en) Power steering device
GB2141083A (en) Power steering system
US4570662A (en) Demand responsive flow control valve
JPH0232541Y2 (en)
JPH0232544Y2 (en)
JPH0214537Y2 (en)
JPH0218782Y2 (en)
JPH0215007Y2 (en)
JPH0232545Y2 (en)
JPH0728049Y2 (en) Power steering device
JPH0242541Y2 (en)
JPH0254269B2 (en)
JPH0649494Y2 (en) Power steering device
JPH0214538Y2 (en)
JPH0728051Y2 (en) Power steering device
JPH0728050Y2 (en) Power steering device