JPH0232545Y2 - - Google Patents

Info

Publication number
JPH0232545Y2
JPH0232545Y2 JP1983073788U JP7378883U JPH0232545Y2 JP H0232545 Y2 JPH0232545 Y2 JP H0232545Y2 JP 1983073788 U JP1983073788 U JP 1983073788U JP 7378883 U JP7378883 U JP 7378883U JP H0232545 Y2 JPH0232545 Y2 JP H0232545Y2
Authority
JP
Japan
Prior art keywords
oil passage
oil
pressure
valve
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983073788U
Other languages
Japanese (ja)
Other versions
JPS59179174U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7378883U priority Critical patent/JPS59179174U/en
Priority to KR1019840000454A priority patent/KR890001395B1/en
Priority to GB08410787A priority patent/GB2141083B/en
Priority to FR8407735A priority patent/FR2546121B1/en
Priority to DE19843418563 priority patent/DE3418563A1/en
Publication of JPS59179174U publication Critical patent/JPS59179174U/en
Application granted granted Critical
Publication of JPH0232545Y2 publication Critical patent/JPH0232545Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本案はハンドルの動きをトーシヨンバーを介し
油路切換弁に伝えてオイルポンプから同油路切換
弁へ延びた高圧油路と低圧油路とを切換えてパワ
ーシリンダを所定の操舵方向に作動させるととも
に、同高圧油路を流れる作動油の一部を反力ピス
トンへ導いてトーシヨンバーの捩れを規制するパ
ワーステアリング装置において、前記高圧油路か
ら前記反力ピストンへ延びた分岐油路の途中から
岐れた並列油路と、同並列油路の一方に設けたオ
リフイスと、同並列油路からの作動油を車速に応
じて比例的に排出する流量制御弁と、同流量制御
弁の下流側に流量に応じたパイロツト圧を生じさ
せるオリフイスと、前記分岐油路における前記並
列油路の分岐部より上流側に介装されて前記パイ
ロツト圧により作動されて前記反力ピストンへの
油圧を一定に且つ高速時ほど高くなるように制御
する圧力制御弁とを具え、前記流量制御弁が、同
流量制御弁を高速位置の方向に付勢するバネと同
流量制御弁をバネの付勢力に抗して低速位置の方
向に作動させるソレノイドと同ソレノイドへ低速
時には大電流を供給し高速時には小電流を供給す
る制御装置とを具えていることを特徴とするもの
で、その目的とする処は、据え切り時には軽く操
舵でき、また高速時には適度の手応え(反力感)
を得られる。また高速時にフエイルセーフ機能を
得られる改良されたパワーステアリング装置を供
する点にある。
[Detailed description of the invention] The present invention transmits the movement of the handle to the oil passage switching valve via a torsion bar to switch between the high pressure oil passage and the low pressure oil passage extending from the oil pump to the oil passage switching valve, thereby controlling the power cylinder to a predetermined position. In a power steering device that operates in a steering direction and regulates torsion of a torsion bar by guiding a portion of hydraulic oil flowing through the high-pressure oil passage to a reaction piston, a branch oil extending from the high-pressure oil passage to the reaction piston. A parallel oil path branching from the middle of the road, an orifice installed on one side of the parallel oil path, a flow control valve that discharges hydraulic oil from the parallel oil path proportionally according to vehicle speed, and a flow rate control valve. An orifice that generates a pilot pressure according to the flow rate on the downstream side of the valve, and an orifice that is installed upstream of the branch part of the parallel oil passage in the branch oil passage and is actuated by the pilot pressure to apply pressure to the reaction piston. a pressure control valve that controls hydraulic pressure to be constant and to increase as the speed increases; It is characterized by comprising a solenoid that operates in the direction of a low speed position against a force, and a control device that supplies a large current to the solenoid at low speeds and a small current at high speeds, and its purpose is The steering wheel can be easily steered when turning stationary, and has a moderate response (feeling of reaction force) at high speeds.
You can get Another object of the present invention is to provide an improved power steering system that provides a fail-safe function at high speeds.

次に本案のパワーステアリング装置を第1図乃
至25図に示す一実施例により説明する。まず第
1図によりその概略を説明すると、1がエンジン
(図示せず)により駆動されるオイルポンプで、
同オイルポンプ1は、流量が一定(7/min程
度)の、吐出圧が可変(5Kg/cm2〜70Kg/cm2)の
オイルポンプである。また2が四方向油路切換弁
(ロータリバルブ)、3が操舵用パワーシリンダ、
4がオイルタンク、5が複数個の反力ピストン、
6が同各圧力ピストン5の背後に形成したチヤン
バー、7aが上記オイルポンプ1から上記油路切
換弁2へ延びた高圧油路、8aが同油路切換弁2
から上記オイタンク4へ延びた低圧油路、9a,
10aが上記油路切換弁2から上記パワーシリン
ダ3へ延びた油路、aが上記高圧油路7aの途中
に設けたオリフイス、7bが同オリフイスaの上
流側及び下流側の高圧油路7aに接続したバイパ
ス油路、11が同バイパス油路7bの途中に介装
したチエンジ・オーバ・バルブ、12が同チエン
ジ・オーバ・バルブ11の上流側の油路7bに油
路7cを介して接続した圧力制御弁(以下圧力制
御バルブと称する)、13が流量制御弁(以下ソ
レノイドバルブと称する)、7dが上記圧力制御
バルブ12から延びた油路で、同油路7dから岐
れた並列油路7e,7e′が上記ソレノイドバルブ
13へ延びている。また7d1が上記油路7dの途
中から上記圧力制御バルブ12へ延びたパイロツ
ト油路、7d2が上記油路7dの途中から前記反力
ピストン5の背後のチヤンバー6へ延びた油路、
7d3が上記油路7dの途中から低圧油路8bへ延
びた油路、b,cが上記油路b,cの途中に設け
たオリフイス、7e1が同オリフイスb,cの間の
油路7eから前記チエンジ・オーバ・バルブ11
へ延びたパイロツト油路、eが上記油路7d3の途
中に設けたオリフイス、7fが上記ソレノイドバ
ルブ13から上記低圧油路8bへ延びた油路、d
が同油路7fの途中に設けたオリフイス、7f1
同オリフイスdの上流側の油路7fから前記圧力
制御バルブ12へ延びた主パイロツト油路、14
が車速センサー、15が制御装置、16がイグニ
ツシヨンスイツチ、17がイグニツシヨンコイ
ル、18a,18bから上記ソレノイドバルブ1
3の電磁コイルへ延びた配線で、上記車速センサ
ー14は、車速を検出し、その結果得られたパル
ス信号(車速に応じたパルス信号)を制御装置1
5へ送出するように、また同制御装置15は、同
パルス信号に対応した電流(所定の高速時の電流
零(i=0)から停車時の電流最大(i=1)ま
での車速に対応した電流)をソレノイドバルブ1
3の電磁コイル57へ送出して、ソレノイドバル
ブ13のプランジヤ52及びスプール51を上記
電流値に応じた所定位置に保持するようになつて
いる。次に前記油路切換弁2チエンジ・オーバ・
バルブ11圧力制御バルブ12ソレノイドバルブ
13を第2図乃至第21図により具体的に説明す
る。第2図乃至第7図の20がバルブハウジング
で、上記各バルブ2,11,12,13は同バル
ブハウジング20内に組込まれている。まず油路
切換弁2を第2図により具体的に説明すると、2
1がハンドル(図示せず)により操作される入力
軸、第2,3図の23が上下の軸受によりバルブ
ハウジング20内に回転可能に支持されたシリン
ダブロツク、22が上記入力軸21内に挿入した
トーシヨンバーで、同トーシヨンバー22は、そ
の上部が入力軸21の上部に、その下部がシリン
ダブロツク23に、それぞれ固定されている。ま
た21aが上記入力軸21の下部外周面に設けた
複数個の縦溝で、上記シリンダブロツク23に
は、同各縦溝21aに対向してシリンダが設けら
れ、同各シリンダに前記反力ピストン5が嵌挿さ
れて、同各反力ピストン5の先端に設けた突起が
同各縦溝21aに係合している。また同各圧力ピ
ストン5の背後のチヤンバー6は、シリンダブロ
ツク23とバルブハウジング20との間に形成さ
れて、環状溝である。また23aが上記シリンダ
ブロツク23に一体のピニオン、24aが同ピニ
オン23aに噛合したラツク、24がラツクサポ
ート、26がキヤツプ、25が同キヤツプ26と
上記ラツクサポート24との間に介装したバネ、
28が上記シリンダブロツク23の直上のバルブ
ハウジング20内に固定した油路切換弁2のスリ
ーブ、28a,28b,28cが同スリーブ28
の外周面に設けた油路、27が同スリーブ28と
上記入力軸21との間に嵌挿されたバルブボデ
イ、23bが同バルブボデイ27の下端部と上記
シリンダブロツク23の上端部とを連結するピ
ン、27a,27b,27cが上記バルブボデイ
27の外周面に設けた油路で、ハンドルが中立位
置にあるときには、高圧油路7aがバルブボデイ
27の油路27aとスリーブ28の油路28aと
を介して入力軸21とトーシヨンバー22との間
のチヤンバー29に連通して、オイルポンプ1か
らの作動油が高圧油路7a→油路28a→油路2
7a→チヤンバー29(なお油路27aとチヤン
バー29との間の油路は図示せず)→低圧油路8
a→オイルタンク4→オイルポンプ1に循環する
ように、またハンドルを右に切つて、入力軸21
をバルブボデイ27に対して相対的に右に回転す
ると、高圧油路7aがバルブボデイ27の油路2
7a,27b及びスリーブ28の油路28bを介
してパワーシリンダ3の油路9aに、低圧油路8
aがチヤンバー29とバルブボデイ27の油路2
7cとスリーブ28の油路28cとを介してパワ
ーシリンダ3の油路10aに、それぞれ連通し
て、オイルポンプ1からの作動油が高圧油路7a
→油路27a→油路28b→油路9a→パワーシ
リンダ3の左室へ送られる一方、パワーシリンダ
3の右室の油が油路10a→油路28c→油路2
7c→チヤンバー29→低圧油路8a→タンク4
へ戻され、パワーシリンダ3のピストンロツドが
右へ移動して、右方向への操舵が行なわれるよう
に、またハンドルを左に切つて、入力軸21をバ
ルブボデイ27に対して相対的に左に回転する
と、高圧油路7aがバルブボデイ27の油路27
aとスリーブ28の油路28cとを介してパワー
シリンダ3の油路10aに、低圧油路8aがチヤ
ンバー29とバルブボデイ27の油路27bとス
リーブ28の油路28bとを介してパワーシリン
ダ3の油路9aに、それぞれ連通して、オイルポ
ンプ1からの作動油が高圧油路7a→油路27a
→油路28c→油路10a→パワーシリンダ3の
右室へ送られる一方、パワーシリンダ3の左室の
油が油路9a→油路28b→油路27b→チヤン
バー29→低圧油路8a→タンク4へ戻され、パ
ワーシリンダ3のピストンロツドが左へ移動し
た、左方向への操舵が行なわれるようになつてい
る。次に前記チエンジ・オーバ・バルブ11を具
体的に説明すると、同チエンジ・オーバ・バルブ
11は第4,7図から明らかなように、オリフイ
スaのバイパス油路7bの途中に介装されてい
る。同チエンジ・オーバ・バルブ11は、環状溝
30a(なおこの環状溝30aは油路7bの一部)
をもつスプール30(なおスプール30は高速位
置を示している)とキヤツプ31とこれらのスプ
ール30及びキヤツプ31の間に介装したバネ3
3とOリング34とを有し、パイロツト油路7e1
(第1図参照)の油圧が高まると、スプール30
がバネ33に抗し前進して、バイパス油路7bを
開くように、またパイロツト油路7e1の油圧が低
下すると、スプール30がバネ33により後退し
て、バイパス油路7bを閉じるようになつてい
る。次に前記圧力制御バルブ12を具体的に説明
すると、同圧力制御バルブ12は第5,6,7図
から明らかなように、スリーブ40とスプール4
1とキヤツプ42とストツパ43とこれらのスプ
ール41及びストツパ43の間に介装したバネ4
4とスプール41内に固定したオリフイスdをも
つ部材45とを有している。またスプール41に
は、第9,10,19,20図に示すように3つ
の環状溝41a,41b,41cが設けられ、環
状溝41aが前記バイパス油路7bのチエンジ・
オーバ・バルブ11の上流側から岐れた油路7c
に対向している。また41dが上記オリフイスd
から同スプール41内を上方へ延びたチヤンバ
ー、41aが同チヤンバー41dと上記環状溝4
1cとをつなぐ油路(なおこれらの41d,41
e,41cは低圧油路8bの一部)で、同環状溝
41cは、第2図に示した油路切換弁2のバルブ
ボデイ27の直上に形成した低圧油路8bから第
6図のように斜め下方に延びたバルブハウジング
20側の伝圧油路8bに対向している。また上記
環状溝41aはオリフイスeを介して上記チヤン
バー41dに連通している。また上記スリーブ4
0には、第11図乃至第17図に示すように、外
周面円周方向に位相を異にして上部から下部へ、
貫通孔40a′をもつ切欠部40aと貫通孔40
b′をもつ切欠部40bと貫通孔40c′,40″を
もつ切欠部40cとオリフイスbをもつ切欠部4
0dと貫通孔40e′をもつ切欠部40eが設けら
れ、貫通孔40a′をもつ孔40a′がスプール41
の環状溝41cとバルブハウジング20側の低圧
油路8bとをつなぎ、貫通孔40b′をもつ切欠部
40bがスプール41の環状溝41aとバルブハ
ウジング20側の油路7cとをつなぎ、貫通孔4
0c′,40c″をもつ切欠部40cがスプール41
の環状溝41a,41bをつなぎ、オリフイスb
をもつ切欠部40dがスプール41の環状溝41
bとバルブハウジング20側の油路7eとをつな
ぎ、貫通孔40e′をもつ切欠部40eがスプール
41の環状溝41bと第3,5図に示したバルブ
ハウジング20側の油路7dとをつなぎ、オリフ
イスdからのスプール41のチヤンバー41dへ
出た油が油路41e→環状溝41c→貫通孔40
a′→切欠部40a→バルブハウジング20側の低
圧油路8bを経てオイルタンク4に戻るように、
バイパス油路7bから油路7cを経て切欠部40
bに入つた作動油が貫通孔40b′→環状溝41a
→切欠部40c→貫通孔40c″→環状溝41b→
貫通孔40e′→切欠部40e→バルブハウジング
20の油路7dを経てソレノイドバルブ13及び
反力ピストン5の方向に向うように、また上記環
状溝41b内を流れる作動油の一部がオリフイス
b→切欠部40d→バルブハウジング20側の油
路7eを経て前記チエンジ・オーバ・バルブ11
のスプール30の背後にパイロツト圧として作用
し(第5図の7e1参照)、さらに同スプール30
の後端部に設けた油路30b(第7図参照)→バ
ルブハウジング20側の油路7eを経てソレノイ
ドバルブ13の方向に向うようになつている。次
に前記ソレノイドバルブ13を具体的に説明する
と、同ソレノイドバルブ13は、第5,8,21
図から明らかなように、前記圧力制御バルブ12
の直下に互いの軸線が一致するように配設されて
いる。同ソレノイドバルブ13は、スリーブ50
とスプール51と非磁性材製のプランジヤ52と
同プランジヤ52に一体の磁性材製部材53と上
記スプール51を上記プランジヤ52に締付け固
定するロツクナツト54と前記圧力制御バルブ1
2のスリーブ40に当接する座板55と同座板5
5及び上記スリーブ50の間に介装したバツクア
ツプスプリング56と電磁コイル(ソレノイド)
57と同電磁コイル57側のケーシングに固定し
たナツト58と同ナツト58に螺合したプランジ
ヤ押圧力調整ボルト59と同ボルト59及び上記
プランジヤ52の間に介装したバネ60とソレノ
イドバルブ13の組立体をバルブハウジング20
に締付け固定するロツクナツト61とを有し、上
記スリーブ50は、第21図に示すように、バル
ブハウジング20側の油路7d(第5図参照)に
連通する油路50aとバルブハウジング20側の
油路7eに連通する油路50bとを有し、同油路
50bにオリフイスcが設けられている。また上
記スプール51には、斜めの溝51a′を有する油
路51aと貫通孔51bとが、上記プランジヤ5
2には、同貫通孔51bに連通する油路52aと
貫通孔52bと軸方向の油路52cとが、それぞ
れ設けられている。すでに述べたように第5図に
示すバルブハウジング20側の油路7dをソレノ
イドバルブ13に向う作動油は第21図の油路5
0aに入り、第5図に示すバルブハウジング20
側の油路7eをソレノイドバルブ13に向う作動
油は第21図の油路50bに入る。同第21図は
高速時の状態を示しており、この状態では、油路
50bに入つた作動油だけがオリフイスc→油路
51a→貫通孔51b→油路52a→貫通孔52
b→油路52cを経てオリフイスd側の部材45
に向うことになる。また高速時→低速時には、ス
プール51が下降し、オリフイスcの開口量を減
少させる一方、油路50aの開口量が増大させ
て、停車時には、同油路50aのみが開口する。
第1図のQ0はオイルポンプ1の吐出側の流量、
Q1は高圧油路7aの油量、Q2は油路7cの流量、
Q3は油路7d(油路50aの流量、Q4はオリフイ
スc下流側の流量、Q5はオリフイスeの下流側
の流量を示しており、Q1:Q2は6:1程度であ
る。また油路7cの流量Q2は、Q2=Q3+Q4+Q5
である。(第30図参照)。またソレノイドバルブ
13のスリーブ50の径は、第21図に示すよう
に上、中、下部で異なり、上部ほど小さく、それ
ぞれの間にD1,D2の差がある。一方、バルブハ
ウジング20側のスリーブ嵌挿孔もそれに一致す
るようにあけられている。このようにしたのは、
スリーブ50をOリング62とともにバルブハウ
ジング20のスリーブ嵌挿孔に嵌挿する際、摩擦
抵抗を少なくして、スリーブ50を同スリーブ嵌
挿孔に入れ易くするめである。また第22,2
3,24図にフイルター70を示した。このフイ
ルター70は、枠体71と金網72とよりなり、
圧力制御弁12のスリーブ40に設けた切欠部4
0b(第9,13図参照)、即ち、制御系油路の入
口に嵌着されて、ゴミ等の異物が制御系油路に浸
入するのを防止する。なおゴミ等の異物の制御系
油路への浸入は、この種のフイルターをバルブケ
ーシング20に設けた高圧油路7aの入口(第4
図の矢印部分参照)に設けてもよいが、その場合
には、ポンプの全吐出流量が通過するため、フイ
ルターを大型化する必要があり、図示スペースで
は同フイルターの収納が困難である。なお上記高
圧油路7aの入口を大径化しているのは、ここか
らドリルを挿入して、2方向に分岐したオリフイ
スaと油路7bとを加工し易くすると同時に配管
(図示せず)との結合作業を容易に行なえるよう
にするためである。またその他の油路7b(チエ
ンジ・オーバ・バルブ11下流側の油路7b,7
c,7d,7e等も第3,4,5図から判るよう
にバルブハウジング20に縦横方向から孔をあけ
て栓をすることにより、形成されており、この点
でも油路の加工が容易になつている。なお第2,
3,4,6,7図のZは油路切換弁2の中心軸
線、第2,5図のZ1はピニオン23aの中心であ
る。また前記制御装置15の1例を第25図に示
した。80が定電圧電源回路、81が車速に比例
した電圧を送出するパルス・電圧変換回路、82
が誤差増幅回路、83がトランジスタ、84が車
速零以外でタイマー回路87をリセツトし車速零
でタイマ回路87をセツトするリセツト回路、8
5がエンジン回転数に比例した電圧を送出するパ
ルス・電圧変換回路、86がエンジン回転数設定
回路、88がエンジン回転数2000rpm以上のとき
タイマ回路87を始動状態にし、2000rpm以下の
ときOFFにするエンジン回転数設定回路、88
が車速パルスなしでON状態の車速入力断線検出
回路、89がトランジスタ、90がリレー、91
がソレノイドバルブ13の電磁コイル57に流れ
る電流を安定させるネガテイブフイードバツク回
路で、本制御装置15によれば、次の作用を得ら
れる。即ち、車速零でエンジン回転数が2000rpm
以上の状態は通常あり得ない。そのため、この状
態が5〜10秒以上継続したら、何らかの故障(例
えば車速パルス系の故障、或いはソレノイドバル
ブ系の故障)が生じたものと判断し、リレー90
をONにして、ソレノイドバルブ13(電磁コイ
ル57)への通電を停止する。従つて高速時にハ
ンドル操作が重くなつて(フエイルセーフ機能を
有して)、安全である。
Next, the power steering device of the present invention will be explained with reference to an embodiment shown in FIGS. 1 to 25. First, the outline will be explained with reference to Fig. 1. 1 is an oil pump driven by an engine (not shown);
The oil pump 1 is an oil pump with a constant flow rate (about 7/min) and a variable discharge pressure (5 kg/cm 2 to 70 kg/cm 2 ). In addition, 2 is a four-way oil passage switching valve (rotary valve), 3 is a power cylinder for steering,
4 is an oil tank, 5 is a plurality of reaction pistons,
6 is a chamber formed behind each pressure piston 5, 7a is a high pressure oil passage extending from the oil pump 1 to the oil passage switching valve 2, and 8a is the oil passage switching valve 2.
A low pressure oil passage extending from the oil tank 4 to the oil tank 4, 9a,
10a is an oil passage extending from the oil passage switching valve 2 to the power cylinder 3, a is an orifice provided in the middle of the high pressure oil passage 7a, and 7b is an oil passage 7a on the upstream and downstream sides of the orifice a. The connected bypass oil passage, 11, is a change-over valve inserted in the middle of the bypass oil passage 7b, and 12 is connected to the oil passage 7b on the upstream side of the change-over valve 11 via an oil passage 7c. A pressure control valve (hereinafter referred to as a pressure control valve), 13 a flow control valve (hereinafter referred to as a solenoid valve), 7d an oil passage extending from the pressure control valve 12, and a parallel oil passage branching from the oil passage 7d. 7e and 7e' extend to the solenoid valve 13. Further, 7d 1 is a pilot oil passage extending from the middle of the oil passage 7d to the pressure control valve 12, and 7d 2 is an oil passage extending from the middle of the oil passage 7d to the chamber 6 behind the reaction piston 5.
7d 3 is an oil passage extending from the middle of the oil passage 7d to the low pressure oil passage 8b, b and c are orifices provided in the middle of the oil passages b and c, and 7e 1 is an oil passage between the orifices b and c. 7e to said change over valve 11
7f is an oil passage extending from the solenoid valve 13 to the low-pressure oil passage 8b ; d is an orifice provided in the middle of the oil passage 7d;
is an orifice provided in the middle of the oil passage 7f, and 7f1 is a main pilot oil passage extending from the oil passage 7f upstream of the orifice d to the pressure control valve 12;
is a vehicle speed sensor, 15 is a control device, 16 is an ignition switch, 17 is an ignition coil, and 18a and 18b are connected to the solenoid valve 1.
The vehicle speed sensor 14 detects the vehicle speed through the wiring extending to the electromagnetic coil No. 3, and sends the resulting pulse signal (pulse signal according to the vehicle speed) to the control device 1.
In addition, the control device 15 transmits a current corresponding to the pulse signal (corresponding to the vehicle speed from zero current at a predetermined high speed (i=0) to maximum current at a stop (i=1)). Solenoid valve 1
The plunger 52 and spool 51 of the solenoid valve 13 are held at predetermined positions according to the above-mentioned current value. Next, change over the oil passage switching valve 2.
The valve 11, pressure control valve 12, and solenoid valve 13 will be explained in detail with reference to FIGS. 2 to 21. Reference numeral 20 in FIGS. 2 to 7 is a valve housing, and each of the above-mentioned valves 2, 11, 12, and 13 is incorporated into the valve housing 20. First, the oil passage switching valve 2 will be explained in detail with reference to FIG.
1 is an input shaft operated by a handle (not shown), 23 in FIGS. 2 and 3 is a cylinder block rotatably supported within the valve housing 20 by upper and lower bearings, and 22 is inserted into the input shaft 21. The torsion bar 22 has its upper part fixed to the upper part of the input shaft 21 and its lower part fixed to the cylinder block 23, respectively. Further, reference numeral 21a denotes a plurality of vertical grooves provided on the outer peripheral surface of the lower part of the input shaft 21, and the cylinder block 23 is provided with a cylinder facing each of the vertical grooves 21a, and each cylinder is provided with the reaction piston. 5 is fitted and inserted, and the protrusions provided at the tips of the reaction pistons 5 are engaged with the longitudinal grooves 21a. The chamber 6 behind each pressure piston 5 is formed between the cylinder block 23 and the valve housing 20 and is an annular groove. Further, 23a is a pinion integrated with the cylinder block 23, 24a is a rack meshed with the pinion 23a, 24 is a rack support, 26 is a cap, 25 is a spring interposed between the cap 26 and the rack support 24,
28 is the sleeve of the oil passage switching valve 2 fixed in the valve housing 20 directly above the cylinder block 23, and 28a, 28b, 28c are the sleeves 28.
27 is a valve body fitted between the sleeve 28 and the input shaft 21; 23b is a pin connecting the lower end of the valve body 27 and the upper end of the cylinder block 23; , 27a, 27b, and 27c are oil passages provided on the outer peripheral surface of the valve body 27, and when the handle is in the neutral position, the high pressure oil passage 7a is connected to the oil passage 27a of the valve body 27 and the oil passage 28a of the sleeve 28. It communicates with the chamber 29 between the input shaft 21 and the torsion bar 22, and the hydraulic oil from the oil pump 1 flows through the high pressure oil path 7a → oil path 28a → oil path 2.
7a → Chamber 29 (the oil passage between oil passage 27a and chamber 29 is not shown) → Low pressure oil passage 8
Turn the handle to the right and connect the input shaft 21 so that the circulation goes from a to oil tank 4 to oil pump 1.
When rotated to the right relative to the valve body 27, the high pressure oil passage 7a is connected to the oil passage 2 of the valve body 27.
7a, 27b and the oil passage 28b of the sleeve 28 to the oil passage 9a of the power cylinder 3.
a is the oil passage 2 between the chamber 29 and the valve body 27
7c and the oil passage 10a of the power cylinder 3 via the oil passage 28c of the sleeve 28, and the hydraulic oil from the oil pump 1 is connected to the high pressure oil passage 7a.
→ Oil passage 27a → Oil passage 28b → Oil passage 9a → Oil in the left chamber of power cylinder 3 is sent, while oil in the right chamber of power cylinder 3 is sent to oil passage 10a → Oil passage 28c → Oil passage 2.
7c → Chamber 29 → Low pressure oil line 8a → Tank 4
The piston rod of the power cylinder 3 moves to the right and the steering wheel is turned to the left to rotate the input shaft 21 to the left relative to the valve body 27. Then, the high pressure oil passage 7a connects to the oil passage 27 of the valve body 27.
a and the oil passage 28c of the sleeve 28 to the oil passage 10a of the power cylinder 3, and the low pressure oil passage 8a is connected to the oil passage 10a of the power cylinder 3 via the chamber 29, the oil passage 27b of the valve body 27, and the oil passage 28b of the sleeve The hydraulic oil from the oil pump 1 is connected to the oil passage 9a from the high pressure oil passage 7a to the oil passage 27a.
→ Oil passage 28c → Oil passage 10a → The oil in the left chamber of the power cylinder 3 is sent to the right chamber, while the oil in the left chamber of the power cylinder 3 is sent to the oil passage 9a → Oil passage 28b → Oil passage 27b → Chamber 29 → Low pressure oil passage 8a → Tank 4, the piston rod of the power cylinder 3 moves to the left, and steering to the left is performed. Next, the change-over valve 11 will be explained in detail.As is clear from FIGS. 4 and 7, the change-over valve 11 is interposed in the middle of the bypass oil passage 7b of the orifice a. . The change over valve 11 has an annular groove 30a (this annular groove 30a is a part of the oil passage 7b).
A spool 30 (the spool 30 is shown in a high-speed position) and a cap 31 with a spring 3 interposed between the spool 30 and the cap 31
3 and an O-ring 34, the pilot oil passage 7e 1
(See Figure 1) When the oil pressure increases, the spool 30
moves forward against the spring 33 to open the bypass oil passage 7b, and when the oil pressure in the pilot oil passage 7e1 decreases, the spool 30 moves backward by the spring 33 to close the bypass oil passage 7b. ing. Next, to explain the pressure control valve 12 in detail, the pressure control valve 12 includes a sleeve 40 and a spool 4, as is clear from FIGS.
1, the cap 42, the stopper 43, and the spring 4 interposed between the spool 41 and the stopper 43.
4 and a member 45 having an orifice d fixed within the spool 41. The spool 41 is also provided with three annular grooves 41a, 41b, and 41c as shown in FIGS.
Oil passage 7c branched from the upstream side of over valve 11
is facing. Also, 41d is the orifice d
A chamber 41a extends upward within the spool 41 from the chamber 41d and the annular groove 4.
1c (note that these 41d, 41
e, 41c is a part of the low pressure oil passage 8b), and the annular groove 41c is a part of the low pressure oil passage 8b formed directly above the valve body 27 of the oil passage switching valve 2 shown in FIG. It faces the pressure transmission oil passage 8b on the valve housing 20 side that extends diagonally downward. Further, the annular groove 41a communicates with the chamber 41d via an orifice e. Also, the sleeve 4
0, as shown in FIGS. 11 to 17, from the top to the bottom with different phases in the circumferential direction of the outer peripheral surface,
A notch 40a having a through hole 40a' and a through hole 40
Notch 40b with b', notch 40c with through holes 40c', 40'', and notch 4 with orifice b
A notch 40e having a through hole 40e' and a through hole 40a' is provided, and a hole 40a' having a through hole 40a' is formed on the spool 41.
The annular groove 41c of the spool 41 and the low pressure oil passage 8b on the valve housing 20 side are connected, and the notch 40b having the through hole 40b' connects the annular groove 41a of the spool 41 and the oil passage 7c on the valve housing 20 side.
The notch 40c with 0c′, 40c″ is the spool 41
Connect the annular grooves 41a and 41b of the orifice b.
The notch 40d has an annular groove 41 of the spool 41.
b and the oil passage 7e on the valve housing 20 side, and the notch 40e having the through hole 40e' connects the annular groove 41b of the spool 41 and the oil passage 7d on the valve housing 20 side shown in FIGS. , the oil coming out from the orifice d to the chamber 41d of the spool 41 flows through the oil passage 41e → the annular groove 41c → the through hole 40.
a′ → notch 40a → return to the oil tank 4 via the low pressure oil passage 8b on the valve housing 20 side.
The notch 40 passes from the bypass oil passage 7b to the oil passage 7c.
The hydraulic oil that has entered b flows through the through hole 40b' → annular groove 41a.
→Notch 40c→Through hole 40c″→Annular groove 41b→
A portion of the hydraulic oil flowing in the annular groove 41b passes through the through hole 40e'→notch 40e→oil passage 7d of the valve housing 20 toward the solenoid valve 13 and the reaction piston 5, and flows through the orifice b→ Notch 40d→change over valve 11 via oil passage 7e on valve housing 20 side
Acts as a pilot pressure behind the spool 30 (see 7e 1 in Fig. 5), and further
The oil passage 30b provided at the rear end (see FIG. 7) is directed toward the solenoid valve 13 via an oil passage 7e on the valve housing 20 side. Next, to specifically explain the solenoid valve 13, the solenoid valve 13 has the fifth, eighth, and 21st
As is clear from the figure, the pressure control valve 12
They are arranged directly below the , so that their axes coincide with each other. The solenoid valve 13 has a sleeve 50
a spool 51, a plunger 52 made of a non-magnetic material, a member 53 made of a magnetic material integrated with the plunger 52, a lock nut 54 for tightening and fixing the spool 51 to the plunger 52, and the pressure control valve 1.
The seat plate 55 that comes into contact with the sleeve 40 of No. 2 and the seat plate 5
5 and a back-up spring 56 and an electromagnetic coil (solenoid) interposed between the sleeve 50
57, a nut 58 fixed to the casing on the side of the electromagnetic coil 57, a plunger pressing force adjustment bolt 59 screwed into the nut 58, a spring 60 interposed between the bolt 59 and the plunger 52, and a solenoid valve 13. 3D valve housing 20
As shown in FIG. 21, the sleeve 50 has an oil passage 50a communicating with the oil passage 7d on the valve housing 20 side (see FIG. 5) and a lock nut 61 on the valve housing 20 side. It has an oil passage 50b communicating with the oil passage 7e, and an orifice c is provided in the oil passage 50b. Further, the spool 51 has an oil passage 51a having an oblique groove 51a' and a through hole 51b.
2 is provided with an oil passage 52a, a through hole 52b, and an axial oil passage 52c communicating with the through hole 51b, respectively. As already mentioned, the hydraulic oil flowing toward the solenoid valve 13 through the oil passage 7d on the valve housing 20 side shown in FIG. 5 is the oil passage 5 in FIG.
0a, the valve housing 20 shown in FIG.
The hydraulic oil flowing toward the solenoid valve 13 through the oil passage 7e on the side enters the oil passage 50b in FIG. 21. FIG. 21 shows the state at high speed, and in this state, only the hydraulic oil that has entered the oil passage 50b flows through the orifice c → oil passage 51a → through hole 51b → oil passage 52a → through hole 52.
b → Member 45 on the orifice d side via the oil path 52c
I will be heading to Further, when the vehicle is at high speed and then at low speed, the spool 51 is lowered to reduce the opening amount of the orifice c, while increasing the opening amount of the oil passage 50a, and when the vehicle is stopped, only the oil passage 50a is opened.
Q 0 in Figure 1 is the flow rate on the discharge side of oil pump 1,
Q 1 is the oil amount in the high pressure oil path 7a, Q 2 is the flow rate in the oil path 7c,
Q 3 indicates the flow rate of oil passage 7d (oil passage 50a), Q 4 indicates the flow rate downstream of orifice c, Q 5 indicates the flow rate downstream of orifice e, and Q 1 :Q 2 is approximately 6:1. .Furthermore, the flow rate Q 2 of the oil passage 7c is Q 2 =Q 3 +Q 4 +Q 5
It is. (See Figure 30). Further, the diameter of the sleeve 50 of the solenoid valve 13 is different in the upper, middle, and lower parts as shown in FIG. 21, and the diameter is smaller as the upper part becomes smaller, and there is a difference in D 1 and D 2 between them. On the other hand, the sleeve fitting hole on the valve housing 20 side is also opened to match the sleeve fitting hole. I did it this way,
This is to reduce frictional resistance when inserting the sleeve 50 together with the O-ring 62 into the sleeve insertion hole of the valve housing 20, thereby making it easier to insert the sleeve 50 into the sleeve insertion hole. Also the 22nd, 2nd
The filter 70 is shown in Figures 3 and 24. This filter 70 consists of a frame 71 and a wire mesh 72,
Notch 4 provided in sleeve 40 of pressure control valve 12
0b (see FIGS. 9 and 13), that is, it is fitted into the entrance of the control system oil passage to prevent foreign matter such as dust from entering the control system oil passage. Note that foreign substances such as dust can be prevented from entering the control system oil passage by using the inlet (fourth
(see the arrow in the figure), but in that case, the entire discharge flow rate of the pump passes through, so the filter needs to be larger, and it is difficult to accommodate the filter in the space shown. The reason why the entrance of the high-pressure oil passage 7a is made larger is to make it easier to insert a drill from here and machine the orifice a and the oil passage 7b, which are branched in two directions, and at the same time to make it easier to connect the piping (not shown). This is to facilitate the joining work. In addition, other oil passages 7b (oil passages 7b, 7 on the downstream side of the change-over valve 11)
As can be seen from Figures 3, 4 and 5, holes c, 7d, 7e, etc. are formed by drilling and plugging holes in the valve housing 20 in the vertical and horizontal directions. It's summery. Second,
Z in FIGS. 3, 4, 6, and 7 is the central axis of the oil passage switching valve 2, and Z 1 in FIGS. 2 and 5 is the center of the pinion 23a. Further, an example of the control device 15 is shown in FIG. 25. 80 is a constant voltage power supply circuit, 81 is a pulse/voltage conversion circuit that sends out a voltage proportional to the vehicle speed, 82
83 is an error amplifier circuit, 83 is a transistor, 84 is a reset circuit that resets the timer circuit 87 when the vehicle speed is other than zero, and sets the timer circuit 87 when the vehicle speed is zero.
5 is a pulse/voltage conversion circuit that sends out a voltage proportional to the engine speed, 86 is an engine speed setting circuit, and 88 is a timer circuit that starts the timer circuit 87 when the engine speed is 2000 rpm or more, and turns it off when the engine speed is 2000 rpm or less. Engine speed setting circuit, 88
is the vehicle speed input disconnection detection circuit that is ON without a vehicle speed pulse, 89 is a transistor, 90 is a relay, 91
is a negative feedback circuit that stabilizes the current flowing through the electromagnetic coil 57 of the solenoid valve 13. According to the present control device 15, the following effects can be obtained. In other words, the engine speed is 2000 rpm at zero vehicle speed.
The above situation is normally not possible. Therefore, if this condition continues for 5 to 10 seconds or more, it is determined that some kind of failure has occurred (for example, a failure in the vehicle speed pulse system or a failure in the solenoid valve system), and the relay 90 is
Turn ON to stop energizing the solenoid valve 13 (electromagnetic coil 57). Therefore, the steering wheel becomes difficult to operate at high speed (it has a fail-safe function) and is safe.

次に前記パワーステアリング装置の作用を説明
する。油路切換弁2の出力油圧(オイルポンプ1
の吐出圧)Ppは、ハンドルを中立位置から右ま
たは左に切つて、入力軸21のバルブボデイ27
に対する相対角度が大きくなれば、第26図のよ
うに2次曲線を描いて上昇する。このオイルポン
プ1の吐出圧Ppの影響は、油路7a,7b,7
c圧力制御バルブ12を介して下流側の、オリフ
イスb,eソレノイドバルブ13及び反力ピスト
ン側チヤンバー6に対しては上流側の油路7d
に、そのまま表われて、同油路7dの油圧Pcが同
様に上昇する。このとき、自動車が停止していれ
ば、制御装置15は車速センサー14からのパル
ス信号を受けて、i=1A(第29図参照)の電流
をソレノイドバルブ13へ送り、プランジヤ52
及びスプール51を下限位置まで下降させ(第1
図ではL位置に移動させ)、第21図の油路50
aのみをスプール51側の油路51a,51b,
51cを介してオリフイスdの上流側の油路7f
に連通させて、同油路7fの油圧を油路7dの油
圧Pcと同じ値にする。以上の停止時にハンドルを
右(または左)に切り始めると、油路7dの油圧
Pcが上昇を始める。そうすると、油路7fの油圧
も同じ値で上昇する。この油圧は、主パイロツト
油路7f1を介し圧力制御バルブ12のスプール4
1(スプール41の小径端)にそのまま伝えられ
て、スプール41が第10図の矢印方向に押され
る。同時にスプール41の環状溝41bを通る作
動油が受圧面積の差からスプール41を第10図
の矢印方向に押す。一方、バネ44側は低圧油路
8bに通じており、スプール41がバネ44に抗
し次第に上昇し(第1図ではL方向に移動)、貫
通孔40b′の開度が次第に小さくなつてゆき、上
記矢印方向に押す油圧とバネ力とがつり合うと、
スプール41が停止する。この状態では、貫通孔
40b′の開度が最も小さくて、油路7d(反力ピ
ストン側チヤンバー6)の油圧Pcが最も低くな
る。この状態はそれからも同じで、ハンドルをさ
らに右(または左)に切つて、油路7a,7b,
7cの油圧Ppがさらに上昇しても、圧力制御バ
ルブ12は貫通孔40b′の開度を上記状態に保持
して、油路7dの油圧Pcが引続き上記低い一定の
レベルに保持される。従つて前記相対角度を大き
くして、大きな出力油圧Ppを得るときに、反力
ピストン側チヤンバー6の油圧Pcとトーシヨンバ
ー22の捩れ角度とで決まるハンドルトルクTが
大きくならない(第27図のイ参照)。以上の据
え切り時には、すでに述べたように油路7dの油
圧Pcは低いといえども、スプール51(第21図
参照)が下降しているため、オリフイスcは閉塞
されて、油路7eに作動油が流れない。従つてパ
イロツト油路7e1の圧力は、Pcと同じ圧力になる
が、この圧力により、チエンジ・オーバー・バル
ブ11はバネ33の弾力に打勝つてバイパス油路
7bを開き、第1図のL位置に保持される。なお
第1図はH位置を示している。
Next, the operation of the power steering device will be explained. Output oil pressure of oil passage switching valve 2 (oil pump 1
(discharge pressure) P p of the valve body 27 of the input shaft 21 when the handle is turned to the right or left from the neutral position.
As the relative angle to the curve increases, the curve rises as shown in FIG. 26, drawing a quadratic curve. The influence of the discharge pressure P p of the oil pump 1 is
For the orifices b and e solenoid valves 13 and the reaction piston side chamber 6 on the downstream side via the c pressure control valve 12, there is an oil passage 7d on the upstream side.
This appears as it is, and the oil pressure P c of the same oil passage 7d rises in the same way. At this time, if the car is stopped, the control device 15 receives a pulse signal from the vehicle speed sensor 14, sends a current of i=1A (see FIG. 29) to the solenoid valve 13, and
and lower the spool 51 to the lower limit position (first
In the figure, the oil passage 50 in Figure 21 is moved to the L position).
Only a is connected to the oil passages 51a, 51b on the spool 51 side,
Oil passage 7f on the upstream side of orifice d via 51c
The oil pressure in the oil passage 7f is set to the same value as the oil pressure P c in the oil passage 7d. If you start turning the steering wheel to the right (or left) during the above stoppage, the oil pressure in oil passage 7d will
P c starts to rise. Then, the oil pressure in the oil passage 7f also increases by the same value. This oil pressure is applied to the spool 4 of the pressure control valve 12 via the main pilot oil passage 7f1.
1 (the small diameter end of the spool 41), and the spool 41 is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove 41b of the spool 41 pushes the spool 41 in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring 44 side communicates with the low pressure oil passage 8b, and the spool 41 gradually rises against the spring 44 (moves in the L direction in FIG. 1), and the opening degree of the through hole 40b' gradually becomes smaller. , when the hydraulic pressure pushing in the direction of the arrow above and the spring force are balanced,
The spool 41 stops. In this state, the opening degree of the through hole 40b' is the smallest, and the oil pressure Pc of the oil passage 7d (reaction piston side chamber 6) is the lowest. This condition remains the same from then on, and by turning the steering wheel further to the right (or left), the oil passages 7a, 7b,
Even if the oil pressure P p in the oil passage 7c further increases, the pressure control valve 12 maintains the opening degree of the through hole 40b' in the above state, and the oil pressure P c in the oil passage 7d continues to be maintained at the low constant level. . Therefore, when increasing the relative angle to obtain a large output oil pressure P p , the handle torque T determined by the oil pressure P c of the reaction piston side chamber 6 and the torsion angle of the torsion bar 22 does not become large (as shown in FIG. 27). (see b). During the above-mentioned stationary cutoff, even though the oil pressure P c in the oil passage 7d is low as described above, the spool 51 (see Fig. 21) is lowered, so the orifice c is blocked and the oil passage 7e is closed. Hydraulic oil does not flow. Therefore, the pressure in the pilot oil passage 7e1 becomes the same pressure as Pc , but this pressure causes the change-over valve 11 to overcome the elasticity of the spring 33 and open the bypass oil passage 7b, as shown in FIG. It is held in the L position. Note that FIG. 1 shows the H position.

また自動車が低速走行状態に入れば、制御装置
15は車速センサー14からのパルス信号を受け
て、そのときの車速に対応した電流、例えばi=
0.8の電流をソレノイドバルブ13へ送り、プラ
ンジヤ52及びスプール51を下限位置から上記
電流値に対応した距離だけ上昇させ(第1図では
右向きに移動させ)、第21図に示すスリーブ5
0側油路50aの開口量を減少させる。このと
き、オリフイスc(スリーブ50側油路50b)
は未だ閉塞されたままで、油路50aの開口量の
減少分により、オリフイスdを通過する流量Q3
(Q4はこの状態ではほぼ零)、前記停車時の油路
50aからの流量よりも減少する。なおこの減少
分は、オリフイスeから低圧油路8bへの流量
Q5が増大して吸収する。以上のようにソレノイ
ドバルブ13を出る流量Q3(Q4≒0)が前記停車
時の油路50aからの流量Q3よりも減少するの
で、オリフイスdの上流側の油路7fの油圧が停
車時よりも低くなる。以上の低速時にハンドルを
右(または左)に切り始めると、油路7dの油圧
Pcが上昇を始める。そうすると、油路7fの油圧
も上昇する。この油圧は主パイロツト油路7f1
介し圧力制御バルブ12のスプール41(スプー
ル41の小径端)にそのまま伝えられて、同スプ
ール41が第10図の矢印方向に押される。同時
にスプール41の環状溝41bを通る作動油が受
圧面積の差からスプール41を第10図の矢印方
向に押す。一方、バネ44側は低圧油路8bに通
じており、スプール41がバネ44に抗し次第に
上昇し(第1図ではL方向に移動し)、貫通孔4
0b′の開度が次第に小さくなつてゆき、上記矢印
方向に押す油圧とバネ力とがつり合うと、スプー
ル41が停止する。が、前記スプール41の小径
端を押す油圧は前記停車時よりも低く、スプール
41の上昇量がその分だけ少なくて(貫通孔40
b′)の開口量がその分だけ多くて)、油路7d(反
力ピストン側チヤンバー6)の油圧Pcが前記停車
時よりも高くなる。この状態はそれからも同じ
で、ハンドルをさらに右(または左)に切つて、
油路7a,7b,7cの油圧Ppがさらに上昇し
ても、圧力制御バルブ12は貫通孔40b′の開度
を上記状態に保持して、油路7dの油圧Pcが引続
き停車時よりも高い一定レベルに保持される。従
つて前記相対角度を大きくして、大きな出力油圧
Ppを得るときには、ハンドルトルクTが停車時
よりも大きくなるが、後記高速時のようには大き
くならない。
Further, when the automobile enters a low-speed driving state, the control device 15 receives a pulse signal from the vehicle speed sensor 14 and generates a current corresponding to the vehicle speed at that time, for example, i=
A current of 0.8 is sent to the solenoid valve 13, the plunger 52 and the spool 51 are raised from the lower limit position by a distance corresponding to the current value (moved to the right in FIG. 1), and the sleeve 5 shown in FIG.
The opening amount of the 0-side oil passage 50a is reduced. At this time, orifice c (sleeve 50 side oil passage 50b)
is still blocked, and due to the decrease in the opening amount of the oil passage 50a, the flow rate Q 3 passing through the orifice d is reduced.
( Q4 is almost zero in this state), which is lower than the flow rate from the oil passage 50a when the vehicle is stopped. Note that this decrease is the flow rate from orifice e to low pressure oil passage 8b.
Q 5 increases and absorbs. As described above, since the flow rate Q 3 (Q 4 ≒0) leaving the solenoid valve 13 is smaller than the flow rate Q 3 from the oil passage 50a when the oil is stopped, the oil pressure in the oil passage 7f on the upstream side of the orifice d is stopped. lower than the time. If you start turning the steering wheel to the right (or left) at low speeds above, the oil pressure in oil passage 7d will
P c starts to rise. Then, the oil pressure in the oil passage 7f also increases. This oil pressure is directly transmitted to the spool 41 (the small diameter end of the spool 41) of the pressure control valve 12 via the main pilot oil passage 7f1 , and the spool 41 is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove 41b of the spool 41 pushes the spool 41 in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring 44 side communicates with the low pressure oil passage 8b, and the spool 41 resists the spring 44 and gradually rises (moves in the L direction in FIG. 1), and the through hole 4
The opening degree of 0b' gradually decreases, and when the hydraulic pressure pushing in the direction of the arrow and the spring force are balanced, the spool 41 stops. However, the hydraulic pressure pushing the small diameter end of the spool 41 is lower than when the spool 41 is stopped, and the amount of rise of the spool 41 is correspondingly smaller (through hole 40
b') is correspondingly larger), the oil pressure Pc of the oil passage 7d (reaction piston side chamber 6) becomes higher than when the vehicle is stopped. This state remains the same from then on, and if you turn the steering wheel further to the right (or left),
Even if the oil pressure P p of the oil passages 7a, 7b, and 7c further increases, the pressure control valve 12 maintains the opening degree of the through hole 40b' in the above state, and the oil pressure P c of the oil passage 7d continues to be lower than when the vehicle is stopped. is also maintained at a high constant level. Therefore, by increasing the relative angle, a large output oil pressure can be obtained.
When obtaining P p , the handle torque T becomes larger than when the vehicle is stopped, but not as large as when the vehicle is at high speed, which will be described later.

また自動車が所定速度の高速状態に入れば、制
御装置15は車速センサー14からのパルス信号
を受けて、i=0(第29図参照)の電流をソレ
ノイドバルブ13へ送り、プランジヤ52及びス
プール51をバネ60により、上限位置まで上昇
させ(第1図では図示のH位置に移動させ)、第
21図のオリフイスcのみをスプール51側の油
路51a,51b,52bを介してオリフイスd
の上流側の油路7fに連通させる。このとき、オ
リフイスcは全開になつて、オリフイスcの流量
Q4は増加するが、前記低速時に比べると僅かし
か増加しない。一方、油路50aの流量Q3はほ
ぼ零になるので、この系統の流量は最も少なくな
る。なおこの減少分は、オリフイスeから低圧油
路8bへの流量Q5がさらに増大して吸収する。
以上のようにソレノイドバルブ13を出る流量が
最も減少するので、オリフイスdの上流側の油路
7fの油圧が最も低くなる。以上の高速時にハン
ドル右(または左)に切り始めると、油路7dの
油圧Pcが上昇を始める。そうすると、油路7fの
油圧も上昇する。が、油路50aが閉塞されてい
るため、その上昇分は極めて僅かである。この油
圧は主パイロツト油路7f1を介し圧力制御バルブ
12のスプール41(スプール41の小径端)に
そのまま伝えられて、同スプール41が第10図
の矢印方向に押される。同時にスプール41の環
状溝41bを通る作動油が受圧面積の差からスプ
ール41を第10図の矢印方向に押す。一方、バ
ネ44側は低圧油路8bに通じており、スプール
41がバネ44に抗して次第に上昇し(第1図で
はL方向に移動し)、貫通孔40b′の開度が次第
に小さくなつてゆき、上記矢印方向に押す油圧と
バネ力とがつり合うと、スプール41が停止す
る。が、前記スプール41の小径端を押す油圧は
最も低く、スプール41の上昇量がごく僅かで
(貫通孔40′の開口量が最大で)、油路7d(反力
ピストン側チヤンバー6)の油圧Pcが最も高くな
る。一方、オリフイスcが油路51aに開口して
いるため、オリフイスb,c間の油路7eの圧力
が下がり、これがパイロツト油路7e1を介しチエ
ンジ・オーバ・バルブ11のスプール30に伝え
られ、同スプール30が下降し(第1図ではH位
置を選択し)、バイパス油路7bが閉じられ、オ
イルポンプ1からの作動油がオリフイスaを経て
油路切換弁2へ送られて、出力油圧Ppが設定圧
だけ上昇する。このことは、高速時に操舵しない
とき(ハンドル中立位置)でも、油路7a,7
b,7cの油圧Ppが停車時や低速時よりも上昇
することであり(第27図のPp1参照)、この油圧
は圧力制御バルブ12及び油路7d,7d2を介し
反力ピストン側のチヤンバー6に伝えられて、高
速時の微小操舵時の反力感(手応え)が向上す
る。ハンドルをさらに右(または左)に切り続け
ると、油路7a,7b,7cの油圧Ppがさらに
上昇して、油路7dの油圧Pcがさらに上昇するこ
とは前述の通りで、オリフイスb,c間の油路7
eの油圧が設定値以上に上昇し、パイロツト油路
7e1を介してスプール30に作用する力がバネ3
3の力よりも大きくなると、チエンジ・オーバ・
バルブ11のスプール30が上昇し(第1図では
L位置を選択し)、バイパス油路7bが開かれる。
またこの状態になつても、ハンドルを右(または
左)に切り続ければ、油路7a,7b,7cの油
圧Ppがさらに上昇してゆくが、圧力制御バルブ
12は貫通孔40b′の開度を上記状態に保持し
て、油路7dの油圧Pcが引続き最も高い一定レベ
ルに保持される。従つて前記相対角度を大きくし
て、大きな出力油圧Ppを得るときに、ハンドル
トルクTが大きくなる(第27図のロ参照)。
Further, when the vehicle enters a high speed state at a predetermined speed, the control device 15 receives a pulse signal from the vehicle speed sensor 14, and sends a current of i=0 (see FIG. 29) to the solenoid valve 13, and the plunger 52 and spool 51 is raised to the upper limit position by the spring 60 (moved to the H position shown in FIG. 1), and only the orifice c shown in FIG.
It communicates with the oil passage 7f on the upstream side. At this time, orifice c is fully opened and the flow rate of orifice c is
Although Q 4 increases, it increases only slightly compared to the above-mentioned low speed. On the other hand, since the flow rate Q 3 of the oil passage 50a becomes almost zero, the flow rate of this system becomes the lowest. Note that this decrease is absorbed by further increasing the flow rate Q5 from the orifice e to the low pressure oil passage 8b.
As described above, since the flow rate leaving the solenoid valve 13 decreases the most, the oil pressure in the oil passage 7f on the upstream side of the orifice d becomes the lowest. When the steering wheel starts turning to the right (or left) at the above high speed, the oil pressure P c in the oil passage 7d starts to rise. Then, the oil pressure in the oil passage 7f also increases. However, since the oil passage 50a is blocked, the amount of increase is extremely small. This oil pressure is directly transmitted to the spool 41 (the small diameter end of the spool 41) of the pressure control valve 12 via the main pilot oil passage 7f1 , and the spool 41 is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove 41b of the spool 41 pushes the spool 41 in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring 44 side is connected to the low pressure oil passage 8b, and the spool 41 gradually rises against the spring 44 (moves in the L direction in FIG. 1), and the opening degree of the through hole 40b' gradually becomes smaller. Then, when the hydraulic pressure pushing in the direction of the arrow and the spring force are balanced, the spool 41 stops. However, the hydraulic pressure pushing the small diameter end of the spool 41 is the lowest, the amount of rise of the spool 41 is very small (the opening amount of the through hole 40' is the maximum), and the hydraulic pressure of the oil passage 7d (reaction piston side chamber 6) is the lowest. P c becomes the highest. On the other hand, since the orifice c opens into the oil passage 51a, the pressure in the oil passage 7e between the orifices b and c decreases, and this is transmitted to the spool 30 of the change-over valve 11 via the pilot oil passage 7e1 . The spool 30 is lowered (the H position is selected in Fig. 1), the bypass oil passage 7b is closed, and the hydraulic oil from the oil pump 1 is sent to the oil passage switching valve 2 via the orifice a, and the output oil pressure is P p increases by the set pressure. This means that even when not steering at high speed (steering wheel in neutral position), oil passages 7a and 7
This means that the oil pressure P p of the cylinders b and 7c is higher than when the vehicle is stopped or at low speed (see P p1 in Fig. 27), and this oil pressure is transferred to the reaction piston side via the pressure control valve 12 and the oil passages 7d and 7d2 . The reaction force is transmitted to the chamber 6, and the feeling of reaction force (response) during minute steering at high speeds is improved. As mentioned above, if you continue to turn the steering wheel further to the right (or left), the oil pressure P p in the oil passages 7a, 7b, and 7c further increases, and the oil pressure P c in the oil passage 7d further increases. , oil passage 7 between c
The oil pressure of e increases above the set value, and the force acting on the spool 30 via the pilot oil passage 7e1 is applied to the spring 3.
When the force becomes larger than 3, changeover occurs.
The spool 30 of the valve 11 is raised (the L position is selected in FIG. 1), and the bypass oil passage 7b is opened.
Even in this state, if you continue to turn the steering wheel to the right (or left), the oil pressure P p in the oil passages 7a, 7b, and 7c will further rise, but the pressure control valve 12 will open the through hole 40b'. The oil pressure P c in the oil passage 7d is maintained at the highest constant level. Therefore, when increasing the relative angle to obtain a large output oil pressure P p , the handle torque T becomes large (see FIG. 27B).

本案のパワーステアリング装置は前記のように
ハンドルの動きをトーシヨンバー22を介して油
路切換弁2に伝えてオイルポンプ1から同油路切
換弁2へ延びた高圧油路7aと同油路切換弁2か
らオイルタンク4へ延びた低圧油路8aとを切換
えてパワーシリンダ3を所定の操舵方向に作動さ
せるとともに同高圧油路7aを流れる作動油の一
部を反力ピストン5へ導いてトーシヨンバー22
の捩れを規制するパワーステアリング装置におい
て、前記高圧油路7aから前記反力ピストン5へ
延びた分岐油路7b,7c,7dの途中から岐れ
た並列油路7e,7e′と、同並列油路7e,7
e′の一方7eに設けたオリフイスbと、同並列油
路からの作動油を車速に応じて比例的に排出する
流量制御弁13と、同流量制御弁13の下流側に
流量に応じたパイロツト圧を生じさせるオリフイ
スdと、前記分岐油路7b,7c,7dにおける
前記並列油路7e,7e′の分岐部より上流側に介
装されて前記パイロツト圧により作動されて前記
反力ピストン5への油圧を一定に且つ高速時ほど
高くなるように制御する圧力制御弁12とを具え
ており、据え切り時には、反力ピストン5への油
圧が最小になる。そのため、据え切り時に油路切
換弁2を僅かの操舵力(ハンドルトルク)で動か
すとこができる。また車速が上るにつれて、反力
ピストン5への油圧が高められてゆく。そのた
め、高速時に油路切換弁2を比較的大きな操舵力
で動かさなければならなくて、高速時に適度の手
応え(反力感)を得られる。また出力油圧(ポン
プ吐出圧)Ppを圧力制御弁12を介して反力ピ
ストン5へ導くため、第27図ロに示すように走
行時の操舵範囲では、出力油圧Ppがハンドルト
ルクTに対してリニアな特性を示す。従つて通常
のパワーステアリング装置に見受けられるような
操舵時の巻き込み感等がなくて、走行時のステア
リングが極めて安定し、且つ、操舵感覚にマツチ
したステアリングになる。
As described above, the power steering device of the present invention transmits the movement of the steering wheel to the oil passage switching valve 2 via the torsion bar 22, and the high pressure oil passage 7a extends from the oil pump 1 to the oil passage switching valve 2 and the oil passage switching valve. 2 to the low-pressure oil passage 8a extending from the oil tank 4 to operate the power cylinder 3 in a predetermined steering direction, and at the same time, a part of the hydraulic oil flowing through the same high-pressure oil passage 7a is guided to the reaction piston 5 to direct the torsion bar 22.
In a power steering device that regulates the twisting of Road 7e, 7
an orifice b provided on one side 7e of e', a flow control valve 13 that discharges hydraulic oil from the parallel oil passage proportionally according to the vehicle speed, and a pilot installed downstream of the flow control valve 13 according to the flow rate. An orifice d that generates pressure is installed on the upstream side of the branched portions of the parallel oil passages 7e and 7e' in the branch oil passages 7b, 7c, and 7d, and is actuated by the pilot pressure to the reaction piston 5. The engine is equipped with a pressure control valve 12 that controls the oil pressure to be constant and to increase as the speed increases, and the oil pressure to the reaction piston 5 is minimized during stationary turning. Therefore, the oil passage switching valve 2 can be moved with a small amount of steering force (handle torque) during stationary turning. Furthermore, as the vehicle speed increases, the oil pressure applied to the reaction piston 5 increases. Therefore, the oil passage switching valve 2 must be moved with a relatively large steering force at high speeds, and an appropriate response (feeling of reaction force) can be obtained at high speeds. In addition, since the output oil pressure (pump discharge pressure) P p is guided to the reaction piston 5 via the pressure control valve 12, the output oil pressure P p changes to the steering wheel torque T in the steering range during driving, as shown in Fig. 27B. shows linear characteristics. Therefore, there is no feeling of entanglement during steering, which is found in ordinary power steering devices, and the steering is extremely stable during driving, and the steering matches the steering feel.

それに加え、本案では、流量制御弁(ソレノイ
ドバルブ)13が、同流量制御弁(スプール5
1)を高速位置の方向に付勢するバネ60と同流
量制御弁13をバネ60の付勢力に抗して低速位
置の方向に作動させ電磁コイル(ソレノイド)、
57と同ソレノイド57へ低速時には大電流を高
速時には小電流を供給する制御装置15とを具え
ており、次の効果を得られる。即ち、車速零でエ
ンジン回転数が2000rpm以上の状態は通常あり得
ない。そのため、この状態が5〜10秒以上継続し
たら、何らかの故障(例えば車速パルス系の故
障、或いはソレノイドバルブ系の故障)が生じた
ものを判断し、リレー90をONにして、ソレノ
イドバルブ13(電磁コイル57)への通電を停
止する。従つて、高速時にハンドル操作が重くな
つて(フエイルセーフ機能を有して)、安全であ
る。
In addition, in this proposal, the flow control valve (solenoid valve) 13 is
1) An electromagnetic coil (solenoid) that operates the spring 60 that biases the flow control valve 13 toward the high speed position against the biasing force of the spring 60 toward the low speed position;
57 and a control device 15 that supplies a large current to the solenoid 57 at low speeds and a small current at high speeds, and the following effects can be obtained. In other words, it is normally impossible for the engine speed to exceed 2000 rpm when the vehicle speed is zero. Therefore, if this condition continues for 5 to 10 seconds or more, it is determined that some kind of failure has occurred (for example, a failure in the vehicle speed pulse system or a failure in the solenoid valve system), and the relay 90 is turned ON to turn on the solenoid valve 13 (electromagnetic valve 13). energization to the coil 57) is stopped. Therefore, the steering wheel becomes difficult to operate at high speed (it has a fail-safe function) and is safe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案に係るパワーステアリング装置の
一実施例を示す油圧回路図、第2図は油路切換弁
の縦断側面図、第3図はその下部横断平面図、第
4図はその上部横断平面図、第5図はチエンジ・
オーバ・バルブと圧力制御バルブとソレノイドバ
ルブとの縦断一側面図、第6図は油路切換弁と圧
力制御バルブとの縦断他側面図、第7図は油路切
換弁とチエンジ・オーバ・バルブとの縦断他側面
図、第8図はチエンジ・オーバ・バルブと圧力
制御バルブとソレノイドバルブとの拡大縦断一側
面図、第8図はソレノイドバルブの端面図、第
9図は圧力制御バルブの拡大縦断一側面図、第1
0図はその拡大縦断他側面図、第11図は圧力制
御バルブのスリーブの拡大平面図、第12図はそ
の拡大縦断一側面図、第13図はその拡大縦断他
側面図、第14図は第12図矢視−線に
沿う横断平面図、第15図は第13図矢視−
線に沿う横断平面図、第16図は第12図矢
視−線に沿う横断平面図、第17図は第
13図矢視−線に沿う横断平面図、第1
8図は同圧力制御バルブのスリーブの一側面図、
第19図はそのスリーブ及びスプールを示す縦断
一側面図、第20図は同スプールを示す側面図、
第21図はソレノイドバルブのスリーブとスプー
ルとの拡大縦断側面図、第22図はフイルターの
横断平面図、第23図はその正面図、第24図は
その装着状態を示す横断平面図、第25図は制御
装置の回路図、第26図は油路切換弁の出力油圧
(ポンプ吐出圧)とトーシヨンバーの捩れ角度
(油路切換弁のスプールとスリーブとの相対角度)
との関係を示す説明図、第27図は出力油圧とハ
ンドルトルクとの関係を示す説明図、第28図は
反力プランジヤ側チヤンバー油圧(ハンドルトル
ク)とトーシヨンバーの捩れ角度との関係を示す
説明図、第29図は反力プランジヤ側チヤンバー
の油圧と出力油圧との関係を示す説明図、第30
図はハンドルトルクとトーシヨンバーの捩れ角度
との関係を示す説明図、第31図は制御系入口側
の流量と制御系内各部の流量とを示す説明図であ
る。 1……オイルポンプ、2……油路切換弁、3…
…パワーシリンダ、4……オイルタンク、5……
反力ピストン、7a……高圧油路、7b,7c,
7d……高圧油路7aから反力ピストン5へ延び
た油路、7e……並列油路、8a,8b……低圧
油路、12……圧力制御弁、13……流量制御
弁、15……制御装置、57……ソレノイド、6
0……バネ、a,b,c,d,e……オリフイ
ス。
Fig. 1 is a hydraulic circuit diagram showing an embodiment of the power steering device according to the present invention, Fig. 2 is a longitudinal cross-sectional side view of the oil passage switching valve, Fig. 3 is a lower cross-sectional plan view thereof, and Fig. 4 is an upper cross-sectional view thereof. The plan view and Figure 5 are
Figure 6 is a vertical cross-sectional side view of the over valve, pressure control valve, and solenoid valve, Figure 6 is a vertical cross-sectional side view of the oil passage switching valve and pressure control valve, and Figure 7 is the oil passage switching valve and change over valve. Fig. 8 is an enlarged longitudinal sectional side view of the changeover valve, pressure control valve, and solenoid valve, Fig. 8 is an end view of the solenoid valve, and Fig. 9 is an enlarged view of the pressure control valve. Longitudinal side view, 1st
Fig. 0 is an enlarged longitudinal and other side view thereof, Fig. 11 is an enlarged plan view of the sleeve of the pressure control valve, Fig. 12 is an enlarged longitudinal one side view thereof, Fig. 13 is an enlarged longitudinal and other side view thereof, and Fig. 14 is an enlarged longitudinal and other side view thereof. Fig. 12 is a cross-sectional plan view along the arrow line, Fig. 15 is a cross-sectional view taken from the arrow line in Fig. 13.
16 is a cross-sectional plan view taken along the line shown in FIG. 12, and FIG. 17 is a cross-sectional plan view taken along the line shown in FIG.
Figure 8 is a side view of the sleeve of the same pressure control valve.
FIG. 19 is a longitudinal side view showing the sleeve and spool, FIG. 20 is a side view showing the spool,
Fig. 21 is an enlarged longitudinal sectional side view of the sleeve and spool of the solenoid valve, Fig. 22 is a transverse plan view of the filter, Fig. 23 is a front view thereof, Fig. 24 is a transverse plan view showing its installed state, and Fig. 25 The figure is a circuit diagram of the control device, and Figure 26 shows the output oil pressure of the oil passage switching valve (pump discharge pressure) and the torsion angle of the torsion bar (relative angle between the spool and sleeve of the oil passage switching valve).
FIG. 27 is an explanatory diagram showing the relationship between output oil pressure and handle torque. FIG. 28 is an explanatory diagram showing the relationship between reaction force plunger side chamber oil pressure (handle torque) and torsion bar torsion angle. Fig. 29 is an explanatory diagram showing the relationship between the oil pressure of the reaction force plunger side chamber and the output oil pressure, Fig. 30
FIG. 31 is an explanatory diagram showing the relationship between the handle torque and the torsion angle of the torsion bar, and FIG. 31 is an explanatory diagram showing the flow rate at the control system inlet side and the flow rate at each part within the control system. 1...Oil pump, 2...Oil passage switching valve, 3...
...Power cylinder, 4...Oil tank, 5...
Reaction piston, 7a...high pressure oil path, 7b, 7c,
7d... Oil passage extending from the high pressure oil passage 7a to the reaction piston 5, 7e... Parallel oil passage, 8a, 8b... Low pressure oil passage, 12... Pressure control valve, 13... Flow rate control valve, 15... ...Control device, 57...Solenoid, 6
0... Spring, a, b, c, d, e... Orifice.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハンドルの動きをトーシヨンバーを介し油路切
換弁に伝えてオイルポンプから同油路切換弁へ延
びた高圧油路と低圧油路とを切換えてパワーシリ
ンダを所定の操舵方向に作動させるとともに、同
高圧油路を流れる作動油の一部を反力ピストンへ
導いてトーシヨンバーの捩れを規制するパワース
テアリング装置において、前記高圧油路から前記
反力ピストンへ延びた分岐油路の途中から岐れた
並列油路と、同並列油路の一方に設けたオリフイ
スと、同並列油路からの作動油を車速に応じて比
例的に排出する流量制御弁と、同流量制御弁の下
流側に流量に応じたパイロツト圧を生じさせるオ
リフイスと、前記分岐油路における前記並列油路
の分岐部より上流側に介装されて前記パイロツト
圧により作動されて前記反力ピストンへの油圧を
一定に且つ高速時ほど高くなるように制御する圧
力制御弁とを具え、前記流量制御弁が、同流量制
御弁を高速位置の方向に付勢するバネと同流量制
御弁をバネの付勢力に抗して低速位置の方向に作
動させるソレノイドと同ソレノイドへ低速時には
大電流を供給し高速時には小電流を供給する制御
装置とを具えていることを特徴としたパワーステ
アリング装置。
The movement of the handle is transmitted to the oil passage switching valve via the torsion bar to switch between the high pressure oil passage and the low pressure oil passage extending from the oil pump to the oil passage switching valve to operate the power cylinder in a predetermined steering direction, and the same high pressure In a power steering device that controls torsion of a torsion bar by guiding a portion of hydraulic oil flowing through an oil passage to a reaction piston, a parallel oil branched from the middle of a branch oil passage extending from the high pressure oil passage to the reaction piston. an orifice installed on one side of the parallel oil passage, a flow control valve that discharges the hydraulic oil from the parallel oil passage proportionally according to the vehicle speed, and an orifice for generating pilot pressure; and an orifice disposed in the branch oil passage upstream of the branch part of the parallel oil passage and operated by the pilot pressure to keep the oil pressure to the reaction piston constant and higher at higher speeds. a pressure control valve that controls the flow rate control valve to move toward the low speed position against the biasing force of a spring that biases the flow rate control valve toward the high speed position; A power steering device characterized by comprising a solenoid that is operated to operate the solenoid, and a control device that supplies a large current to the solenoid at low speeds and a small current at high speeds.
JP7378883U 1983-05-19 1983-05-19 power steering device Granted JPS59179174U (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7378883U JPS59179174U (en) 1983-05-19 1983-05-19 power steering device
KR1019840000454A KR890001395B1 (en) 1983-05-19 1984-02-01 Power steering system
GB08410787A GB2141083B (en) 1983-05-19 1984-04-27 Power steering system
FR8407735A FR2546121B1 (en) 1983-05-19 1984-05-18 POWER STEERING SYSTEM
DE19843418563 DE3418563A1 (en) 1983-05-19 1984-05-18 SERVOLINE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7378883U JPS59179174U (en) 1983-05-19 1983-05-19 power steering device

Publications (2)

Publication Number Publication Date
JPS59179174U JPS59179174U (en) 1984-11-30
JPH0232545Y2 true JPH0232545Y2 (en) 1990-09-04

Family

ID=30203901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7378883U Granted JPS59179174U (en) 1983-05-19 1983-05-19 power steering device

Country Status (1)

Country Link
JP (1) JPS59179174U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836831A (en) * 1971-09-10 1973-05-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836831A (en) * 1971-09-10 1973-05-31

Also Published As

Publication number Publication date
JPS59179174U (en) 1984-11-30

Similar Documents

Publication Publication Date Title
US8925672B2 (en) Steering control system for hydrostatically driven front vehicle ground wheels and steerable rear caster wheels
JPH0316307B2 (en)
JPH0316305B2 (en)
US4651622A (en) Power steering system
US4681184A (en) Hydraulic reaction force apparatus for power steering system
US4621704A (en) Power steering system
JPH0232545Y2 (en)
JP2621600B2 (en) Hydraulic valve device for power steering gear
JPH0232544Y2 (en)
JPH0232541Y2 (en)
JPH0218782Y2 (en)
GB2141083A (en) Power steering system
JPH0214537Y2 (en)
JPH0214538Y2 (en)
JPH0214536Y2 (en)
JPH0215007Y2 (en)
JPH0242541Y2 (en)
JPH0254269B2 (en)
JPH0686223B2 (en) Power steering device
EP0687616B1 (en) Power steering apparatus
JPH049259Y2 (en)
KR890001395B1 (en) Power steering system
JP3198287B2 (en) Power steering device
JP7235206B2 (en) work vehicle
JPH0728049Y2 (en) Power steering device