JPH0214538Y2 - - Google Patents

Info

Publication number
JPH0214538Y2
JPH0214538Y2 JP7379183U JP7379183U JPH0214538Y2 JP H0214538 Y2 JPH0214538 Y2 JP H0214538Y2 JP 7379183 U JP7379183 U JP 7379183U JP 7379183 U JP7379183 U JP 7379183U JP H0214538 Y2 JPH0214538 Y2 JP H0214538Y2
Authority
JP
Japan
Prior art keywords
oil passage
oil
pressure
spool
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7379183U
Other languages
Japanese (ja)
Other versions
JPS59179177U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7379183U priority Critical patent/JPS59179177U/en
Priority to KR1019840000454A priority patent/KR890001395B1/en
Priority to US06/599,673 priority patent/US4621704A/en
Priority to GB08410787A priority patent/GB2141083B/en
Priority to FR8407735A priority patent/FR2546121B1/en
Priority to DE19843418563 priority patent/DE3418563A1/en
Publication of JPS59179177U publication Critical patent/JPS59179177U/en
Application granted granted Critical
Publication of JPH0214538Y2 publication Critical patent/JPH0214538Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本案はハンドルの動きをトーシヨンバーを介し
油路切換弁に伝えてオイルポンプから同油路切換
弁へ延びた高圧油路と同油路切換弁からオイルタ
ンクへ延びた低圧油路とを切極えてパワーシリン
ダを所定の操舵方向に作動させるとともに同高圧
油路を流れる作動油の一部を反力ピストンへ導い
てトーシヨンバーの捩れを規制するパワーステア
リング装置において、前記高圧油路から前記反力
ピストンへ延びた油路の途中から岐れた並列油路
と、同並列油路の一方に設けたオリフイスと、同
並列油路からの作動油を車速に応じて比例的に排
出する流量制御弁と、同流量制御弁の下流側に流
量に応じたパイロツト圧を生じさせるオリフイス
と、同パイロツト圧により作動して前記反力ピス
トンへの油路の油圧を一定に且つ高速時ほど高く
なるように制御する圧力制御弁とを具え、同圧力
制御弁がスリーブ40とスプール41とを有し、
同スリーブ40の外周面に、前記高圧油路から前
記反力ピストンへ延びた油路の最上流側に連通す
る切欠部40b及びポート40b′と前記並列油路
の一方7eに連通する切欠部40d及びオリフイ
スbと前記反力ピストン側に連通する切欠部40
e及びポート40e′と連結用切欠部40c及びポ
ート40c′,40c″とを設け、上記スプール41
の外周面に、上記スリーブ40の内周面とで形成
される互いに独立した環状通路41a,41bを
設け、オリフイスbとポート40e′とを環状通路
41b、ポート40c′と環状通路41a、ポート
40c″と環状通路41bとそれぞれ連通するとと
もに、ポート40b′と還状通路41aとをスプー
ル41の移動により連通または遮断するようにし
たことを特徴とするもので、その目的とする処
は、据え切り時には軽く操舵でき、高速時には適
度の手応え(反力感)を得られる。また油路の構
成をコンパクトにできる改良されたパワーステア
リング装置を供する点にある。
[Detailed explanation of the invention] This invention transmits the movement of the handle to the oil passage switching valve via a torsion bar, and a high pressure oil passage extending from the oil pump to the oil passage switching valve and a low pressure oil passage extending from the oil passage switching valve to the oil tank. In the power steering device, the power cylinder is actuated in a predetermined steering direction by separating the oil passage from the high-pressure oil passage, and a part of the hydraulic oil flowing in the same high-pressure oil passage is guided to the reaction piston to restrict torsion of the torsion bar. A parallel oil passage branched from the middle of the oil passage extending from the passageway to the reaction piston, an orifice provided on one side of the parallel oil passage, and hydraulic oil from the parallel oil passage proportional to the vehicle speed. A flow rate control valve for discharging, an orifice that generates a pilot pressure according to the flow rate on the downstream side of the flow rate control valve, and an orifice that is operated by the pilot pressure to maintain a constant hydraulic pressure in the oil passage to the reaction piston at high speed. a pressure control valve that controls the pressure so that the pressure increases as high as possible, the pressure control valve having a sleeve 40 and a spool 41;
On the outer circumferential surface of the sleeve 40, there is a notch 40b that communicates with the most upstream side of the oil passage extending from the high-pressure oil passage to the reaction piston, and a notch 40d that communicates with the port 40b' and one of the parallel oil passages 7e. and a notch 40 that communicates with the orifice b and the reaction piston side.
e, a port 40e', a connecting notch 40c, and ports 40c', 40c'', and the spool 41
Annular passages 41a and 41b, which are independent from each other, are formed on the outer peripheral surface of the sleeve 40, and the orifice b and the port 40e' are connected to the annular passage 41b, the port 40c' and the annular passage 41a, and the port 40c. '' and the annular passage 41b, and the port 40b' and the annular passage 41a are communicated or cut off by movement of the spool 41. The present invention provides an improved power steering device that can be lightly steered at times and provides a moderate response (feeling of reaction force) at high speeds.Another object is to provide an improved power steering device that allows for a compact oil passage configuration.

次に本案のパワーステアリング装置を第1図乃
至第25図に示す一実施例により説明する。まず
第1図によりその概略を説明すると、1がエンジ
ン(図示せず)により駆動されるオイルポンプで
同オイルポンプ1は、流量が一定(7/min程
度)の、吐出圧が可変(5Kg/cm2〜70Kg/cm2)の
オイルポンプである。また2が四方向油路切換弁
(ロータリバルブ)、3が操舵用パワーシリンダ、
4がオイルタンク、5が複数個の反力ピストン、
6が同各反力ピストン5の背後に形成したチヤン
バー、7aが上記オイルポンプ1から上記油路切
換弁2へ延びた高圧油路、8aが同油路切換弁2
から上記オイルタンク4へ延びた低圧油路、9
a,10aが上記油路切換弁2から上記パワーシ
リンダ3へ延びた油路、aが上記高圧油路7aの
途中に設けたオリフイス、7bが同オリフイスa
の上流側及び下流側の高圧油路7aに接続したバ
イパス油路、11が同バイパス油路7bの途中に
介装したチエンジ・オーバ・バルブ、12が同チ
エンジ・オーバ・バルブ11の上流層の油路7b
に油路7cを介して接続した圧力制御弁(以下圧
力制御バルブと称する)、13が流量制御弁(以
下ソレノイドバルブと称する)、7dが上記圧力
制御バルブ12から延びた油路で、同油路7dか
ら岐れた並列油路7e,7e′が上記ソレノイドバ
ルブ13へ延びている。また7d1が上記油路7d
の途中から上記圧力制御バルブ12へ延びたパイ
ロツト油路、7d2が上記油路7dの途中から前記
反力ピストン5の背後のチヤンバー6へ延びた油
路、7d3が上記油路7dの途中から低圧油路8b
へ延びた油路、b,cが上記油路b,cの途中に
設けたオリフイス、7e1が同オリフイスb,cの
間の油路7eから前記チエンジ・オーバ・バルブ
11へ延びたパイロツト油路、eが上記油路7d3
の途中に設けたオリフイス、7fが上記ソレノイ
ドバルブ13から上記低圧油路8bへ延びた油
路、dが同油路7fの途中に設けたオリフイス、
7f1が同オリフイスdの上流側の油路7fから前
記圧力制御バルブ12へ延びた主パイロツト油
路、14が車速センサー、15が制御装置、16
がイグニシヨンスイツチ、17がイグニシヨンコ
イル、18a,18bから上記ソレノイドバルブ
13の電磁コイルへ延びた配線で、上記車速セン
サー14は、車速を検出し、その結果得られたパ
ルス信号(車速に応じたパルス信号)を制御装置
15へ送出するように、また同制御装置15は、
同パルス信号に対応した電流(所定の高速時の電
流零(i=0)から停車時の電流最大(i=1)
までの車速に対応した電流)をソレノイドバルブ
13の電磁コイル57へ送出して、ソレノイドバ
ルブ13のプランジヤ52及びスプール51を上
記電流値に応じた所定位置に保持するようになつ
ている。次に前記油路切換弁2チエンジ・オー
バ・バルブ11圧力制御バルブ12ソレノイドバ
ルブ13を第2図乃至第21図により具体的に説
明する。第2図乃至第7図の20がバルブハウジ
ングで、上記各バルブ2,11,12,13は同
バルブハウジング20内に組込まれている。まず
油路切換弁2を第2図により具体的に説明する
と、21がハンドル(図示せず)により操作され
る入力軸、第2,3図の23が上下の軸受により
バルブハウジング20内に回転可能に支持された
シリンダブロツク、22が上記入力軸21内に挿
入したトーシヨンバーで、同トーシヨンバー22
は、その上部が入力軸21の上部に、その下部が
シリンダブロツク23に、それぞれ固定されてい
る。また21aが上記入力軸21の下部外周面に
設けた複数個の縦溝で、上記シリンダブロツク2
3には、同各縦溝21aに対向してシリンダが設
けられ、同各シリンダに前記反力ピストン5が嵌
挿されて、同各反力ピストン5の先端に設けた突
起が同各縦溝21aに係合している。また同各反
力ピストン5の背後のチヤンバー6は、シリンダ
ブロツク23とバルブハウジング20との間に形
成されて、環状溝である。また23aが上記シリ
ンダブロツク23に一体のピニオン、24aが同
ピニオン23aに噛合したラツク、24がラツク
サポート、26がキヤツプ、25が同キヤツプ2
6と上記ラツクサポート24との間に介装したバ
ネ、28が上記シリンダブロツク23の直上のバ
ルブハウジング20内に固定した油路切換弁2の
スリーブ、28a,28b,28cが同スリーブ
28の外周面に設けた油路、27が同スリーブ2
8と上記入力軸21との間に嵌挿されたバルブボ
デイ、23bが同バルブボデイ27の下端部と上
記シリンダブロツク23の上端部とを連結するピ
ン、27a,27b,27cが上記バルブボデイ
27の外周面に設けた油路で、ハンドルが中立位
置にあるときには、高圧油路7aがバルブボデイ
27の油路27aとスリーブ28の油路28aと
を介して入力軸21とトーシヨンバー22との間
のチヤンバー29に連通して、オイルポンプ1か
らね作動油が高圧油路7a→油路28a→油路2
7a→チヤンバー29(なお油路27aとチヤン
バー29との間の油路は図示せず)→低圧油路8
a→オイルタンク4→オイルポンプ1に循環する
ように、またハンドルを右に切つて入力軸21を
バルブボデイ27に対して相対的に右に回転する
と、高圧油路7aがバルブボデイ27の油路27
a,27b及びスリーブ28の油路28bを介し
てパワーシリンダ3の油路9aに、低圧油路8a
がチヤンバー29とバルブボデイ27の油路27
cとスリーブ28の油路28cとを介してパワー
シリンダ3の油路10aに、それぞれ連通して、
オイルポンプ1から作動油が高圧油路7a→油路
27a→油路28b→油路9a→パワーシリンダ
3の左室へ送られる一方、パワーシリンダ3の右
室の油が油路10a→油路28c→油路27c→
チヤンバー29→低圧油路8a→タンク4へ戻さ
れパワーシリンダ3のピストンロツドが右へ移動
して、右方向への操舵が行なわれるように、また
ハンドルを左に切つて、入力軸21をバルブボデ
イ27に対して相対的に左に回転すると、高圧油
路7aがバルブボデイ27の油路27aとスリー
ブ28の油路28cとを介してパワーシリンダ3
の油路10aに、低圧油路8aがチヤンバー29
とバルブボデイ27の油路27bとスリーブ28
の油路28bとを介してパワーシリンダ3の油路
9aに、それぞれ連通して、オイルポンプ1から
の作動油が高圧油路7a→油路27a→油路28
c→油路10a→パワーシリンダ3の右室へ送ら
れる一方、パワーシリンダ3の左室の油が油路9
a→油路28b→油路27b→チヤンバー29→
低圧油路8a→タンク4へ戻され、パワーシリン
ダ3のピストンロツドが左へ移動した、左方向へ
の操舵が行なわれるようになつている。次に前記
チエンジ・オーバ・バルブ11を具体的に説明す
ると、同チエンジ・オーバ・バルブ11は第4,
7図から明らかなように、オリフイスaのバイパ
ス油路7bの途中に介装されている。同チエン
ジ・オーバ・バルブ11は、環状溝30a(なお
この環状溝30aは油路7bの一部)をもつスプ
ール30(なおスプール30は高速位置を示して
いる)とキヤツプ31とこれらのスプール30及
びキヤツプ31の間に介装したバネ33とOリン
グ34とを有し、パイロツト油路7e1(第1図参
照)の油圧が高まると、スプール30がバネ33
に抗し前進して、バイパス油路7bを開くように
またパイロツト油路7e1の油圧が低下すると、ス
プール30がバネ33により後退して、バイパス
油路7bを閉じるようになつている。次に前記圧
力制御バルブ12を具体的に説明すると、同圧力
制御バルブ12は第5,6,7図から明らかなよ
うにスリーブ40とスプール41とキヤツプ42
とストツパ43とこれらのスプール41及びスト
ツパ43の間に介装したバネ44とスプール41
内に固定したオリフイスdをもつ部材45とを有
している。またスプール41には、第9,10,
19,20図に示すように3つの環状溝41a,
41b,41cが設けられ、環状溝41aが前記
バイパス油路7bのチエンジ・オーバ・バルブ1
1の上流側から岐れた油路7cに対向している。
また41dが上記オリフイスdから同スプール4
1内を上方へ延びたチヤンバー、41eが同チヤ
ンバー41dと上記環状溝41cとをつなぐ油路
(なおこれらの41d,41e,41cは低圧油
路8bの一部)で、同環状溝41cは、第2図に
示した油路切換弁2のバルブボデイ27の直上に
形成した低圧油路8bから第6図のように斜め下
方に延びたバルブハウジング20側の伝圧油路8
bに対向している。また上記環状溝41aはオリ
フイスeを介して上記チヤンバー41dに連通し
ている。また前記スリーブ40には、第11図乃
至第17図に示すように、外周面円周方向に位相
を異にして上部から下部へ、貫通孔40a′をもつ
切欠部40aと貫通孔40b′をもつ切欠部40b
と貫通孔40c′,40c″をもつ切欠部40cとオ
リフイスbをもつ切欠部40dと貫通孔40e′を
もつ切欠部40eが設けられ、貫通孔40dをも
つ孔40dがスプール41の環状溝41cとバル
ブハウジング20側の低圧油路8bとをつなぎ、
貫通孔40b′をもつ切欠部40bがスプール41
の環状溝41aとバルブハウジング20側の油路
7cとをつなぎ、貫通孔40c′,40c″をもつ切
欠部40cがスプール41の環状溝41a,41
bをつなぎ、オリフイスbをもつ切欠部40dが
スプール41の環状溝41bとバルブハウジング
20側の油路7eとをつなぎ、貫通孔40e′をも
つ切欠部40eがスプール41の環状溝41bと
第3,5図に示したバルブハウジング20側の油
路7dとをつなぎ、オリフイスdからスプール4
1のチヤンバー41dへ出た油が油路41e→環
状溝41c→貫通孔40a′→切欠部40a→バル
ブハウジング20側の低圧油路8bを経てオイル
タンク4に戻るように、バイパス油路7bから油
路7cを経て切欠部40bに入つた作動油が貫通
孔40b′→環状溝41a→切欠部40c→貫通孔
40c″→環状溝41b→貫通孔40e′→切欠部4
0e→バルブハウジング20の油路7dを経てソ
レノイドバルブ13及び反力ピストン5の方向に
向うように、また上記環状溝41b内を流れる作
動油の一部がオリフイスb→切欠部40d→バル
ブハウジング20側の油路7eを経て前記チエン
ジ・オーバ・バルブ11のスプール30の背後に
パイロツト圧として作用し(第5図の7e1参照)、
さらに同スプール30の後端部に設けた油路30
b(第7図参照)→バルブハウジング20側の油
路7eを経てソレノイドバルブ13の方向に向う
ようになつている。次に前記ソレノイドバルブ1
3を具体的に説明すると、同ソレノイドバルブ1
3は、第5,8,21図から明らかなように、前
記圧力制御バルブ12の直下に互いの軸線が一致
するように配設されている。同ソレノイドバルブ
13は、スリーブ50とスプール51と非磁性材
製のプランジヤ52と同プランジヤ52に一体の
磁性材製部材53と上記スプール51を上記プラ
ンジヤ52に締付け固定するロツクナツト54と
前記圧力制御バルブ12のスリーブ40に当接す
る座板55と同座板55及び上記スリーブ50の
間に介装したバツクアツプスプリング56と電磁
コイル57と同電磁コイル57側のケーシングに
固定したナツト58と同ナツト58に螺合したプ
ランジヤ押圧力調整ボルト59と同ボルト59及
び上記プランジヤ52の間に介装したバネ60と
ソレノイドバルブ13の組立体をバルブハウジン
グ20に締付け固定するロツクナツト61とを有
し、上記スリーブ50は、第21図に示すよう
に、バルブハウジング20側の油路7d(第5図
参照)に連通する油路50aとバルブハウジング
20側の油路7eに連通する油路50bとを有
し、同油路50bにオリフイスcが設けられてい
る。また上記スプール51には、斜めの溝51
a′を有する油路51aと貫通孔51bとが、上記
プランジヤ52には、同貫通孔51bに連通する
油路52aと貫通孔52bと軸方向の油路52c
とが、それぞれ設けられている。すでに述べたよ
うに第5図に示すバルブハウジング20側の油路
7dをソレノイドバルブ13に向う作動油は第2
1図の油路50aに入り、第5図に示すバルブハ
ウジング20側の油路7eをソレノイドバルブ1
3に向う作動油は第21図の油路50bに入る。
同第21図は高速時の状態を示しており、この状
態では、油路50bに入つた作動油だけがオリフ
イスc→油路51a→貫通孔51b→油路52a
→貫通孔52b→油路52cを経てオリフイスd
側の部材45に向うことになる。また高速時→低
速時には、スプール51が下降し、オリフイスe
の開口量を減少させる一方、油路50aの開口量
を増大させて、停車時には、同油路50aのみが
開口する。第1図のQ0はオイルポンプ1の吐出
側の流量、Q1は高圧油路7aの油量、Q2は油路
7cの流量、Q3は油路7d(油路50aの流量、
Q4はオリフイスc下流側の流量、Q5はオリフイ
スe下流側の流量を示しており、Q1:Q2は6:
1程度である。また油路7cの流量Q2は、Q2
Q3+Q4+Q5である(第30図参照)。またソレノ
イドバルブ13のスリーブ50の径は、第21図
に示すように上、中、下部で異なり、上部ほど小
さく、それぞれの間にD1,D2の差がある。一方、
バルブハウジング20側のスリーブ嵌挿孔もそれ
に一致するようにあけられている。このようにし
たのは、スリーブ50をOリング62とともにス
リーブ50に嵌挿する際、摩擦抵抗を少なくし
て、スリーブ50をスリーブ嵌挿孔に入れ易くす
るためである。また第22,23,24図にフイ
ルター70を示した。このフイルター70は、枠
体71と金網72とよりなり、圧力制御弁12の
スリーブ40に設けた切欠部40b(第9,13
図参照)、即ち制御系油路の入口に嵌着されて、
ゴミ等の異物が制御系油路に浸入するのを防止す
る。なおゴミ等の異物が制御系油路への浸入は、
この種のフイルターをバルブケーシング20に設
けた高圧油路7aの入口(第4図の矢印部分参
照)に設けてもよいが、その場合には、ポンプの
全吐出流量が通過するため、フイルターを大型化
する必要があり、図示スペースでは同フイルター
の収納が困難である。なお上記高圧油路7aの入
口を大型化しているのは、ここからドリルを挿入
して、2方向に分岐したオリフイスaと油路7b
とを加工し易くすると同時に配管(図示せず)と
の結合作業を容易に行なえるようにするためであ
る。またその他の油路7b(チエンジ・オーバ・
バルブ11下流側の油路7b,7c,7d,7e
等を第3,4,5図から判るようにバルブハウジ
ング20に縦横方向から孔をあけて栓をすること
により、形成されており、この点でも油路の加工
が容易になつている。なお第2,3,4,6,7
図のZは油路切換弁2の中心軸線、第2,5図の
Z1はピニオン23aの中心である。また前記制御
装置15の1例を第25図に示した。80が定電
圧電源回路、81が車速に比例した電圧を送出す
るパルス・電圧変換回路、82が誤差増幅回路、
38がトランジスタ、84が車速零以外でタイマ
回路87をリセツトし車速零でタイマ回路87を
セツトするリセツト回路、85がエンジン回転数
に比例した電圧を送出するパルス・電圧変換回
路、86がエンジン回転数設定回路、88がエン
ジン回転数2000rpm以上のときタイマ回路87を
始動状態にし、2000rpm以下のときOFFにするエ
ンジン回転数設定回路、88が車速パルスなしで
ON状態の車速入力断線検出回路、89がトラン
ジスタ、90がリレー、91がソレノイドバルブ
13の電磁コイル57に流れる電流を安定させる
ネガテイブフイードバツク回路で、車速零でエン
ジン回転数が2000rpm以上の状態は通常あり得な
い。そのため、この状態は通常あり得ない。その
ためこの状態が5〜10秒以上継続したら、何らか
の故障(例えば車速パルス系の故障、或いはソレ
ノイドバルブ系の故障)が生じたものと判断し、
リレー90をONにして、ソレノイドバルブ13
(電磁コイル57への通電を停止する。従つて本
制御回路によれば、故障時にソレノイドバルブ1
3への通電が停止され、高速時にハンドル操作が
重くなつて(フエイセセーフ機能を有して)安全
である。
Next, the power steering device of the present invention will be explained with reference to an embodiment shown in FIGS. 1 to 25. First, to explain the outline with reference to Fig. 1, 1 is an oil pump driven by an engine (not shown).The oil pump 1 has a constant flow rate (about 7/min) and a variable discharge pressure (5 kg/min). cm 2 - 70Kg/cm 2 ) oil pump. In addition, 2 is a four-way oil passage switching valve (rotary valve), 3 is a power cylinder for steering,
4 is an oil tank, 5 is a plurality of reaction pistons,
6 is a chamber formed behind each reaction force piston 5, 7a is a high pressure oil passage extending from the oil pump 1 to the oil passage switching valve 2, and 8a is the oil passage switching valve 2.
a low pressure oil passage extending from 9 to the oil tank 4;
a and 10a are oil passages extending from the oil passage switching valve 2 to the power cylinder 3, a is an orifice provided in the middle of the high-pressure oil passage 7a, and 7b is the orifice a.
11 is a change-over valve interposed in the middle of the bypass oil passage 7b, and 12 is an upper layer of the change-over valve 11. Oil path 7b
13 is a flow rate control valve (hereinafter referred to as a solenoid valve), and 7d is an oil path extending from the pressure control valve 12, which is connected to the pressure control valve 12 via an oil passage 7c. Parallel oil passages 7e and 7e' branch from the passage 7d and extend to the solenoid valve 13. Also, 7d 1 is the oil passage 7d
7d 2 is a pilot oil passage that extends from the middle of the oil passage 7d to the chamber 6 behind the reaction piston 5, and 7d 3 is an oil passage that extends from the middle of the oil passage 7d to the chamber 6 behind the reaction piston 5. to low pressure oil passage 8b
7e1 is pilot oil extending from the oil path 7e between the orifices b and c to the change-over valve 11. road, e is the oil road 7d 3
7f is an oil passage extending from the solenoid valve 13 to the low pressure oil passage 8b; d is an orifice provided in the middle of the oil passage 7f;
7f 1 is a main pilot oil passage extending from the oil passage 7f on the upstream side of the orifice d to the pressure control valve 12, 14 is a vehicle speed sensor, 15 is a control device, 16
is an ignition switch, 17 is an ignition coil, and wiring extends from 18a and 18b to the electromagnetic coil of the solenoid valve 13.The vehicle speed sensor 14 detects the vehicle speed and outputs a pulse signal (depending on the vehicle speed). The control device 15 also sends a pulse signal (pulse signal) to the control device 15.
Current corresponding to the same pulse signal (from zero current at high speed (i=0) to maximum current at stop (i=1)
A current (corresponding to the vehicle speed up to) is sent to the electromagnetic coil 57 of the solenoid valve 13 to hold the plunger 52 and spool 51 of the solenoid valve 13 at a predetermined position corresponding to the current value. Next, the oil passage switching valve 2, change over valve 11, pressure control valve 12, and solenoid valve 13 will be explained in detail with reference to FIGS. 2 to 21. Reference numeral 20 in FIGS. 2 to 7 is a valve housing, and each of the above-mentioned valves 2, 11, 12, and 13 is incorporated into the valve housing 20. First, to explain the oil passage switching valve 2 in detail with reference to Fig. 2, 21 is an input shaft operated by a handle (not shown), and 23 in Figs. 2 and 3 is rotated within the valve housing 20 by upper and lower bearings. The cylinder block 22 is a torsion bar inserted into the input shaft 21, and the torsion bar 22 is
The upper part of the input shaft 21 is fixed to the upper part of the input shaft 21, and the lower part thereof is fixed to the cylinder block 23. Further, reference numeral 21a denotes a plurality of vertical grooves provided on the outer peripheral surface of the lower part of the input shaft 21, and a plurality of vertical grooves 21a are provided on the outer circumferential surface of the lower part of the input shaft 21.
3 is provided with a cylinder facing each of the longitudinal grooves 21a, the reaction piston 5 is fitted into each cylinder, and a protrusion provided at the tip of each reaction piston 5 is inserted into each of the longitudinal grooves 21a. 21a. The chamber 6 behind each reaction piston 5 is formed between the cylinder block 23 and the valve housing 20 and is an annular groove. Further, 23a is a pinion integrated with the cylinder block 23, 24a is a rack meshed with the pinion 23a, 24 is a rack support, 26 is a cap, and 25 is the same cap 2.
6 and the rack support 24, 28 is the sleeve of the oil passage switching valve 2 fixed in the valve housing 20 directly above the cylinder block 23, and 28a, 28b, 28c are the outer periphery of the sleeve 28. Oil passage provided on the surface, 27 is the same sleeve 2
8 and the input shaft 21; 23b is a pin connecting the lower end of the valve body 27 and the upper end of the cylinder block 23; 27a, 27b, and 27c are the outer peripheral surfaces of the valve body 27; When the handle is in the neutral position, the high pressure oil passage 7a is connected to the chamber 29 between the input shaft 21 and the torsion bar 22 via the oil passage 27a of the valve body 27 and the oil passage 28a of the sleeve 28. The hydraulic oil from the oil pump 1 is in communication with the high pressure oil passage 7a → oil passage 28a → oil passage 2.
7a → Chamber 29 (the oil passage between oil passage 27a and chamber 29 is not shown) → Low pressure oil passage 8
When the input shaft 21 is rotated to the right relative to the valve body 27 by turning the handle to the right so that the circulation is from a → oil tank 4 → oil pump 1, the high pressure oil passage 7a is connected to the oil passage 27 of the valve body 27.
A, 27b and the oil passage 28b of the sleeve 28 to the oil passage 9a of the power cylinder 3, and the low pressure oil passage 8a
is the oil passage 27 between the chamber 29 and the valve body 27.
c and the oil passage 10a of the power cylinder 3 via the oil passage 28c of the sleeve 28,
Hydraulic oil is sent from the oil pump 1 to the left chamber of the power cylinder 3 through the high-pressure oil passage 7a → oil passage 27a → oil passage 28b → oil passage 9a → oil passage 3, while the oil in the right chamber of the power cylinder 3 is sent from the oil passage 10a → oil passage 28c→Oil path 27c→
Chamber 29→Low pressure oil passage 8a→Return to tank 4, the piston rod of power cylinder 3 moves to the right, and by turning the steering wheel to the left, the input shaft 21 is moved to the valve body 27. When the high-pressure oil passage 7a rotates to the left relative to
The low pressure oil passage 8a is connected to the oil passage 10a in the chamber 29.
and the oil passage 27b of the valve body 27 and the sleeve 28
The hydraulic oil from the oil pump 1 is connected to the oil passage 9a of the power cylinder 3 via the oil passage 28b of the high pressure oil passage 7a → oil passage 27a → oil passage 28.
c→Oil passage 10a→Oil in the left chamber of the power cylinder 3 is sent to the right chamber of the power cylinder 3, while oil in the left chamber of the power cylinder 3 is sent to the oil passage 9.
a → Oil passage 28b → Oil passage 27b → Chamber 29 →
The low-pressure oil passage 8a is returned to the tank 4, and the piston rod of the power cylinder 3 moves to the left, thereby performing leftward steering. Next, to explain the change over valve 11 in detail, the change over valve 11 has the fourth,
As is clear from FIG. 7, it is interposed in the middle of the bypass oil passage 7b of the orifice a. The change-over valve 11 includes a spool 30 (the spool 30 is shown in a high-speed position) having an annular groove 30a (the annular groove 30a is a part of the oil passage 7b), a cap 31, and these spools 30. The spool 30 has a spring 33 and an O-ring 34 interposed between the spring 33 and the cap 31. When the oil pressure in the pilot oil passage 7e1 (see Fig. 1) increases, the spool 30
When the hydraulic pressure in the pilot oil passage 7e1 decreases so as to open the bypass oil passage 7b, the spool 30 is moved backward by the spring 33, thereby closing the bypass oil passage 7b. Next, to explain the pressure control valve 12 in detail, the pressure control valve 12 consists of a sleeve 40, a spool 41 and a cap 42, as is clear from FIGS. 5, 6 and 7.
and the stopper 43, and the spring 44 and the spool 41 interposed between the spool 41 and the stopper 43.
It has a member 45 having an orifice d fixed therein. Further, the spool 41 has the ninth, tenth,
As shown in Figures 19 and 20, three annular grooves 41a,
41b and 41c are provided, and the annular groove 41a is connected to the change over valve 1 of the bypass oil passage 7b.
It faces an oil passage 7c branched from the upstream side of 1.
Also, 41d is connected to the same spool 4 from the orifice d.
A chamber 41e extending upward within 1 is an oil passage connecting the chamber 41d and the annular groove 41c (these 41d, 41e, 41c are part of the low pressure oil passage 8b), and the annular groove 41c is A pressure transmission oil passage 8 on the valve housing 20 side extends obliquely downward as shown in Fig. 6 from a low pressure oil passage 8b formed directly above the valve body 27 of the oil passage switching valve 2 shown in Fig. 2.
facing b. Further, the annular groove 41a communicates with the chamber 41d via an orifice e. Further, as shown in FIGS. 11 to 17, the sleeve 40 has a notch 40a having a through hole 40a' and a through hole 40b' from the top to the bottom with different phases in the circumferential direction on the outer circumferential surface. Motsu notch 40b
A notch 40c having through holes 40c' and 40c'', a notch 40d having an orifice b, and a notch 40e having a through hole 40e' are provided. Connect with the low pressure oil passage 8b on the valve housing 20 side,
The notch 40b having the through hole 40b' is the spool 41.
The annular groove 41a of the spool 41 connects the oil passage 7c on the valve housing 20 side, and the notch 40c with through holes 40c', 40c'' connects the annular groove 41a of the spool 41 with the oil passage 7c of the valve housing 20 side.
b, the notch 40d with the orifice b connects the annular groove 41b of the spool 41 and the oil passage 7e on the valve housing 20 side, and the notch 40e with the through hole 40e' connects the annular groove 41b of the spool 41 with the third oil passage 7e. , connect the oil passage 7d on the valve housing 20 side shown in Figure 5, and connect the spool 4 from the orifice d.
From the bypass oil passage 7b so that the oil discharged to the chamber 41d of No. 1 returns to the oil tank 4 via the oil passage 41e → the annular groove 41c → the through hole 40a' → the notch 40a → the low pressure oil passage 8b on the valve housing 20 side. The hydraulic oil that has entered the notch 40b via the oil passage 7c flows through the through hole 40b' → annular groove 41a → notch 40c → through hole 40c'' → annular groove 41b → through hole 40e' → notch 4
A part of the hydraulic oil flowing in the annular groove 41b is directed to the solenoid valve 13 and the reaction piston 5 via the oil passage 7d of the valve housing 20, and also flows through the orifice b→cutout 40d→valve housing 20. Acts as a pilot pressure behind the spool 30 of the change-over valve 11 through the side oil passage 7e (see 7e 1 in FIG. 5),
Furthermore, an oil passage 30 provided at the rear end of the spool 30
b (see FIG. 7) → toward the solenoid valve 13 via the oil passage 7e on the valve housing 20 side. Next, the solenoid valve 1
To specifically explain 3, the solenoid valve 1
3 are disposed directly below the pressure control valve 12 so that their axes coincide with each other, as is clear from FIGS. 5, 8, and 21. The solenoid valve 13 includes a sleeve 50, a spool 51, a plunger 52 made of a non-magnetic material, a member 53 made of a magnetic material integrated with the plunger 52, a lock nut 54 for tightening and fixing the spool 51 to the plunger 52, and the pressure control valve. A back-up spring 56 and an electromagnetic coil 57 interposed between the seat plate 55 and the sleeve 50 that come into contact with the sleeve 40 of No. 12, and a nut 58 fixed to the casing on the side of the electromagnetic coil 57. It has a plunger pressing force adjustment bolt 59 screwed into the sleeve, a spring 60 interposed between the bolt 59 and the plunger 52, and a lock nut 61 for tightening and fixing the assembly of the solenoid valve 13 to the valve housing 20. 50, as shown in FIG. 21, has an oil path 50a communicating with the oil path 7d on the valve housing 20 side (see FIG. 5) and an oil path 50b communicating with the oil path 7e on the valve housing 20 side. , an orifice c is provided in the oil passage 50b. Further, the spool 51 has a diagonal groove 51.
The plunger 52 has an oil passage 52a, a through hole 52b, and an axial oil passage 52c communicating with the through hole 51b.
are provided for each. As already mentioned, the hydraulic oil flowing toward the solenoid valve 13 through the oil passage 7d on the valve housing 20 side shown in FIG.
The solenoid valve 1 enters the oil passage 50a shown in Fig. 1, and the oil passage 7e on the valve housing 20 side shown in Fig. 5.
3 enters the oil passage 50b in FIG.
FIG. 21 shows the state at high speed, and in this state, only the hydraulic oil that has entered the oil passage 50b flows from the orifice c → oil passage 51a → through hole 51b → oil passage 52a.
→ Through hole 52b → Orifice d via oil passage 52c
It will face the side member 45. Also, when high speed → low speed, the spool 51 descends and the orifice e
While the opening amount of the oil passage 50a is increased, only the oil passage 50a is opened when the vehicle is stopped. In FIG. 1, Q 0 is the flow rate on the discharge side of the oil pump 1, Q 1 is the oil amount in the high pressure oil passage 7a, Q 2 is the flow rate in the oil passage 7c, Q 3 is the flow rate in the oil passage 7d (the flow rate in the oil passage 50a,
Q 4 indicates the flow rate downstream of orifice c, Q 5 indicates the flow rate downstream of orifice e, and Q 1 :Q 2 is 6:
It is about 1. Moreover, the flow rate Q 2 of the oil passage 7c is Q 2 =
Q 3 +Q 4 +Q 5 (see Figure 30). Further, the diameter of the sleeve 50 of the solenoid valve 13 is different in the upper, middle, and lower parts as shown in FIG. 21, and the diameter is smaller as the upper part becomes smaller, and there is a difference of D 1 and D 2 between them. on the other hand,
The sleeve fitting hole on the valve housing 20 side is also opened to match the sleeve fitting hole. This is done in order to reduce frictional resistance when inserting the sleeve 50 together with the O-ring 62 into the sleeve 50, thereby making it easier to insert the sleeve 50 into the sleeve insertion hole. Further, the filter 70 is shown in FIGS. 22, 23, and 24. This filter 70 consists of a frame body 71 and a wire mesh 72, and has a notch 40b (9th, 13th) provided in the sleeve 40 of the pressure control valve 12.
(see figure), that is, it is fitted into the entrance of the control system oil passage,
Prevents foreign matter such as dust from entering the control system oil path. Note that foreign matter such as dust should not enter the control system oil path.
A filter of this type may be provided at the inlet of the high pressure oil passage 7a provided in the valve casing 20 (see the arrow in Figure 4), but in that case, the entire discharge flow rate of the pump passes through the filter. The filter needs to be large, and it is difficult to store the filter in the space shown. The entrance of the high-pressure oil passage 7a is made larger by inserting a drill into the orifice a and oil passage 7b, which are branched into two directions.
This is to make it easier to process and at the same time to make it easier to connect with piping (not shown). In addition, other oil passages 7b (change over)
Oil passages 7b, 7c, 7d, 7e on the downstream side of the valve 11
As can be seen from FIGS. 3, 4, and 5, the holes are formed by drilling and plugging holes in the valve housing 20 in the vertical and horizontal directions, which also facilitates the machining of the oil passage. In addition, 2nd, 3rd, 4th, 6th, 7th
Z in the figure is the central axis of the oil passage switching valve 2, and in Figures 2 and 5,
Z 1 is the center of the pinion 23a. Further, an example of the control device 15 is shown in FIG. 25. 80 is a constant voltage power supply circuit, 81 is a pulse/voltage conversion circuit that sends out a voltage proportional to the vehicle speed, 82 is an error amplification circuit,
38 is a transistor, 84 is a reset circuit that resets the timer circuit 87 when the vehicle speed is other than zero, and 85 is a pulse/voltage conversion circuit that sends out a voltage proportional to the engine rotation speed, 86 is an engine rotation The engine speed setting circuit 88 starts the timer circuit 87 when the engine speed is 2000 rpm or more and turns it off when the engine speed is 2000 rpm or less.
Vehicle speed input disconnection detection circuit in ON state, 89 is a transistor, 90 is a relay, 91 is a negative feedback circuit that stabilizes the current flowing to the electromagnetic coil 57 of the solenoid valve 13, when the vehicle speed is zero and the engine rotation speed is 2000 rpm or more. is normally not possible. Therefore, this condition is normally not possible. Therefore, if this condition continues for more than 5 to 10 seconds, it is determined that some kind of failure has occurred (for example, a failure in the vehicle speed pulse system or a failure in the solenoid valve system).
Turn on relay 90 and turn on solenoid valve 13.
(The power supply to the electromagnetic coil 57 is stopped. Therefore, according to this control circuit, when a failure occurs, the solenoid valve 1
3 is de-energized, the steering wheel becomes difficult to operate at high speeds (it has a phase-safe function), and it is safe.

次に前記パワーステアリング装置の作用を説明
する。油路切換弁2の出力油圧(オイルポンプ1
の吐出圧)Ppは、ハンドルを中立位置から右ま
たは左に切つて、入力軸21のバルブボデイ20
に対する相対角度が大きくなれば、第26図のよ
うに2次曲線を描いて上昇する。このオイルポン
プ1の吐出圧Ppの影響は、油路7a,7b,7
c圧力制御バルブ12を介して下流側の、オリフ
イスb,eソレノイドバルブ13及び反力ピスト
ン側チヤンバー6に対しては上流側の油路7d
に、そのまま表われて、同油路7dの油圧Pcが同
様に上昇する。このとき、自動車が停止していれ
ば、制御装置15は車速センサー14からのパル
ス信号を受けて、i=1A(第29図参照)の電流
をソレノイドバルブ13へ送り、プランジヤ52
及びスプール51を下限位置まで下降させ(第1
図ではL位置に移動させ)、第21図の油路50
aのみをスプール51側の油路51a,51b,
52bを介してオリフイスdの上流側の油路7f
に連通させて、同油路7fの油圧を油路7dの油
圧Pcと同じ値にする。以上の停止時にハンドルを
右(または左)に切り始めると油路7dの油圧Pc
が上昇を始める。そうすると油路7fの油圧も同
じ値で上昇する。この油圧は主パイロツト油路7
f1を介し圧力制御バルブ12のスプール41(ス
プール41の小径端)にそのまま伝えられて、ス
プール41が第10図の矢印方向に押される。同
時にスプール41の環状溝41bを通る作動油が
受圧面積の差からスプール41を第10図の矢印
方向に押す。一方、バネ44側は低圧油路8bに
通じており、スプール41がバネ44に抗し次第
に上昇し(第1図ではL方向に移動し)、貫通孔
40b′の開度が次第に小さくなつてゆき、上記矢
印方向に押す油圧とバネ力とがつり合うと、スプ
ール41が停止する。この状態では、貫通孔40
b′の開度が最も小さくて、油路7d(反力ピスト
ン側チヤンバー6)の油圧Pcが最も低くなる。こ
の状態はそれからも同じで、ハンドルをさらに右
(または左)に切つて、油路7a,7b,7cの
油圧Ppがさらに上昇しても、圧力制御バルブ1
2は貫通孔40b′の開度を上記状態に保持して、
油路7dの油圧Pcが引続き上記低い一定のレベル
に保持される。従つて前記相対角度を大きくし
て、大きな出力油圧Ppを得るときに、反力ピス
トン側チヤンバー6の油圧Pcとトーシヨンバー2
2の捩れ角度とで決まるハンドトルクTが大きく
ならない(第27図のイ参照)。以上の据え切り
時には、すでに述べたように油路7dの油圧Pc
低いといえども、スプール51(第21図参照)
が下降しているため、オリフイスcは閉塞され
て、油路7eに作動油が流れない。従つてパイロ
ツト油路7e1の圧力は、Pcと同じ圧力になるが、
この圧力により、チエンジ・オーバ・バルブ11
はバネ33の弾力に打勝つてバイパス油路7bを
開き、第1図のL位置に保持される。なお第1図
はH位置を示している。
Next, the operation of the power steering device will be explained. Output oil pressure of oil passage switching valve 2 (oil pump 1
(discharge pressure) P p of the valve body 20 of the input shaft 21 when the handle is turned to the right or left from the neutral position.
As the relative angle to the curve increases, the curve rises as shown in FIG. 26, drawing a quadratic curve. The influence of the discharge pressure P p of the oil pump 1 is
For the orifices b and e solenoid valves 13 and the reaction piston side chamber 6 on the downstream side via the c pressure control valve 12, there is an oil passage 7d on the upstream side.
This appears as it is, and the oil pressure P c of the same oil passage 7d rises in the same way. At this time, if the car is stopped, the control device 15 receives a pulse signal from the vehicle speed sensor 14, sends a current of i=1A (see FIG. 29) to the solenoid valve 13, and
and lower the spool 51 to the lower limit position (first
In the figure, the oil passage 50 in Figure 21 is moved to the L position).
Only a is connected to the oil passages 51a, 51b on the spool 51 side,
Oil passage 7f on the upstream side of orifice d via 52b
The oil pressure in the oil passage 7f is set to the same value as the oil pressure P c in the oil passage 7d. If you start turning the steering wheel to the right (or left) during a stop above, the oil pressure in oil passage 7d P c
begins to rise. Then, the oil pressure in the oil passage 7f also increases by the same value. This oil pressure is applied to the main pilot oil line 7.
The force is directly transmitted to the spool 41 (the small diameter end of the spool 41) of the pressure control valve 12 via f1 , and the spool 41 is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove 41b of the spool 41 pushes the spool 41 in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring 44 side is connected to the low pressure oil passage 8b, and the spool 41 gradually rises against the spring 44 (moves in the L direction in FIG. 1), and the opening degree of the through hole 40b' gradually becomes smaller. When the hydraulic pressure pushing in the direction of the arrow and the spring force are balanced, the spool 41 stops. In this state, the through hole 40
The opening degree of b' is the smallest, and the oil pressure P c of the oil passage 7d (reaction piston side chamber 6) is the lowest. This state remains the same from then on, and even if the handle is turned further to the right (or left) and the oil pressure P p in the oil passages 7a, 7b, and 7c further increases, the pressure control valve 1
2 maintains the opening degree of the through hole 40b' in the above state,
The oil pressure P c of the oil passage 7d is continuously maintained at the above-mentioned low constant level. Therefore, when increasing the relative angle to obtain a large output oil pressure P p , the oil pressure P c of the reaction piston side chamber 6 and the torsion bar 2
The hand torque T determined by the twist angle of 2 does not become large (see A in Fig. 27). During the above-mentioned stationary shutoff, even though the oil pressure P c in the oil passage 7d is low as described above, the spool 51 (see Fig. 21)
Since the is lowered, the orifice c is blocked and the hydraulic oil does not flow into the oil passage 7e. Therefore, the pressure in the pilot oil passage 7e1 is the same as P c , but
This pressure causes changeover valve 11
overcomes the elasticity of the spring 33, opens the bypass oil passage 7b, and is held at the L position in FIG. Note that FIG. 1 shows the H position.

また自動車が低速走行状態に入れば、制御装置
15は車速センサー14からのパルス信号を受け
て、そのときの車速に対応した電流、例えばi=
0.8の電流をソレノイドバルブ13へ送り、プラ
ンジヤ52及びスプール51を下限位置から上記
電流値に対応した距離だけ上昇させ(第1図では
右向きに移動させ)、第21図に示すスリーブ5
0側油路50aの開口量を減少させる。このと
き、オリフイスc(スリーブ50側油路50bは
未だ閉塞されたままで、油路50aの開口量の減
少分により、オリフイスdを通過する流量Q3(Q4
はこの状態ではほぼ零)は、前記停車時の油路5
0aからの流量よりも減少する。なおこの減少分
は、オリフイスeから高圧油路8bへの流量Q5
が増大して吸収する。以上のようにソレノイドバ
ルブ13を出る流量Q3(Q4=0)が前記停車時の
油路50aからの流量Q3よりも減少するので、
オリフイスdの上流側の油路7fの油圧が停車時
よりも低くなる。以上の低速時にハンドルを右
(または左)に切り始めると、油路7dの油圧Pc
が上昇を始める。そうすると、油路7fの油圧も
上昇する。この油圧は主パイロツト油路7f1を介
し圧力制御バルブ12のスプール11(スプール
41の小径端)にそのまま伝えられて、同スプー
ル41が第10図の矢印方向に押される。同時に
スプール41の環状溝41bを通る作動油が受圧
面積の差からスプール41を第10図の矢印方向
に押す。一方、バネ44側は低圧油路8bに通じ
ており、スプール41がバネ44に抗し次第に上
昇し(第1図ではL方向に移動し)、貫通孔40
b′の開度が次第に小さくなつてゆき、上記矢印方
向に押す油圧とバネ力とがつり合うと、スプール
41が停止する。が、前記スプール41の小径端
を押す油圧は前記停車時よりも低くスプール41
の上昇量がその分だけ少なくて(貫通孔40b′の
開口量がその分だけ多くて)、油路7d(反力ピス
トン側チヤンバー6)の油圧Pcが前記停車時より
高くなる。この状態はそれからも同じで、ハンド
ルをさらに右(または左)に切つて、油路7a,
7b,7cの油圧Ppがさらに上昇しても、圧力
制御バルブ12は貫通孔40b′の開度を上記状態
に保持して、油路7dの油圧Pcが引続き停車時よ
りも高い一定レベルに保持される。従つて前記相
対角度を大きくして、大きな出力油圧Ppを得る
ときには、ハンドルトルクTが停車時よりも大き
くなるが、後記高速時のようには大きくならな
い。
Further, when the automobile enters a low-speed driving state, the control device 15 receives a pulse signal from the vehicle speed sensor 14 and generates a current corresponding to the vehicle speed at that time, for example, i=
A current of 0.8 is sent to the solenoid valve 13, the plunger 52 and the spool 51 are raised from the lower limit position by a distance corresponding to the current value (moved to the right in FIG. 1), and the sleeve 5 shown in FIG.
The opening amount of the 0-side oil passage 50a is reduced. At this time, the oil passage 50b on the orifice c (sleeve 50 side) is still blocked, and due to the decrease in the opening amount of the oil passage 50a, the flow rate Q 3 (Q 4
is almost zero in this state) is the oil path 5 when the vehicle is stopped.
The flow rate decreases from the flow rate from 0a. Note that this decrease corresponds to the flow rate Q5 from orifice e to high pressure oil passage 8b.
increases and absorbs. As described above, since the flow rate Q 3 (Q 4 =0) leaving the solenoid valve 13 is smaller than the flow rate Q 3 from the oil passage 50a when the vehicle is stopped,
The oil pressure in the oil passage 7f on the upstream side of the orifice d is lower than when the vehicle is stopped. If you start turning the steering wheel to the right (or left) at low speeds above, the oil pressure in oil passage 7d P c
begins to rise. Then, the oil pressure in the oil passage 7f also increases. This oil pressure is directly transmitted to the spool 11 (the small diameter end of the spool 41) of the pressure control valve 12 via the main pilot oil passage 7f1 , and the spool 41 is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove 41b of the spool 41 pushes the spool 41 in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring 44 side communicates with the low pressure oil passage 8b, and the spool 41 resists the spring 44 and gradually rises (moves in the L direction in FIG. 1), and the through hole 40
The opening degree of b' gradually decreases, and when the hydraulic pressure pushing in the direction of the arrow above and the spring force are balanced, the spool 41 stops. However, the hydraulic pressure pushing the small diameter end of the spool 41 is lower than when the spool 41 is stopped.
The amount of rise is correspondingly smaller (the opening amount of the through hole 40b' is correspondingly larger), and the oil pressure P c of the oil passage 7d (reaction piston side chamber 6) is higher than when the vehicle is stopped. This condition remains the same from then on, and by turning the steering wheel further to the right (or left), oil passage 7a,
Even if the oil pressure P p of the oil passages 7b and 7c further increases, the pressure control valve 12 maintains the opening degree of the through hole 40b' in the above state, and the oil pressure P c of the oil passage 7d continues to be at a constant level higher than when the vehicle is stopped. is maintained. Therefore, when increasing the relative angle to obtain a large output oil pressure P p , the handle torque T becomes larger than when the vehicle is stopped, but it does not become as large as when the vehicle is at high speed, which will be described later.

また自動車が所定速度の高速状態に入れば、制
御装置15は車速センサー14からのパルス信号
を受けて、i=0(第29図参照)の電流をソレ
ノイドバルブ13へ送り、プランジヤ52及びス
プール51をバネ60により、上限位置まで上昇
させ(第1図では図示のH位置に移動させ)、第
21図のオリフイスcのみをスプール51側の油
路51a,51b,52bを介してオリフイスd
の上流側の油路7fに連通させる。このとき、オ
リフイスcは全開になつて、オリフイスcの流量
Q4は増加するが、前記低速時に比べると僅かし
か増加しない。一方油路50aの流量Q3はほぼ
零になるので、この系統の流量は最も少なくな
る。なおこの減少分はオリフイスeから低圧油路
8bへの流量Q5がさらに増大して吸収する。以
上のようにソレノイドバルブ13を出る流量が最
も減少するので、オリフイスdの上流側の油路7
fの油圧が最も低くなる。以上の高速時にハンド
ルを右(または左)に切り始めると、油路7dの
油圧Pcが上昇を始める。そうすると、油路7fの
油圧も上昇する。が、油路50aが閉塞されてい
るため、その上昇分は極めて僅かである。この油
圧は主パイロツト油路7f1を介し圧力制御バルブ
12のスプール41(スプール41の小径端)に
そのまま伝えられて、同スプール41が第10図
矢印方向に押される。同時にスプール41の環状
溝41bを通る作動油が受圧面積の差からスプー
ル41を第10図の矢印方向に押す。一方、バネ
44側は低圧油路8bに通じており、スプール4
1がバネ44に抗し次第に上昇し(第1図ではL
方向に移動し)、貫通孔40b′の開度が次第に小
さくなつてゆき、上記矢印方向に押す油圧とバネ
力とがつり合うと、スプール41が停止する。
が、前記スプール41の小径端を押す油圧は最も
低く、スプール41の上昇量がごく僅かで(貫通
孔40′)の開口量が最大で)、油路7d(反力ピ
ストン側チヤンバー6)の油圧Pcが最も高くな
る。一方、オリフイスcが油路51aに開口して
いるため、オリフイスb,c間の油路7eの反力
が下がり、これがパイロツト油路7e1を介しチエ
ンジ・オーバ・バルブ11のスプール30に伝え
られ、同スプール30が下降し(第1図ではH位
置を選択し)、バイパス油路7bが閉じられ、オ
イルポンプ1からの作動油がオリフイスaを経て
油路切換弁2へ送られて、出力油圧Ppが設定圧
だけ上昇する。このことは、高速時に操舵しない
とき(ハドドル中立位置)でも、油路7a,7
b,7cの油圧Ppが停車時や低速時よりも上昇
することであり(第27図のPp1参照)、この油圧
は圧力制御バルブ12及び油路7d,7d2を介し
反力ピストン側のチヤンバー6に伝えられて、高
速時の微小操舵時の反力感(手応え)が向上す
る。ハンドルをさらに右(または左)に切り続け
ると、油路7a,7b,7cの油圧Ppがさらに
上昇して、油路7dの油圧Pcがさらに上昇するこ
とは前述の通りで、オリフイスb,c間の油路7
eの油圧が設定値以上に上昇し、パイロツト油路
7e1を介してスプール30に作用する力がバネ3
3の力よりも大きくなると、チエンジ・オーバ・
バルブ11のスプール30が上昇し(第1図では
L位置を選択し)、バイパス油路7bが開かれる。
またこの状態になつても、ハンドルを右(または
左)に切り続ければ油路7a,7b,7cの油圧
Ppがさらに上昇してゆくが、圧力制御バルブ1
2は貫通孔40b′の開度を上記状態に保持して、
油路7dの油圧Pcが引続き最も高い一定レベルに
保持される。従つて前記相対角度を大きくして、
大きな出力油圧Ppを得るときに、ハンドルトル
クTが大きくなる(第27図のロ参照)。
Further, when the vehicle enters a high speed state at a predetermined speed, the control device 15 receives a pulse signal from the vehicle speed sensor 14, and sends a current of i=0 (see FIG. 29) to the solenoid valve 13, and the plunger 52 and spool 51 is raised to the upper limit position by the spring 60 (moved to the H position shown in FIG. 1), and only the orifice c shown in FIG.
It communicates with the oil passage 7f on the upstream side. At this time, orifice c is fully opened and the flow rate of orifice c is
Although Q 4 increases, it increases only slightly compared to the above-mentioned low speed. On the other hand, since the flow rate Q 3 of the oil passage 50a becomes almost zero, the flow rate of this system becomes the lowest. Note that this decrease is absorbed by further increasing the flow rate Q5 from the orifice e to the low pressure oil passage 8b. As described above, since the flow rate leaving the solenoid valve 13 decreases the most, the oil passage 7 on the upstream side of the orifice d
The oil pressure at f is the lowest. When the steering wheel starts to be turned to the right (or left) at higher speeds, the oil pressure P c in the oil passage 7d starts to rise. Then, the oil pressure in the oil passage 7f also increases. However, since the oil passage 50a is blocked, the amount of increase is extremely small. This oil pressure is directly transmitted to the spool 41 (the small diameter end of the spool 41) of the pressure control valve 12 via the main pilot oil passage 7f1 , and the spool 41 is pushed in the direction of the arrow in FIG. At the same time, the hydraulic oil passing through the annular groove 41b of the spool 41 pushes the spool 41 in the direction of the arrow in FIG. 10 due to the difference in pressure receiving area. On the other hand, the spring 44 side is connected to the low pressure oil passage 8b, and the spool 4
1 gradually rises against the spring 44 (in Fig. 1, L
The opening of the through hole 40b' gradually decreases, and when the hydraulic pressure pushing in the direction of the arrow and the spring force are balanced, the spool 41 stops.
However, the hydraulic pressure pushing the small diameter end of the spool 41 is the lowest, the amount of rise of the spool 41 is very small (the opening amount of the through hole 40' is the maximum), and the oil passage 7d (reaction piston side chamber 6) is Hydraulic pressure P c becomes highest. On the other hand, since the orifice c opens into the oil passage 51a, the reaction force in the oil passage 7e between the orifices b and c decreases, and this is transmitted to the spool 30 of the change-over valve 11 via the pilot oil passage 7e1. , the spool 30 is lowered (the H position is selected in Fig. 1), the bypass oil passage 7b is closed, and the hydraulic oil from the oil pump 1 is sent to the oil passage switching valve 2 through the orifice a, and the output is Oil pressure P p increases by the set pressure. This means that even when the steering is not performed at high speed (huddling neutral position), the oil passages 7a and 7
This means that the oil pressure P p of the cylinders b and 7c is higher than when the vehicle is stopped or at low speed (see P p1 in Fig. 27), and this oil pressure is transferred to the reaction piston side via the pressure control valve 12 and the oil passages 7d and 7d2 . The reaction force is transmitted to the chamber 6, and the feeling of reaction force (response) during minute steering at high speeds is improved. As mentioned above, if you continue to turn the steering wheel further to the right (or left), the oil pressure P p in the oil passages 7a, 7b, and 7c further increases, and the oil pressure P c in the oil passage 7d further increases. , c oil passage 7
The oil pressure of e increases above the set value, and the force acting on the spool 30 via the pilot oil passage 7e1 is applied to the spring 3.
When the force becomes larger than 3, changeover occurs.
The spool 30 of the valve 11 is raised (the L position is selected in FIG. 1), and the bypass oil passage 7b is opened.
Even in this state, if you continue to turn the steering wheel to the right (or left), the oil pressure in the oil passages 7a, 7b, and 7c will increase.
Although P p continues to rise, pressure control valve 1
2 maintains the opening degree of the through hole 40b' in the above state,
The oil pressure P c of the oil passage 7d continues to be maintained at the highest constant level. Therefore, by increasing the relative angle,
When a large output oil pressure P p is obtained, the handle torque T becomes large (see B in Fig. 27).

本案のパワーステアリング装置は前記のように
ハンドルの動きをトーシヨンバー22を介し油路
切換弁2に伝えてオイルポンプ1から同油路切換
弁2へ延びた高圧油路7aと同油路切換弁2から
オイルタンク4へ延びた伝圧油路8aとを切換え
てパワーシリンダ3を所定の操舵方向に作動させ
るとともに同高圧油路7aを流れる作動油の一部
を反力ピストン5へ導いてトーシヨンバー22の
捩れを規制するパワーステアリング装置におい
て、前記高圧油路7aから前記反力ピストン5へ
延びた油路7b,7c,7dの途中から岐れた並
列油路7e,7e′と、同並列油路7e,7e′の一
方7eに設けたオリフイスbと、同並列油路から
の作動油を車速に応じて比例的に排出する流量制
御弁13と、同流量制御弁13の下流側に流量に
応じたパイロツト圧を生じさせるオリフイスd
と、同パイロツト圧により作動して前記反力ピス
トン5への油路7dの油圧を一定に且つ高速時ほ
ど高くなるように制御する圧力制御弁12とを具
えており、据え切り時には、反力ピストン5への
油圧が最小になる。そのため、据え切り時に油路
切換弁2を僅かの操舵力(ハンドルトルク)で動
かすことができる。また車速が上るにつれて、反
力ピストン5への油圧が高められてゆく。そのた
め、高速時に油路切換弁2を比較的大きな操舵力
で動かさなければならなくて、高速時に適度の手
応え(反力感)が得られる。また出力油圧(ポン
プ吐出圧)Ppを圧力制御弁12を介して反力ピ
ストン5へ導くため、第27図ロに示すように走
行時の操舵範囲では、出力油圧Ppがハンドルト
ルクTに対してリニアな特性を示す。従つて通常
のパワーステアリング装置に見受けられるような
操舵時の巻き込み感等がなくて、走行時のステア
リングが極めて安定し且つ、操舵感覚にマツチし
たステアリングになる。
As described above, the power steering device of the present invention transmits the movement of the steering wheel to the oil passage switching valve 2 via the torsion bar 22, and the high pressure oil passage 7a extending from the oil pump 1 to the oil passage switching valve 2 and the oil passage switching valve 2. The transmission oil passage 8a extending from the high pressure oil passage 7a to the oil tank 4 is switched to operate the power cylinder 3 in a predetermined steering direction, and a part of the hydraulic oil flowing through the same high pressure oil passage 7a is guided to the reaction piston 5 and the torsion bar 22 In the power steering device, parallel oil passages 7e and 7e' branched from the middle of oil passages 7b, 7c, and 7d extending from the high-pressure oil passage 7a to the reaction piston 5; An orifice b provided in one of 7e and 7e' 7e, a flow control valve 13 that discharges hydraulic oil from the parallel oil passage proportionally according to the vehicle speed, and a flow control valve 13 that discharges hydraulic oil from the parallel oil passage in proportion to the vehicle speed, and a Orifice d that generates pilot pressure
and a pressure control valve 12 which is operated by the pilot pressure to control the oil pressure in the oil passage 7d to the reaction piston 5 to be constant and to increase as the speed increases. The hydraulic pressure on the piston 5 is minimized. Therefore, the oil passage switching valve 2 can be moved with a small amount of steering force (handle torque) during stationary turning. Furthermore, as the vehicle speed increases, the oil pressure applied to the reaction piston 5 increases. Therefore, the oil passage switching valve 2 must be moved with a relatively large steering force at high speeds, and an appropriate response (feeling of reaction force) can be obtained at high speeds. In addition, since the output oil pressure (pump discharge pressure) P p is guided to the reaction piston 5 via the pressure control valve 12, the output oil pressure P p changes to the steering wheel torque T in the steering range during driving, as shown in Fig. 27B. shows linear characteristics. Therefore, there is no feeling of entanglement during steering, which is found in ordinary power steering devices, and the steering is extremely stable during driving and matches the steering feel.

それに加え、本案では、圧力制御弁12がスリ
ーブ40とスプール41とを有し、同スリーブ4
0の外周面に、前記高圧油路から前記反力ピスト
ンへ延びた油路の最上流側に連通する切欠部40
b及びポート40b′と前記並列油路の一方7eに
連通する切欠部40d及びオリフイスbと前記反
力ピストン側に連通する切欠部40e及びポート
40e′と連結用切欠部40c及びポート40c′,
40c″とを設け、上記スプール41の外周面に、
上記スリーブ40の内周面とで形成される互いに
独立した環状通路41a,41bを設け、オリフ
イスbとポート40e′と環状通路41b、ポート
40c′と還状通路41a、ポート40c″と環状通
路41bをそれぞれ連通するとともに、ポート4
0b′と環状通路41aとをスプール41の移動に
より連通または遮断するようにしたので、油路の
構成をコンパクトにできる効果がある。
In addition, in the present invention, the pressure control valve 12 has a sleeve 40 and a spool 41.
0, a notch 40 communicating with the most upstream side of the oil passage extending from the high-pressure oil passage to the reaction piston.
b, a notch 40d communicating with port 40b' and one side 7e of the parallel oil passage, a notch 40e communicating with orifice b and the reaction piston side, port 40e', connecting notch 40c and port 40c',
40c'' on the outer peripheral surface of the spool 41,
Mutually independent annular passages 41a and 41b formed by the inner peripheral surface of the sleeve 40 are provided, and the orifice b, the port 40e' and the annular passage 41b, the port 40c' and the annular passage 41a, and the port 40c'' and the annular passage 41b. In addition to communicating with each other, port 4
0b' and the annular passage 41a are communicated with or interrupted by movement of the spool 41, which has the effect of making the structure of the oil passage compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本案に係るパワーステアリング装置の
一実施例を示す油圧回路図、第2図は油路切換弁
の縦断側面図、第3図はその下部横断平面図、第
4図はその上部横断平面図、第5図はチエンジ・
オーバ・バルブと圧力制御バルブとソレノイドバ
ルブとの縦断一側面図、第6図は油路切換弁と圧
力制御バルブとの縦断他側面図、第7図は油路切
換弁とチエンジ・オーバ・バルブとの縦断他側面
図、第8図はチエンジ・オーバ・バルブと圧力
制御バルブとソレノイドバルブとの拡大縦断一側
面図、第8図はソレノイドバルブの端面図、第
9図は圧力制御バルブの拡大縦断一側面図、第
9図はその拡大縦断他側面図、第10図は圧力
制御バルブのスリーブの拡大斜視図、第11図は
圧力制御バルブのスリーブの拡大平面図、第12
図はその拡大縦断一側面図、第13図はその拡大
縦断他側面図、第14図は第12図矢視−
線に沿う横断平面図、第15図は第13図矢視
−線に沿う横断平面図、第16図は第1
2図矢視−線に沿う横断平面図、第17
図は第13図矢視−線に沿う横断平面
図、第18図は同圧力制御バルブのスリーブの一
側面図、第19図はそのスリーブ及びスプールを
示す縦断一側面図、第20図は同スプールを示す
側面図、第21図はソレノイドバルブのスリーブ
とスプールとの拡大縦断側面図、第22図はフイ
ルターの横断平面図、第23図はその正面図、第
24図はその装置状態を示す横断平面図、第25
図は制御装置の回路図、第26図は油路切換弁の
出力油圧(ポンプ吐出圧)とトーシヨンバーの捩
れ角度(油路切換弁のスプールとスリーブとの相
対角度)との関係を示す説明図、第27図は出力
油圧とハンドルトルクとの関係を示す説明図、第
28図は反力プランジヤ側チヤンバー油圧(ハン
ドルトルク)をトーシヨンバーの捩れ角度との関
係を示す説明図、第29図は反力プランジヤ側チ
ヤンバーの油圧と出力油圧との関係を示す説明
図、第30図はハンドルトルクとトーシヨンバー
の捩れ角度との関係を示す説明図、第31図は制
御系入口側の流量と制御系内各部の流量とを示す
説明図である。 1……オイルポンプ、2……油路切換弁、3…
…パワーシリンダ、4……オイルタンク、5……
反力ピストン、7a……高圧油路、7b,7c,
7d……高圧油路7aから反力ピストン5へ延び
た油路、7e……並列油路、8a,8b……低圧
油路、12……圧力制御弁、13……流量制御
弁、40……スリーブ、40b,40c,40
d,40e……切欠部、40b′,40c′,40
c″,40e′……ポート、41……スプール、41
a,42b……環状溝、a,b,c,d……オリ
フイス。
Fig. 1 is a hydraulic circuit diagram showing an embodiment of the power steering device according to the present invention, Fig. 2 is a longitudinal cross-sectional side view of the oil passage switching valve, Fig. 3 is a lower cross-sectional plan view thereof, and Fig. 4 is an upper cross-sectional view thereof. The plan view and Figure 5 are
Figure 6 is a vertical cross-sectional side view of the over valve, pressure control valve, and solenoid valve, Figure 6 is a vertical cross-sectional side view of the oil passage switching valve and pressure control valve, and Figure 7 is the oil passage switching valve and change over valve. Fig. 8 is an enlarged longitudinal sectional side view of the changeover valve, pressure control valve, and solenoid valve, Fig. 8 is an end view of the solenoid valve, and Fig. 9 is an enlarged view of the pressure control valve. 10 is an enlarged perspective view of the sleeve of the pressure control valve; FIG. 11 is an enlarged plan view of the sleeve of the pressure control valve; FIG. 12 is an enlarged perspective view of the sleeve of the pressure control valve;
The figure is an enlarged longitudinal sectional side view, FIG. 13 is an enlarged longitudinal sectional side view, and FIG.
15 is a cross-sectional plan view taken along the line, FIG. 15 is a cross-sectional plan view taken along the arrow line in FIG. 13, and FIG.
Fig. 2 Arrow view - cross-sectional plan view along the line, No. 17
The figures are a cross-sectional plan view along the arrow line in FIG. 13, FIG. 18 is a side view of the sleeve of the pressure control valve, FIG. 19 is a vertical side view showing the sleeve and spool, and FIG. 20 is the same side view. A side view showing the spool, Fig. 21 is an enlarged vertical sectional side view of the sleeve and spool of the solenoid valve, Fig. 22 is a cross-sectional plan view of the filter, Fig. 23 is a front view thereof, and Fig. 24 shows the state of the device. Cross-sectional plan, No. 25
The figure is a circuit diagram of the control device, and Figure 26 is an explanatory diagram showing the relationship between the output oil pressure of the oil passage switching valve (pump discharge pressure) and the torsion angle of the torsion bar (relative angle between the spool and sleeve of the oil passage switching valve). , Fig. 27 is an explanatory diagram showing the relationship between output oil pressure and handle torque, Fig. 28 is an explanatory diagram showing the relationship between reaction force plunger side chamber oil pressure (handle torque) and torsion bar torsion angle, and Fig. 29 is an explanatory diagram showing the relationship between reaction force plunger side chamber oil pressure (handle torque). An explanatory diagram showing the relationship between the hydraulic pressure of the force plunger side chamber and the output hydraulic pressure, Fig. 30 is an explanatory diagram showing the relationship between the handle torque and the torsion angle of the torsion bar, and Fig. 31 shows the flow rate at the control system inlet side and the inside of the control system. FIG. 3 is an explanatory diagram showing the flow rate of each part. 1...Oil pump, 2...Oil passage switching valve, 3...
...Power cylinder, 4...Oil tank, 5...
Reaction piston, 7a...high pressure oil path, 7b, 7c,
7d... Oil passage extending from the high pressure oil passage 7a to the reaction piston 5, 7e... Parallel oil passage, 8a, 8b... Low pressure oil passage, 12... Pressure control valve, 13... Flow rate control valve, 40... ...Sleeve, 40b, 40c, 40
d, 40e...notch, 40b', 40c', 40
c″, 40e′...port, 41...spool, 41
a, 42b... annular groove, a, b, c, d... orifice.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハンドルの動きをトーシヨンバーを介し油路切
換弁に伝えてオイルポンプから同油路切換弁へ延
びた高圧油路と同油路切換弁からオイルタンクへ
延びた低圧油路とを切極えてパワーシリンダを所
定の操舵方向に作動させるとともに同高圧油路を
流れる作動油の一部を反力ピストンへ導いてトー
シヨンバーの捩れを規制するパワーステアリング
装置において、前記高圧油路から前記反力ピスト
ンへ延びた油路の途中から岐れた並列油路と、同
並列油路の一方に設けたオリフイスと、同並列油
路からの作動油を車速に応じて比例的に排出する
流量制御弁と、同流量制御弁の下流側に流量に応
じたパイロツト圧を生じさせるオリフイスと、同
パイロツト圧により作動して前記反力ピストンへ
の油路の油圧を一定に且つ高速時ほど高くなるよ
うに制御する圧力制御弁とを具え、同圧力制御弁
がスリーブ40とスプール41とを有し、同スリ
ーブ40の外周面に、前記高圧油路から前記反力
ピストンへ延びた油路の最上流側に連通する切欠
部40b及びポート40b′と前記並列油路の一方
7eに連通する切欠部40d及びオリフイスbと
前記反力ピストン側に連通する切欠部40e及び
ポート40e′と連結用切欠部40c及びポート4
0c′,40c″とを設け、上記スプール41の外周
面に、上記スリーブ40の内周面とで形成される
互いに独立した環状通路41a,41bを設け、
オリフイスbとポート40e′と環状通路41b、
ポート40c′と環状通路41a、ポート40c″と
環状通路41bをそれぞれ連通するとともに、ポ
ート40b′と還状通路41aとをスプール41の
移動により連通または遮断するようにしたことを
特徴とするパワーステアリング装置。
The movement of the handle is transmitted to the oil passage switching valve via the torsion bar, and the high pressure oil passage extending from the oil pump to the oil passage switching valve and the low pressure oil passage extending from the oil passage switching valve to the oil tank are connected to the power cylinder. In the power steering device, the torsion bar is actuated in a predetermined steering direction and a portion of the hydraulic oil flowing through the high pressure oil passage is guided to the reaction piston to restrict torsion of the torsion bar. A parallel oil path branching from the middle of the oil path, an orifice installed on one side of the parallel oil path, a flow control valve that discharges hydraulic oil from the parallel oil path proportionally according to vehicle speed, and a An orifice that generates a pilot pressure according to the flow rate on the downstream side of the control valve, and a pressure control that is operated by the pilot pressure to control the oil pressure in the oil path to the reaction piston to be constant and increase as the speed increases. The pressure control valve has a sleeve 40 and a spool 41, and a notch in the outer peripheral surface of the sleeve 40 that communicates with the most upstream side of the oil passage extending from the high-pressure oil passage to the reaction piston. A notch 40d that communicates between the port 40b and the port 40b' and one 7e of the parallel oil passage, a notch 40e that communicates with the orifice b and the reaction piston side, and a connection notch 40c and the port 40e'.
0c', 40c'', and providing independent annular passages 41a, 41b on the outer circumferential surface of the spool 41 and the inner circumferential surface of the sleeve 40,
orifice b, port 40e' and annular passage 41b,
A power steering system characterized in that the port 40c' and the annular passage 41a are communicated with each other, and the port 40c'' and the annular passage 41b are communicated with each other, and the port 40b' and the annular passage 41a are communicated or cut off by movement of the spool 41. Device.
JP7379183U 1983-05-19 1983-05-19 power steering device Granted JPS59179177U (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7379183U JPS59179177U (en) 1983-05-19 1983-05-19 power steering device
KR1019840000454A KR890001395B1 (en) 1983-05-19 1984-02-01 Power steering system
US06/599,673 US4621704A (en) 1983-05-19 1984-04-12 Power steering system
GB08410787A GB2141083B (en) 1983-05-19 1984-04-27 Power steering system
FR8407735A FR2546121B1 (en) 1983-05-19 1984-05-18 POWER STEERING SYSTEM
DE19843418563 DE3418563A1 (en) 1983-05-19 1984-05-18 SERVOLINE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7379183U JPS59179177U (en) 1983-05-19 1983-05-19 power steering device

Publications (2)

Publication Number Publication Date
JPS59179177U JPS59179177U (en) 1984-11-30
JPH0214538Y2 true JPH0214538Y2 (en) 1990-04-19

Family

ID=30203904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7379183U Granted JPS59179177U (en) 1983-05-19 1983-05-19 power steering device

Country Status (1)

Country Link
JP (1) JPS59179177U (en)

Also Published As

Publication number Publication date
JPS59179177U (en) 1984-11-30

Similar Documents

Publication Publication Date Title
JPH0316307B2 (en)
JP2898363B2 (en) Power steering device
EP0658468B1 (en) Hydraulic power steering apparatus
US4681184A (en) Hydraulic reaction force apparatus for power steering system
JPH0696387B2 (en) Power steering device
US4621704A (en) Power steering system
JPH0214538Y2 (en)
JP2621600B2 (en) Hydraulic valve device for power steering gear
JP3188067B2 (en) Power steering device
US5593133A (en) Variable assist steering pressure control valve
GB2141083A (en) Power steering system
JPH0232541Y2 (en)
US5778756A (en) Hydraulic power steering apparatus
JPH0232545Y2 (en)
JPH0214537Y2 (en)
JPH0232544Y2 (en)
JPH0214536Y2 (en)
JPH0242541Y2 (en)
JPH0215007Y2 (en)
JPH0218782Y2 (en)
US4570662A (en) Demand responsive flow control valve
JPH0254269B2 (en)
EP0687616B1 (en) Power steering apparatus
JPH0124664B2 (en)
JPH0686223B2 (en) Power steering device