JPH0685271A - Transistor - Google Patents

Transistor

Info

Publication number
JPH0685271A
JPH0685271A JP4234339A JP23433992A JPH0685271A JP H0685271 A JPH0685271 A JP H0685271A JP 4234339 A JP4234339 A JP 4234339A JP 23433992 A JP23433992 A JP 23433992A JP H0685271 A JPH0685271 A JP H0685271A
Authority
JP
Japan
Prior art keywords
region
type
base region
diode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4234339A
Other languages
Japanese (ja)
Inventor
Masakatsu Hoshi
星  正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4234339A priority Critical patent/JPH0685271A/en
Publication of JPH0685271A publication Critical patent/JPH0685271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Abstract

PURPOSE:To maintain the sufficient surge voltage strength of a transistor while a fine chip structure is realized. CONSTITUTION:An unevenness is formed on one of the surfaces of a high impurity concentration N<+>-type substrate 109. An N<->-type epitaxial region 113 is formed on the uneven surface of the high impurity concentration N<+>-type substrate 109. P-type base regions 107 are formed inward from the surface of the N<->-type epitaxial region 113 so as to be brought into contact with the protrusions of the high impurity concentration N<->-type substrate 109. With this constitution, a long distance can be maintained between a diode 2 composed of the base region 107 and the N<->-type epitaxial region 113 and the recess of the high impurity concentration N<+>-type substrate 109, so that the breakdown strength of the diode D2 can be sufficiently higher than the breakdown strength of a diode D1 composed of the protrusion of the high impurity concentration N<+>-type substrate 109 and the base region 107.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、トランジスタの構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transistor structure.

【0002】[0002]

【従来技術】従来の技術としては、例えば図5の断面図
に示されるようなものがある。
2. Description of the Related Art As a conventional technique, for example, there is one shown in a sectional view of FIG.

【0003】以下、図5に従って説明する。A description will be given below with reference to FIG.

【0004】高濃度N+型基板509上に、N-型エピタ
キシャル領域513が形成されている。このN-型エピ
タキシャル領域513表面から、P型ベース領域507
及びP型ベース領域507より深いP型ベース領域50
8が形成され、この深いP型ベース領域508は高濃度
+型基板509に接するように形成されている。そし
て深いP型ベース領域508と高濃度N+型基板509
とでダイオードD1が形成され、P型ベース領域507
とN-型エピタキシャル領域513とでダイオードD2
が形成されている。P型ベース領域507内には高濃度
-型ソース領域503が形成されている。
An N type epitaxial region 513 is formed on a high concentration N + type substrate 509. From the surface of the N type epitaxial region 513, the P type base region 507
And the P-type base region 50 deeper than the P-type base region 507
8 is formed, and the deep P type base region 508 is formed so as to be in contact with the high concentration N + type substrate 509. And a deep P type base region 508 and a high concentration N + type substrate 509.
The diode D1 is formed by and, and the P-type base region 507 is formed.
And the N type epitaxial region 513 form a diode D2.
Are formed. A high concentration N type source region 503 is formed in the P type base region 507.

【0005】505はゲート電極であり、絶縁膜で覆わ
れどの部分にも接触していない。511はドレイン電極
であり、高濃度N+型基板509の表面に形成されてい
る。501はソース電極であり、高濃度N+型ソース領
域503及びP型ベース領域507に接続されている。
Reference numeral 505 denotes a gate electrode, which is covered with an insulating film and is not in contact with any portion. 511 is a drain electrode, which is formed on the surface of the high concentration N + type substrate 509. A source electrode 501 is connected to the high concentration N + type source region 503 and the P type base region 507.

【0006】本構造においては、P型ベース領域507
とN-型エピタキシャル領域513の接合耐圧より、深
いP型ベース領域508と高濃度N+型基板509の接
合耐圧の方が低い。すなわちダイオードD2よりダイオ
ードD1の方が耐圧が低い。
In this structure, the P-type base region 507 is used.
The junction breakdown voltage of the deep P type base region 508 and the high concentration N + type substrate 509 is lower than the junction breakdown voltage of the N type epitaxial region 513. That is, the breakdown voltage of the diode D1 is lower than that of the diode D2.

【0007】そのため、ドレイン電極511とソース電
極501との間にサージ電圧が発生した場合、ダイオー
ドD2より先にダイオードD1がブレイクダウンしてア
バランシェ電流を流すので、N-型エピタキシャル領域
513とP型ベース領域507との間には電位差の変動
が発生せず、高濃度N+型ソース領域503とP型ベー
ス領域507とN-型エピタキシャル領域513とで形
成される寄生NPNトランジスタがターンオンするのを
防止でき、サージ耐量が向上する。
Therefore, when a surge voltage occurs between the drain electrode 511 and the source electrode 501, the diode D1 breaks down prior to the diode D2 to pass an avalanche current, so that the N type epitaxial region 513 and the P type The potential difference does not change between the base region 507 and the parasitic NPN transistor formed by the high-concentration N + type source region 503, the P type base region 507, and the N type epitaxial region 513, and turns on. It can be prevented and surge resistance can be improved.

【0008】[0008]

【発明が解決しようとする課題】このような従来のMO
SFETにあっては、素子を微細化するためにゲート電
極間の距離を縮小させることが考えられる。しかしなが
ら、P型ベース領域507は、ゲート電極505をマス
クとして注入されたイオンを拡散することによって形成
されるため、ゲート電極間の距離を縮小するほどイオン
が注入される面積は狭くなる。
SUMMARY OF THE INVENTION Such conventional MO
In the SFET, it is possible to reduce the distance between the gate electrodes in order to miniaturize the device. However, since the P-type base region 507 is formed by diffusing the implanted ions using the gate electrode 505 as a mask, the area where the ions are implanted becomes smaller as the distance between the gate electrodes is reduced.

【0009】その結果、P型ベース領域507のチャネ
ル部分と深いベース領域508とが重なってしまい、こ
のチャネル部分の不純物濃度が上がり、その結果MOS
FETの閾値電圧が上昇するので、閾値を所望の値に制
御することができなくなってしまう。この閾値を所望の
値に制御するためには、深いベース領域508をあまり
深くしないことによってP型ベース領域507と深いベ
ース領域508の重なりを小さくすることが考えられ
る。しかしながら、深いベース領域508を浅く形成す
ると、P型ベース領域507とN-型エピタキシャル領
域513との接合面が高濃度N+型基板509に近づい
てしまうため、ダイオードD2の耐圧が下がる。そのた
め、サージが入ったときにダイオードD1のみならずダ
イオードD2にもサージ電流が流れてしまい、高濃度N
+型ソース領域503とP型ベース領域507とN-型エ
ピタキシャル領域513とからなる寄生バイポーラトラ
ンジスタがターンオンし、ラッチアップが発生するので
サージ耐量が低下してしまう。 この発明は、かかる課
題を解決するためになされたもので、微細化した際にも
充分なサージ耐量を有するトランジスタを提供すること
を目的としている。
As a result, the channel portion of the P-type base region 507 and the deep base region 508 overlap with each other, and the impurity concentration of this channel portion increases, resulting in the MOS.
Since the threshold voltage of the FET rises, it becomes impossible to control the threshold to a desired value. In order to control this threshold value to a desired value, it is conceivable to make the deep base region 508 not too deep so as to reduce the overlap between the P-type base region 507 and the deep base region 508. However, when the deep base region 508 is formed shallowly, the junction surface between the P-type base region 507 and the N -type epitaxial region 513 approaches the high-concentration N + -type substrate 509, so that the breakdown voltage of the diode D2 decreases. Therefore, when a surge occurs, a surge current flows not only in the diode D1 but also in the diode D2, and the high concentration N
Since the parasitic bipolar transistor including the + type source region 503, the P type base region 507, and the N type epitaxial region 513 is turned on and latch-up occurs, the surge resistance is reduced. The present invention has been made to solve the above problems, and an object of the present invention is to provide a transistor having a sufficient surge withstanding capability even when miniaturized.

【0010】[0010]

【課題を解決するための手段】係る目的を達成するた
め、請求項1に記載された発明は、一方の表面が凸凹状
に形成され他方の表面にドレイン電極が形成された第1
導電型の第1半導体領域と、該第1半導体領域の前記一
方の表面上に形成され電気第1半導体領域の不純物濃度
より低い不純物濃度を有する第1導電型の第2半導体領
域と、該第2半導体領域の表面から該領域内へ形成され
底部が前記第1半導体領域の凸部に接するように形成さ
れた第2導電型のベース領域と、前記ベース領域表面よ
り該領域内に形成された第1導電型のソース領域と、少
なくとも該ソース領域と前記第2半導体領域とに挟まれ
た前記ベース領域の表面上にゲート絶縁膜を介して形成
されたゲート電極と、前記ソース領域に電気的に接続さ
れたソース電極とによってトランジスタを構成した。
In order to achieve the above object, the invention described in claim 1 has a first surface in which one surface is formed in an uneven shape and a drain electrode is formed in the other surface.
A first semiconductor region of a conductivity type, a second semiconductor region of a first conductivity type formed on the one surface of the first semiconductor region and having an impurity concentration lower than that of the electrical first semiconductor region; 2 a second conductivity type base region formed from the surface of the semiconductor region into the region and having a bottom portion in contact with the convex portion of the first semiconductor region; and a region formed from the surface of the base region into the region. A first conductivity type source region, a gate electrode formed on a surface of the base region sandwiched at least by the source region and the second semiconductor region via a gate insulating film, and electrically connected to the source region. A transistor was formed by the source electrode connected to.

【0011】[0011]

【作用】前記ドレイン電極と前記ゲート電極とに電圧が
印加されると、前記ドレイン電極から前記第1半導体領
域、前記第2半導体領域、前記ベース領域、前記ソース
領域、前記ソース電極を通って電流が流れる。
When a voltage is applied to the drain electrode and the gate electrode, a current flows from the drain electrode through the first semiconductor region, the second semiconductor region, the base region, the source region, and the source electrode. Flows.

【0012】前記ドレイン電極と前記ソース電極との間
にサージ電圧が発生すると、前記ベース領域と前記第2
半導体領域とで形成されるダイオードよりも充分耐圧の
低い、つまり構成領域の不純物濃度が高い前記第1半導
体領域の凸部と、前記ベース領域とで形成されるダイオ
ードがブレイクダウンする。そのため、アバランシェ電
流は前記第1半導体領域の凸部から前記ベース領域を通
ってソース電極へと流れるので、不純物濃度の低いつま
り電気抵抗の大きな前記第2半導体領域は流れない。
When a surge voltage is generated between the drain electrode and the source electrode, the base region and the second electrode
The diode formed by the convex portion of the first semiconductor region, which has a sufficiently lower breakdown voltage than the diode formed by the semiconductor region, that is, the impurity concentration of the constituent region is high, and the base region breaks down. Therefore, since the avalanche current flows from the convex portion of the first semiconductor region to the source electrode through the base region, the second semiconductor region having a low impurity concentration, that is, a large electric resistance does not flow.

【0013】[0013]

【実施例】図1は、この発明の第1実施例の断面図を示
す。
1 is a sectional view of a first embodiment of the present invention.

【0014】以下、この図面にもとづいて第1実施例を
説明する109は第1導電型の第1半導体領域としての
高濃度N+型基板であり、113は、高濃度N+型基板1
09の一方の表面上に形成された第1導電型の第2半導
体領域としてのN-型エピタキシャル領域であり、高濃
度N+型基板109の他方の表面上にはドレイン電極1
11が形成されている。107は、N-型エピタキシャ
ル領域113の表面より領域113内へ形成された第2
導電型のベース領域としてのP+型のベース領域であ
り、このベース領域107とN-型エピタキシャル領域
113とでダイオードD2が形成されている。108
は、ベース領域107表面より高濃度N+型基板109
の凸部へ接するように形成された第2導電型の深いベー
ス領域としてのP+型の深いベース領域であり、この深
いベース領域108と高濃度N+型基板109とでダイ
オードD1が形成されている。103は、ベース領域1
07の表面よりベース領域107内に形成された第1導
電型のソース領域としてのN+型のソース領域である。
105は、ゲート絶縁膜に覆われたゲート電極であり、
101は、ソース領域103上に形成されたソース電極
である。
A first embodiment will be described below with reference to the drawings. Reference numeral 109 is a high-concentration N + -type substrate as a first conductivity type first semiconductor region, and 113 is a high-concentration N + -type substrate 1.
On the other surface of the high-concentration N + -type substrate 109, which is the N -type epitaxial region as the first-conductivity-type second semiconductor region formed on one surface of the drain electrode 1.
11 is formed. 107 denotes a second layer formed in the region 113 from the surface of the N type epitaxial region 113.
This is a P + type base region as a conductivity type base region, and the base region 107 and the N type epitaxial region 113 form a diode D2. 108
Is a N + type substrate 109 having a higher concentration than the surface of the base region 107.
Is a P + -type deep base region as a second conductivity type deep base region formed in contact with the convex portion of the diode D1 and the deep base region 108 and the high-concentration N + -type substrate 109 form the diode D1. ing. 103 is the base region 1
This is an N + type source region as a first conductivity type source region formed in the base region 107 from the surface of 07.
105 is a gate electrode covered with a gate insulating film,
Reference numeral 101 is a source electrode formed on the source region 103.

【0015】本実施例においては、高濃度N+型基板1
09の凸部を形成したい部分にマスクをし、エッチング
をすることにより凹部分を形成し、この高濃度N+型基
板109の凸凹面上にN-型の元素をエピタキシャル成
長させ、最後に凸凹になっているエピタキシャル層上面
をラッピングして平担化しN-型エピタキシャル領域1
13を形成する。その後、N-型エピタキシャル領域1
13表面の所定の部分にマスクをしてP+型のイオンを
注入して熱拡散させ高濃度N+型基板109の凸部に到
達させて深いベース領域108を形成させる。次に、N
-型エピタキシャル領域113表面にゲート絶縁膜とな
る酸化膜を形成し、このゲート絶縁膜の表面にポリシリ
コンでゲート電極105を形成する。その後、ゲート電
極をマスクにしてP+型のイオンを注入し熱拡散により
ベース領域107を形成させる。次に、ゲート電極10
5をマスクの一部にしてソース領域103を形成し、ソ
ース電極101を形成する。
In this embodiment, the high concentration N + type substrate 1 is used.
09 is used as a mask to form a concave portion by etching, a concave portion is formed, and an N -type element is epitaxially grown on the concave-convex surface of this high-concentration N + -type substrate 109, and finally, the concave-convex shape is formed. N type epitaxial region 1 by lapping the upper surface of the epitaxial layer
13 is formed. Then, N type epitaxial region 1
A predetermined portion of the surface 13 is masked and P + type ions are implanted and thermally diffused to reach the convex portion of the high concentration N + type substrate 109 to form the deep base region 108. Then N
An oxide film serving as a gate insulating film is formed on the surface of the type epitaxial region 113, and a gate electrode 105 is formed of polysilicon on the surface of the gate insulating film. After that, P + -type ions are implanted using the gate electrode as a mask and the base region 107 is formed by thermal diffusion. Next, the gate electrode 10
The source region 103 is formed using 5 as a part of the mask, and the source electrode 101 is formed.

【0016】この実施例においては、高濃度N+型基板
109に凸部があるため、この凸部と深いベース領域1
08とによりダイオードD1が形成され、ベース領域1
07とN-型エピタキシャル領域113とによりダイオ
ードD2が形成されている。ベース領域107とN-
エピタキシャル領域113とのPN接合が形成されてい
る部分は、高濃度N+型基板109の凹部が形成されて
いるため、ベース領域107とN-型エピタキシャル領
域113との接合部分からベース領域107までの距離
が長くなる。そのため、ダイオードD2の耐圧が高くな
る。従って微細化した際に所望の閾値とするため、深い
ベース領域108があまり深く形成できなかったとして
もダイオードD2の耐圧を高くすることができるので、
サージが入力した場合にサージ電流をD1に通して流す
ことができ、サージ耐量を向上させることができる。
In this embodiment, since the high-concentration N + type substrate 109 has a convex portion, this convex portion and the deep base region 1 are formed.
The diode D1 is formed by 08 and the base region 1
The diode D2 is formed by 07 and the N type epitaxial region 113. Since the concave portion of the high-concentration N + type substrate 109 is formed in the portion where the PN junction between the base region 107 and the N type epitaxial region 113 is formed, the base region 107 and the N type epitaxial region 113 are formed. The distance from the joining portion to the base region 107 becomes long. Therefore, the breakdown voltage of the diode D2 becomes high. Therefore, since the threshold value is set to a desired value when miniaturized, the breakdown voltage of the diode D2 can be increased even if the deep base region 108 cannot be formed too deep.
When a surge is input, a surge current can be passed through D1 and the surge withstand capability can be improved.

【0017】図2には、第2実施例の断面図を示す。FIG. 2 shows a sectional view of the second embodiment.

【0018】図1に示される第1実施例と同一の部分は
同一の符号を付し、その説明は省略する。この第2実施
例においては、第1実施例における深いベース領域10
8を形成せずに高濃度N+型基板109の凸部が直接ベ
ース領域107に接するように形成されており、P型ベ
ース領域107とN-型エピタキシャル領域113とに
よりダイオードD2が形成され、P型ベース領域107
と高濃度N+型基板109とによりダイオードD1が形
成されている。
The same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In the second embodiment, the deep base region 10 in the first embodiment is used.
8 is formed so that the convex portion of the high-concentration N + type substrate 109 directly contacts the base region 107, and the diode D2 is formed by the P type base region 107 and the N type epitaxial region 113. P-type base region 107
A diode D1 is formed by the high-concentration N + type substrate 109.

【0019】この第2実施例においては、第1実施例に
おける深いベース領域108を形成しなかったにもかか
わらず、ベース領域107がN-型エピタキシャル領域
113と接する部分と、高濃度N+型基板109の凹部
との距離が大きいため、ダイオードD1とダイオードD
2との耐圧差は充分にとれている。
In the second embodiment, although the deep base region 108 in the first embodiment is not formed, the base region 107 is in contact with the N -- type epitaxial region 113 and the high concentration N + -type. Since the distance to the concave portion of the substrate 109 is large, the diode D1 and the diode D
The withstand voltage difference from 2 is sufficiently large.

【0020】しかも、この第2実施例においては、深い
ベース領域108を形成していないので、ゲート電極間
の距離を縮めてもMOSFETの閾値電圧が上昇すると
いうことがなく、第1実施例よりも更に微細化が容易に
なるというこの実施例特有の効果がある。
Moreover, in the second embodiment, since the deep base region 108 is not formed, the threshold voltage of the MOSFET does not increase even if the distance between the gate electrodes is shortened. Also, there is an effect peculiar to this embodiment that further miniaturization becomes easier.

【0021】図3には、第3実施例の断面図を示す。FIG. 3 shows a sectional view of the third embodiment.

【0022】図1に示される第1実施例と同一の部分は
同一の符号を付し、その説明は省略する。この第3実施
例においては、第1実施例における高濃度N+型基板1
09の凸部分の数を増やし、増えた凸部分303上方の
-型エピタキシャル領域113表面より内部へ高濃度
+型領域301を形成している。
The same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In the third embodiment, the high concentration N + type substrate 1 in the first embodiment is used.
The number of convex portions of 09 is increased, and a high concentration N + type region 301 is formed inside the surface of the N type epitaxial region 113 above the increased convex portion 303.

【0023】本実施例においては、前述した第1実施例
と同様に、サージ耐量を向上させることができる。ま
た、通常動作時すなわちこのMOSFETが導通状態
(ターンオン)になって、ソース・ドレインに電流が流
れる際、この電流は増えた凸部分303から、N-型エ
ピタキシャル領域113、高濃度N+型領域301、高
濃度N+型領域301とP型ベース領域107との間の
-型エピタキシャル領域113、ゲート電極105直
下のP型ベース領域107に誘起されるチャネル、ソー
ス領域103へと流れる。高濃度N+型領域301及び
増えた凸部分303はN-型エピタキシャル領域113
よりも抵抗が小さいため、このMOSFETがターンオ
ンした際にソース・ドレイン間に流れる電流の通路にお
ける高抵抗の部分を通る距離が短くなるので、オン抵抗
の低減が可能となるというこの実施例特有の効果があ
る。
In this embodiment, the surge withstand capability can be improved as in the first embodiment. Further, during normal operation, that is, when the MOSFET is turned on (turned on) and a current flows through the source / drain, the current increases from the convex portion 303 to the N type epitaxial region 113 and the high concentration N + type region. 301, an N type epitaxial region 113 between the high concentration N + type region 301 and the P type base region 107, a channel induced in the P type base region 107 directly below the gate electrode 105, and a source region 103. The high concentration N + type region 301 and the increased convex portion 303 are the N type epitaxial region 113.
Since the resistance is smaller than that of the MOSFET, the distance passing through the high resistance portion in the path of the current flowing between the source and the drain when the MOSFET is turned on becomes short, so that the ON resistance can be reduced. effective.

【0024】高耐圧のパワートランジスタにおいては、
エピタキシャル領域の抵抗がパワートランジスタ全体の
抵抗の50%以上を占める場合があり、本実施例は特に
高耐圧パワートランジスタの低オン抵抗化に有効であ
る。
In a high voltage power transistor,
The resistance of the epitaxial region may occupy 50% or more of the resistance of the entire power transistor, and this embodiment is particularly effective for reducing the on-resistance of the high breakdown voltage power transistor.

【0025】図4には、第4実施例の断面図を示す。FIG. 4 shows a sectional view of the fourth embodiment.

【0026】図1に示される第1実施例と同一の部分は
同一の符号を付し、その説明は省略する。
The same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0027】本実施例においては、平坦な高濃度N+
基板109とN-型エピタキシャル領域113との境界
部分からN-型エピタキシャル領域113内部へ、深い
ベース領域108へ達するように、高濃度N-型埋込領
域401が形成されている。
[0027] In this embodiment, a flat high-concentration N + -type substrate 109 and the N - from the boundary portion between the type epitaxial region 113 N - into the interior -type epitaxial region 113, so as to reach into the deep base region 108, a high concentration An N type buried region 401 is formed.

【0028】本実施例のMOSFETは、高濃度N+
基板109表面に部分的にN+型のイオンを注入し、N-
型エピタキシャル領域113がエピタキシャル成長する
過程で、前記N+型のイオンが熱拡散によって高濃度N+
型基板109とN-型エピタキシャル領域113との境
界部分からN-型エピタキシャル領域113内部に広が
って行き、高濃度N+型埋込領域401を形成する。そ
の後、N-型エピタキシャル領域113表面の所定の部
分にマスクをしてP+型のイオンを注入して熱拡散さ
せ、高濃度N+型埋込領域401へ到達させて深いベー
ス領域108を形成させる。次に、N-型エピタキシャ
ル領域113表面にゲート絶縁膜となる酸化膜を形成
し、このゲート絶縁膜の表面にポリシリコンでゲート電
極105を形成する。その後、ゲート電極をマスクにし
てP型のイオンを注入し熱拡散によりベース領域107
を形成させる。次に、ゲート電極105をマスクの一部
にしてソース領域103を形成し、ソース電極101を
形成する。
In the MOSFET of this embodiment, N + type ions are partially implanted into the surface of the high-concentration N + type substrate 109 to form N −.
-Type epitaxial region 113 in the process of epitaxial growth, the N + high concentration type ions by thermal diffusion N +
A high-concentration N + -type buried region 401 is formed by spreading from the boundary between the mold substrate 109 and the N -type epitaxial region 113 to the inside of the N -type epitaxial region 113. After that, a predetermined portion of the surface of the N type epitaxial region 113 is masked and P + type ions are implanted to thermally diffuse to reach the high concentration N + type buried region 401 to form the deep base region 108. Let Next, an oxide film to be a gate insulating film is formed on the surface of the N type epitaxial region 113, and a gate electrode 105 is formed of polysilicon on the surface of this gate insulating film. After that, P-type ions are implanted using the gate electrode as a mask and the base region 107 is formed by thermal diffusion.
To form. Next, the source region 103 is formed using the gate electrode 105 as a part of the mask, and the source electrode 101 is formed.

【0029】本実施例においては、サージ耐量が向上す
るという効果に加え更に、高濃度N+型基板109の凸
部を形成する必要がなく、N-型エピタキシャル領域1
13の形成と同時に高濃度N+型埋込領域401が形成
されるため、チップの製造行程が簡略化できるので製造
コストを低減できるというこの実施例特有の効果がある
In the present embodiment, in addition to the effect of improving the surge resistance, it is not necessary to form the convex portion of the high-concentration N + type substrate 109, so that the N type epitaxial region 1 is formed.
Since the high-concentration N + type buried region 401 is formed at the same time as the formation of 13, the chip manufacturing process can be simplified and the manufacturing cost can be reduced, which is a unique effect of this embodiment.

【0030】。..

【発明の効果】以上説明してきたように、この発明によ
れば、素子を微細化した際にも、前記第2半導体領域と
前記ベース領域とにより形成されるダイオードから前記
第1半導体領域までの距離を長くすることができるた
め、素子のサージ耐量を充分に向上させることができ
る。
As described above, according to the present invention, even when the device is miniaturized, the diode from the second semiconductor region and the base region to the first semiconductor region is formed. Since the distance can be increased, the surge resistance of the device can be sufficiently improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の断面図。FIG. 1 is a sectional view of a first embodiment.

【図2】第2実施例の断面図。FIG. 2 is a sectional view of a second embodiment.

【図3】第3実施例の断面図。FIG. 3 is a sectional view of a third embodiment.

【図4】第4実施例の断面図。FIG. 4 is a sectional view of a fourth embodiment.

【図5】従来のMOSトランジスタの断面図。FIG. 5 is a sectional view of a conventional MOS transistor.

【符号の説明】[Explanation of symbols]

101…ソース電極 103…ソー
ス領域 105…ゲート電極 107…ベー
ス領域 109…高濃度N+型基板 111…ドレ
イン電極 113…N-型エピタキシャル領域 301…高濃
度N+型領域 303…増えた凸部分 401…高濃
度N+型埋込領域
101 ... source electrode 103 ... source region 105 ... gate electrode 107 ... base region 109 ... high-concentration N + -type substrate 111 ... drain electrode 113 ... N - -type epitaxial region 301 ... high-concentration N + -type region 303 ... more convex portions 401 ... High-concentration N + type embedded region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一方の表面が凸凹状に形成され他方の表面
にドレイン電極が形成された第1導電型の第1半導体領
域と、 該第1半導体領域の前記一方の表面上に形成され電気第
1半導体領域の不純物濃度より低い不純物濃度を有する
第1導電型の第2半導体領域と、 該第2半導体領域の表面から該領域内へ形成され底部が
前記第1半導体領域の凸部に接するように形成された第
2導電型のベース領域と、 前記ベース領域表面より該領域内に形成された第1導電
型のソース領域と、 少なくとも該ソース領域と前記第2半導体領域とに挟ま
れた前記ベース領域の表面上に絶縁膜を介して形成され
たゲート電極と、 前記ソース領域に電気的に接続されたソース電極とから
なることを特徴とするトランジスタ。
1. A first-conductivity-type first semiconductor region having one surface formed in an uneven shape and a drain electrode formed on the other surface, and an electric field formed on the one surface of the first semiconductor region. A second semiconductor region of the first conductivity type having an impurity concentration lower than that of the first semiconductor region, and a bottom portion formed from the surface of the second semiconductor region into the region and in contact with the convex portion of the first semiconductor region. A second conductive type base region formed as described above, a first conductive type source region formed in the region from the surface of the base region, and at least sandwiched between the source region and the second semiconductor region. A transistor comprising: a gate electrode formed on the surface of the base region via an insulating film; and a source electrode electrically connected to the source region.
JP4234339A 1992-09-02 1992-09-02 Transistor Pending JPH0685271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234339A JPH0685271A (en) 1992-09-02 1992-09-02 Transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4234339A JPH0685271A (en) 1992-09-02 1992-09-02 Transistor

Publications (1)

Publication Number Publication Date
JPH0685271A true JPH0685271A (en) 1994-03-25

Family

ID=16969440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234339A Pending JPH0685271A (en) 1992-09-02 1992-09-02 Transistor

Country Status (1)

Country Link
JP (1) JPH0685271A (en)

Similar Documents

Publication Publication Date Title
KR100859701B1 (en) High voltage LDMOS transistor and method for fabricating the same
US6713794B2 (en) Lateral semiconductor device
JP3158738B2 (en) High breakdown voltage MIS field-effect transistor and semiconductor integrated circuit
JP4526179B2 (en) Semiconductor device
EP1331672B1 (en) Double diffusion MOSFET
KR100194661B1 (en) Power transistor
US5910664A (en) Emitter-switched transistor structures
US4929991A (en) Rugged lateral DMOS transistor structure
JP3173268B2 (en) Semiconductor device having MIS field-effect transistor
JPH0324791B2 (en)
US6462378B1 (en) Power MOSFET with decreased body resistance under source region
US6703665B1 (en) Transistor
JP3489404B2 (en) Insulated gate semiconductor device
JPH0855860A (en) Semiconductor device
US5912491A (en) MOS device
JPH11204789A (en) Insulating gate type transistor
JPH0815183B2 (en) Semiconductor device including electrically isolated semiconductor element
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH0888290A (en) Semiconductor device and using method therefor
JPH1174517A (en) Semiconductor device
US6780722B2 (en) Field effect transistor on insulating layer and manufacturing method
JPH0685271A (en) Transistor
US6180981B1 (en) Termination structure for semiconductor devices and process for manufacture thereof
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2003332577A (en) Semiconductor device and its manufacturing method