JPH0685039A - Centering method for wafer - Google Patents

Centering method for wafer

Info

Publication number
JPH0685039A
JPH0685039A JP23098992A JP23098992A JPH0685039A JP H0685039 A JPH0685039 A JP H0685039A JP 23098992 A JP23098992 A JP 23098992A JP 23098992 A JP23098992 A JP 23098992A JP H0685039 A JPH0685039 A JP H0685039A
Authority
JP
Japan
Prior art keywords
substrate
wafer
sensor
right triangle
centering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23098992A
Other languages
Japanese (ja)
Other versions
JP2616642B2 (en
Inventor
Naohiro Furuyama
尚宏 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Nichiden Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiden Machinery Ltd filed Critical Nichiden Machinery Ltd
Priority to JP23098992A priority Critical patent/JP2616642B2/en
Publication of JPH0685039A publication Critical patent/JPH0685039A/en
Application granted granted Critical
Publication of JP2616642B2 publication Critical patent/JP2616642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To perform centering only by shifting a circular wafer in one direction. CONSTITUTION:Position detecting sensors 11 and 12 are assigned along radius R of wafer with setting origin C as a center, and the wafer F is shifted in parallel along either X or Y direction. The first right triangle Ta having the wafer chord, as an oblique line, formed by connecting the second sensor position q with a point (a) where a wafer shifting direction extension line Lp of the first sensor's, conducted firstly, position p crosses with the wafer circumference at the second sensor conduction position, with the other two sides in X and Y direction, is formed. And further, the second right triangle Tb having the first distance between a middle point e and a wafer center f at the second sensor conduction point as an oblique line, and the other two sides in X and Y directions is formed. Then using the sine and cosine of the second right triangle Tb of the angle theta formed between the chord and the Y direction, the length of its the other two sides is calculated, and using them and XY coordinate of the middle point e, the displacement of the wafer center f against the origin C at the position of the second sensor conduction is calculated for compensation of wafer position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体ウェーハ等の円形
基板のセンタリング方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for centering a circular substrate such as a semiconductor wafer.

【0002】[0002]

【従来の技術】半導体ウェーハ(以下、単にウェーハと
称す。)を製造する際、円形のウェーハを外形を基準に
センタリングして位置決めを必要とする場合がある。例
えば、第1カセットに異品種ランダムに収納した多数の
品種番号付きウェーハを、同じ品種番号のもの同士、自
動的に振り分けて複数個の第2カセットに収納する際、
第1カセットからロボット等にて取り出したウェーハを
センタリングしてCCDカメラ直下に品種番号が位置す
るように位置合わせした後、その番号をCCDカメラに
より文字認識し、ロボット等により対応する第2カセッ
トに逐次、種類別に収納していく。或いは、外観チェッ
クの際にウェーハをセンタリングしたり、更に、ウェー
ハ外径に対して許容されるクリアランスが小さいガイド
を持ったカセットにウェーハをロボット等により自動収
納する場合もウェーハをセンタリングして位置決めした
後、収納する。
2. Description of the Related Art When manufacturing a semiconductor wafer (hereinafter, simply referred to as a wafer), there are cases where a circular wafer needs to be centered on the basis of its outer shape and positioned. For example, when a large number of wafers with different product numbers that are randomly stored in the first cassette are automatically sorted into the plurality of second cassettes having the same product number,
After centering the wafer taken out from the first cassette by the robot etc. and aligning it so that the product number is located directly under the CCD camera, the CCD camera character-recognizes the number and the robot etc. moves it to the corresponding second cassette. Sequentially store by type. Alternatively, the wafer is centered and positioned when the wafer is centered during a visual check, or when the wafer is automatically stored by a robot or the like in a cassette that has a guide with a small clearance allowed for the outer diameter of the wafer. Then store it.

【0003】上記ウェーハのセンタリングに際しては、
例えば、開口に向って拡径した傾斜内壁面を有する上下
動自在のカップ状凹部内にウェーハを収納して機械的に
位置決めする手段が知られているが、ウェーハが凹部内
壁面に接触して発塵源になるという不具合がある。
When centering the above wafer,
For example, there is known a means for mechanically positioning a wafer by storing it in a vertically movable cup-shaped concave portion having an inclined inner wall surface whose diameter increases toward the opening. There is a problem that it becomes a dust source.

【0004】そこで、図2(a)に示すように、位置検
出用光透過型第1、第2、第3、第4センサ(1)
(2)(3)(4)を用いてウェーハ(F)を非接触に
センタリングする手段も知られている。上記センタリン
グ手段によれば、まず仮想XY軸と原点(C)を設定
し、原点(C)を中心としてウェーハ半径(R)と同一
距離(ウェーハ円周)上の所定位置に一定間隔を置いて
第1、第2、第3、第4センサ(1)(2)(3)
(4)を配置すると共に、XY吸着ステージ(図示せ
ず)にウェーハ(F)をランダムに保持する。そこで、
予めウェーハ(F)を第1、第2、第3、第4センサ
(1)(2)(3)(4)から離した状態で、例えばY
方向にウェーハ(F)を平行移動した時、ウェーハ
(F)の端部が第1センサ(1)を遮光(センサ導通)
してウェーハ(F)の位置を検出したとする。次に、そ
の位置からX方向に沿ってウェーハ(F)を平行移動
し、ウェーハ(F)が第4センサ(4)を遮光すると、
その移動距離(La)はウェーハ偏心距離であり、その
距離(La)をパルスエンコーダ等により測定する。そ
こで、その位置からウェーハ(F)を距離(La)の半
分(La/2)までX方向と反対方向に平行移動する
と、ウェーハ(F)の中心はY軸(X軸中心)上に位置
する。次に、そのままY方向に沿ってウェーハ(F)を
平行移動すると、第2、第3センサ(2)(3)を同時
に遮光すると共に、第1、第4センサ(1)(4)も同
時に遮光してウェーハ(F)の中心が原点(C)に一致
してセンタリングされる。
Therefore, as shown in FIG. 2A, the position detecting light transmission type first, second, third and fourth sensors (1) are provided.
Means for centering the wafer (F) in a non-contact manner using (2), (3) and (4) are also known. According to the centering means, first, the virtual XY axes and the origin (C) are set, and the origin (C) is the center and the wafer radius (R) and the same distance (wafer circumference) are spaced at predetermined positions. 1st, 2nd, 3rd, 4th sensors (1) (2) (3)
(4) is arranged, and at the same time, the wafer (F) is randomly held on the XY suction stage (not shown). Therefore,
The wafer (F) is separated from the first, second, third, and fourth sensors (1), (2), (3), and (4) in advance, for example, Y
When the wafer (F) is translated in the direction, the edge of the wafer (F) shields the first sensor (1) (sensor conduction).
Then, the position of the wafer (F) is detected. Next, when the wafer (F) is translated from that position along the X direction and the wafer (F) shields the fourth sensor (4),
The movement distance (La) is a wafer eccentric distance, and the distance (La) is measured by a pulse encoder or the like. Therefore, when the wafer (F) is translated from that position to a half (La / 2) of the distance (La) in the direction opposite to the X direction, the center of the wafer (F) is located on the Y axis (X axis center). . Next, when the wafer (F) is moved in parallel along the Y direction as it is, the second and third sensors (2) and (3) are shielded at the same time, and the first and fourth sensors (1) and (4) are simultaneously shielded. With the light shielded, the center of the wafer (F) coincides with the origin (C) and is centered.

【0005】次に、ウェーハ(F)にOF(オリエンテ
ーションフラット)、或いはノッチがある場合、OFや
ノッチの部分では半径が短くなる。そこで、例えば図2
(b)に示すように、OF(Fa)が同時に2個以上の
センサと干渉しないように各センサ位置を設定する。そ
して、第1センサ(1)がOF(Fa)を検出したと
し、その位置からX方向に平行移動して第4センサ
(4)がウェーハ位置を検出したとする。この時、その
移動距離(Lb)の半分(Lb/2)までX方向と反対
方向に平行移動しても、OF位置は半径に足りないた
め、ウェーハ(F)の中心がY軸上に位置せず、そのま
まY方向に移動してもウェーハ(F)は第2、第3セン
サ(2)(3)を同時に遮光しない。この場合、例えば
第3センサ(3)が先に導通すると、X軸方向と反対方
向にウェーハ(F)を第2センサ(2)が導通するまで
平行移動し、その移動量の半分を補正量としてウェーハ
(F)を位置補正して第2、第3センサ(2)(3)で
Y軸上(X軸中心)に位置決めする。この時、第2セン
サ(2)、第3センサ(3)、第4センサ(4)が同時
に遮光となり(第1センサ(1)はOF(Fa)で遮光
出来ない)ウェーハ(F)のセンタリングが完了する。
又、第1センサ(1)及び第4センサ(4)にOF(F
a)がかからない場合は第1センサ(1)を遮光してか
らウェーハ(F)をX方向へ移動させ第4センサ(4)
が遮光する距離を読み取りその半分の距離をX方向と反
対方向に移動させウェーハ(F)をY軸上(X軸中心)
へ位置決めする。その後、Y方向へウェーハ(F)を再
び移動させる。この時、OF(Fa)が無い場合は第2
センサ(2)と第3センサ(3)とを同時に遮光し4個
のセンサを同時に遮光してセンタリングが完了となる。
又、第2センサ(2)もしくは第3センサ(3)のどち
らかが遮光されない場合(OF(Fa)が第2センサ
(2)もしくは第3センサ(3)どちらかの位置にある
場合)でも(第1センサ(1)、第2センサ(2)、第
4センサ(4)もしくは第1センサ(1)、第3センサ
(3)、第4センサ(4)の場合)同時に3個のセンサ
が遮光となりセンタリング完了となる。一般的にOF
(Fa)がある場合、3個以上のセンサが同時に(同位
置で)導通した時、センタリング完了と判断する。
Next, when the wafer (F) has an OF (orientation flat) or a notch, the radius becomes short at the OF or notch. Then, for example, in FIG.
As shown in (b), each sensor position is set so that OF (Fa) does not interfere with two or more sensors at the same time. Then, it is assumed that the first sensor (1) detects OF (Fa), and the fourth sensor (4) moves in parallel from that position in the X direction to detect the wafer position. At this time, even if the wafer is moved parallel to the half (Lb / 2) of the moving distance (Lb) in the direction opposite to the X direction, the OF position is insufficient in radius, so the center of the wafer (F) is located on the Y axis. Without moving the wafer, the wafer (F) does not shield the second and third sensors (2) and (3) at the same time. In this case, for example, when the third sensor (3) first conducts, the wafer (F) is translated in the direction opposite to the X-axis direction until the second sensor (2) conducts, and half of the movement amount is the correction amount. As a result, the wafer (F) is position-corrected and positioned on the Y axis (centered on the X axis) by the second and third sensors (2) and (3). At this time, the second sensor (2), the third sensor (3), and the fourth sensor (4) are simultaneously shielded from light (the first sensor (1) cannot be shielded by OF (Fa)) Wafer (F) centering Is completed.
In addition, OF (F) is applied to the first sensor (1) and the fourth sensor (4).
If a) is not applied, the first sensor (1) is shielded from light, and then the wafer (F) is moved in the X direction to move the fourth sensor (4).
Read the distance that the light is shielded and move half the distance in the opposite direction to the X direction to move the wafer (F) on the Y axis (X axis center)
Position to. Then, the wafer (F) is moved again in the Y direction. At this time, if there is no OF (Fa), the second
The sensor (2) and the third sensor (3) are shielded simultaneously, and the four sensors are shielded simultaneously, and the centering is completed.
Even when either the second sensor (2) or the third sensor (3) is not shielded from light (when OF (Fa) is located at either the second sensor (2) or the third sensor (3)) (First sensor (1), second sensor (2), fourth sensor (4) or first sensor (1), third sensor (3), fourth sensor (4)) Simultaneous three sensors Is shaded and the centering is completed. Generally OF
When (Fa) is present, it is determined that centering is completed when three or more sensors are simultaneously conducted (at the same position).

【0006】又、図3に示すように、位置検出用光透過
型第5、第6、第7、第8、第9、第10センサ(5)
(6)(7)(8)(9)(10)を用いてウェーハ
(F)を非接触にセンタリングする手段も知られてい
る。それによれば、まず仮想XY軸と原点(C)を設定
し、原点(C)を挾んでX軸に平行に3個ずつ第5、第
6、第7センサ(5)(6)(7)及び第8、第9、第
10センサ(8)(9)(10)をそれぞれ一定間隔を
置いて配置し、各中央の第6センサ(6)及び第9セン
サ(9)をY軸上に配置する。そこで、まず第5、第7
センサ(5)(7)によりウェーハ(F)をY軸方向
(X軸中心)に位置決めすると共に、第6センサ(6)
と第9センサ(9)によりX軸方向(Y軸中心)に位置
決めする。ここで、OF(Fa)が第5センサ(5)を
遮光した場合、更に、第8、第10センサ(8)(1
0)を追加して用いれば良い。
Further, as shown in FIG. 3, position detecting light transmission type fifth, sixth, seventh, eighth, ninth and tenth sensors (5).
Means for centering the wafer (F) in a non-contact manner using (6), (7), (8), (9) and (10) are also known. According to this, first, the virtual XY axes and the origin (C) are set, and the fifth, sixth, and seventh sensors (5), (6), (7) are arranged in parallel with the origin (C) in parallel with the X-axis. And the eighth, ninth, and tenth sensors (8), (9), and (10) are arranged at regular intervals, and the sixth sensor (6) and the ninth sensor (9) at the center are arranged on the Y axis. Deploy. Therefore, first, the 5th and 7th
The sensor (5) (7) positions the wafer (F) in the Y-axis direction (center of the X-axis), and the sixth sensor (6)
And the ninth sensor (9) positions in the X-axis direction (Y-axis center). Here, when OF (Fa) shields the fifth sensor (5) from light, further, the eighth and tenth sensors (8) (1
0) may be additionally used.

【0007】[0007]

【発明が解決しようとする課題】解決しようとする課題
は、第1〜第10センサ(1)〜(10)を用いてウェ
ーハ(F)をセンタリングする際、ウェーハ(F)をX
Yの相異なる2軸方向に移動しなければならないため、
センタリングに要する時間が増加してインデックスを低
下させる点である。
The problem to be solved is that when the wafer (F) is centered using the first to tenth sensors (1) to (10), the wafer (F) is moved to the X direction.
Since it has to move in two different Y-axis directions,
The point is that the time required for centering increases and the index decreases.

【0008】[0008]

【課題を解決するための手段】本発明は、半径寸法既知
の円形基板をセンタリングするにあたり、設定原点を中
心として基板半径と同一距離上の所定位置に一定間隔を
置いて2個の位置検出用センサを配置すると共に、吸着
ステージに上記基板をランダムに保持してX方向又はY
方向に沿って平行移動し、最初に導通した第1センサ位
置の基板移動方向延長線が第2センサ導通位置における
基板円周と交わる点と第2センサ位置とを結んだ基板弦
を斜辺としてXY方向にそれぞれ他の2辺を持つ第1直
角三角形を形成し、上記弦中点のXY座標を算出してそ
の座標位置と第2センサ導通位置における基板中心との
第1距離を算出し、第1直角三角形に相似で第1距離を
斜辺としてXY方向にそれぞれ他の2辺を持つ第2直角
三角形を形成すると共に、上記弦とX又はY方向とのな
す角度の第2直角三角形における正弦又は余弦により第
2直角三角形の他の2辺の長さを算出し、上記弦中点の
XY座標と第2直角三角形の他の2辺の長さとで第2セ
ンサ導通位置における基板中心の設定原点に対するずれ
量を算出し、そのずれ量に基づいて基板位置を補正して
センタリングすることを特徴とし、又、部分的に異形部
を有する半径寸法既知の円形基板をセンタリングするに
あたり、少なくとも4個以上の位置検出用センサを、そ
の内の2個以上のセンサが上記異形部と同時に干渉しな
いように配置し、基板を一軸方向に平行移動して相異な
る基板位置で所定のセンサを基準として少なくとも6個
以上の請求項1記載の第1直角三角形を形成し、各第1
直角三角形についてそれぞれ基板中心を求めると共に、
少なくとも3個以上の基板中心が一致した時、その位置
を正規の基板中心と判断して基板をセンタリングするこ
と、又、円形基板は半導体ウェーハであることを特徴と
する。
According to the present invention, when centering a circular substrate whose radius dimension is known, two position detecting devices are arranged at predetermined positions on the same distance as the substrate radius with a set origin as a center and at predetermined positions. The sensor is arranged and the above substrate is randomly held on the suction stage so that the X direction or Y
XY with the substrate chord that connects the second sensor position and the point where the extension line of the first sensor position, which is translated first, which is parallel to the first sensor position and which intersects the substrate circumference at the second sensor conduction position as the hypotenuse. Forming a first right triangle having two other sides in each direction, calculating the XY coordinates of the midpoint of the chord, and calculating the first distance between the coordinate position and the substrate center at the second sensor conducting position, A second right triangle which is similar to one right triangle and has two other sides in the XY direction with the first distance as the hypotenuse is formed, and the sine of the second right triangle at the angle between the chord and the X or Y direction is formed. The length of the other two sides of the second right triangle is calculated by the cosine, and the XY coordinate of the midpoint of the chord and the length of the other two sides of the second right triangle are used to set the origin of the substrate center at the second sensor conduction position. Calculate the amount of deviation from It is characterized in that the substrate position is corrected and centered based on the amount of deviation, and at the time of centering a circular substrate whose radius dimension is known, which partly has a deformed portion, at least four or more position detecting sensors are provided. 2. At least 6 or more of the sensors according to claim 1, wherein two or more of the sensors are arranged so as not to interfere with the deformed portion at the same time, the substrate is translated in one axis direction, and the predetermined sensors are used as references at different substrate positions. Forming a first right triangle, each first
For each right triangle, find the center of the board,
When at least three or more substrate centers coincide with each other, the position is determined to be the proper substrate center to center the substrates, and the circular substrate is a semiconductor wafer.

【0009】[0009]

【作用】上記技術的手段によれば、設定原点を中心とし
て基板半径と同一距離上の所定位置に一定間隔を置いて
2個の位置検出用光透過型センサを配置すると共に、吸
着ステージに上記基板をランダムに保持してX方向又は
Y方向に沿って平行移動し、第1、第2直角三角形を形
成して基板のずれ量を算出し、そのずれ量に基づいて基
板をセンタリングする。
According to the above-mentioned technical means, the two light-transmitting position detecting sensors are arranged at a predetermined distance on the same distance as the substrate radius with the set origin as the center, and at the same time, on the suction stage. The substrate is randomly held and moved in parallel along the X direction or the Y direction to form first and second right triangles, the displacement amount of the substrate is calculated, and the substrate is centered based on the displacement amount.

【0010】[0010]

【実施例】本発明に係る基板のセンタリング方法の実施
例を図1を参照して以下に説明する。まず図1(a)に
示すように、従来と同様、設定原点(C)を中心として
ウェーハ半径(R)と同一距離上の既知の位置(p)
(q)に一定間隔をおいて2個の位置検出用光透過型セ
ンサ(11)(12)を配置すると共に、XY吸着ステ
ージ(図示せず)にウェーハ(F)をランダムに保持し
てX方向に沿って平行移動する。そこで、最初に導通し
たセンサ(11)を第1センサとしてその導通位置にお
けるウェーハ(F)の位置を基板B位置とし、更に同じ
方向に移動して導通したセンサ(12)を第2センサと
してその導通位置におけるウェーハ(F)の位置を基板
D位置とする。そこで、基板D位置におけるウェーハ中
心(f)の原点(C)に関するXY座標(Xf)(Y
f)を算出して原点(C)に対するウェーハ中心(f)
のずれ量を求め、そのずれ量に基づいてウェーハ(F)
をセンタリングする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a substrate centering method according to the present invention will be described below with reference to FIG. First, as shown in FIG. 1A, a known position (p) on the same distance as the wafer radius (R) centering on the set origin (C) as in the conventional case.
Two light transmission type sensors (11) and (12) for position detection are arranged at a constant interval in (q), and the wafer (F) is randomly held on an XY adsorption stage (not shown) to be X-ray-disposed. Translate along the direction. Therefore, the first conducting sensor (11) is the first sensor, the position of the wafer (F) at the conducting position is the substrate B position, and the further conducting sensor (12) in the same direction is the second sensor. The position of the wafer (F) at the conduction position is the substrate D position. Therefore, the XY coordinates (Xf) (Y about the origin (C) of the wafer center (f) at the substrate D position.
Wafer center (f) with respect to origin (C) by calculating f)
Of the wafer (F) based on the calculated amount of deviation
Center.

【0011】そこで、まず第1センサ位置(p)のウェ
ーハ移動方向延長線(Lp)が基板D位置におけるウェ
ーハ円周と交わる点を(a)とし、交点(a)と第2セ
ンサ位置(q)とを結んだウェーハ(F)の弦を斜辺と
してXY方向にそれぞれ他の2辺を持つ第1直角三角形
(Ta)を形成する。上記第1直角三角形(Ta)にお
ける斜辺中点を(e)、他の2辺の交点を(d)とする
と、中点(e)を通る斜辺(弦)の垂直2等分線はウェ
ーハ中心(f)を通る。この時、中点(e)のXY座標
(Xe)(Ye)は、(Xe)=(Xa+Xq)/2、
(Ye)=(Ya+Yq)/2となる。但し、(Xa、
Ya):位置(a)のXY座標{Xa=[パルスエンコ
ーダにて測定したウェーハ移動距離(Lpの長さ)]+
[位置(p)のX座標(Xp)]、Ya=位置(p)の
Y座標(Yp)}、(Xq、Yq):位置(q)のXY
座標である。又、[ef間距離(第1距離)]=
{[(af間距離)2−(ae間距離)2]の平方根}と
なる。ここで、(af間距離)=ウェーハ半径(R)と
なり、又、(ae間距離)=(aq間距離)/2=
{[(Xa−Xq)2+(Ya−Yq)2]の平方根}/
2となる。そこで、第1直角三角形(Ta)に相似で
(ef間距離)を斜辺としてXY方向にそれぞれ他の2
辺を持つ第2直角三角形(Tb)を形成し、他の2辺の
交点を(g)とすると、中心(f)のXY座標(Xf)
(Yf)、即ち原点(C)に対する中心(f)のずれ量
は、 (Xf)=(Xe)−(fg間距離) =(Xe)−(ef間距離)・cos(θ) (Yf)=(Ye)−(eg間距離) =(Ye)−(ef間距離)・sin(θ)となる。但
し、θは第1直角三角形(Ta)における斜辺とY軸方
向とのなす角度に等しく、θ=arctan[(qd間
距離)/(ad間距離)]により算出される。即ち、ウ
ェーハ(F)をX又はY方向に沿って一方向に移動させ
るだけで、上記ずれ量(Xf)(Yf)が算出され、そ
のずれ量を補正量としてウェーハ(F)の中心(f)を
原点(C)に位置補正し、センタリングする。
Therefore, first, the point where the extension line (Lp) in the wafer movement direction at the first sensor position (p) intersects the wafer circumference at the substrate D position is defined as (a), and the intersection point (a) and the second sensor position (q). The first right triangle (Ta) having the other two sides in the XY directions is formed with the chord of the wafer (F) that is connected to each other as a hypotenuse. When the midpoint of the hypotenuse in the first right triangle (Ta) is (e) and the intersection of the other two sides is (d), the vertical bisector of the hypotenuse (chord) passing through the midpoint (e) is the wafer center. Go through (f). At this time, the XY coordinates (Xe) (Ye) of the midpoint (e) are (Xe) = (Xa + Xq) / 2,
(Ye) = (Ya + Yq) / 2. However, (Xa,
Ya): XY coordinate of position (a) {Xa = [wafer movement distance measured by pulse encoder (length of Lp)] +
[X coordinate (Xp) of position (p)], Ya = Y coordinate (Yp) of position (p)}, (Xq, Yq): XY of position (q)
Coordinates. In addition, [distance between ef (first distance)] =
{[(Distance between af) 2 − (distance between ae) 2 ] square root}. Here, (distance between af) = wafer radius (R), and (distance between ae) = (distance between aq) / 2 =
{[(Xa-Xq) 2 + (Ya-Yq) 2] square root of} /
It becomes 2. Therefore, similar to the first right triangle (Ta), the distance between ef is the hypotenuse, and the other 2
If a second right-angled triangle (Tb) having a side is formed and the intersection of the other two sides is (g), the XY coordinate (Xf) of the center (f)
(Yf), that is, the amount of deviation of the center (f) with respect to the origin (C) is (Xf) = (Xe) − (distance between fg) = (Xe) − (distance between ef) · cos (θ) (Yf) = (Ye)-(distance between eggs) = (Ye)-(distance between ef) .sin (?). However, θ is equal to the angle formed by the hypotenuse of the first right triangle (Ta) and the Y-axis direction, and is calculated by θ = arctan [(distance between qd) / (distance between ad)]. That is, the displacement amount (Xf) (Yf) is calculated only by moving the wafer (F) in one direction along the X or Y direction, and the displacement amount (Xf) (Yf) is used as a correction amount to determine the center (f) of the wafer (F). ) Is corrected to the origin (C) and centered.

【0012】又、OF(Fa)やノッチを有するウェー
ハ(F)をセンタリングする場合、図1(b)に示すよ
うに、4個のセンサ(11)(12)(13)(14)
をウェーハ半径(R)と同じ距離上に、且つ、2個以上
のセンサが同時にウェーハ(F)のOF(Fa)と干渉
しないように配置する。そこで、XY吸着ステージにウ
ェーハ(F)をランダムに保持してX方向に沿って平行
移動し、基板B位置で第1センサ(11)が導通した
後、更に、平行移動して第2センサ(12)が導通した
基板D位置で第1直角三角形(Ta)を形成する。次
に、更に、X方向に平行移動して第3センサ(13)が
導通した基板E位置で第1センサ(11)を基準として
直角三角形(Tc)を形成し、同様に第4センサ(1
4)が導通した基板G位置で第1センサ(11)を基準
として直角三角形(Td)を形成する。又、この他にも
第2センサ(12)を基準として基板E位置で直角三角
形(Te)(斜辺図示省略)を形成することが出来、同
様にして第2、第4センサ(12)(14)を用いて基
板G位置で直角三角形(Tf)(斜辺一部図示省略)、
又、第3センサ(13)を基準として基板G位置で第4
センサ(14)を用いて直角三角形(Tg)を形成する
ことが出来る。このように、ウェーハ(F)を一軸方向
へ移動し、4個のセンサが導通する間にそれぞれの基板
B、D、E、G位置において半径上に接する2点を持つ
直角三角形が6パターン形成されることが確認出来、移
動量を各基板位置毎に補正して確認しながら、これらの
直角三角形を用いてそれぞれの基板位置における中心を
求めることが出来る。そこで、OF(F)やノッチが1
個のセンサを遮光した場合、6個の直角三角形の内、3
個はそのセンサを基準として形成されて正規の中心位置
が算出されないが、他の3個の直角三角形から算出され
た中心位置は正規位置となるため、算出した6個の中心
位置の内、3個の中心位置が一致した時、その位置を正
規位置と判断する。そして、その中心位置を原点(C)
に合わせてウェーハ(F)をセンタリングすれば良い。
When centering an OF (Fa) or a wafer (F) having a notch, as shown in FIG. 1B, four sensors (11) (12) (13) (14) are used.
Are arranged on the same distance as the wafer radius (R) and so that two or more sensors do not simultaneously interfere with the OF (Fa) of the wafer (F). Then, the wafer (F) is randomly held on the XY adsorption stage and moved in parallel along the X direction, and after the first sensor (11) is brought into conduction at the position of the substrate B, it is further moved in parallel and moved to the second sensor ( The first right triangle (Ta) is formed at the position of the substrate D where 12) is conducted. Next, a right-angled triangle (Tc) is further formed with the first sensor (11) as a reference at the position of the substrate E where the third sensor (13) is electrically connected in parallel with the fourth sensor (1).
4) A right triangle (Td) is formed with the first sensor (11) as a reference at the position of the substrate G where it is conducted. In addition to this, a right triangle (Te) (not shown in the hypotenuse) can be formed at the position of the substrate E with the second sensor (12) as a reference, and similarly the second and fourth sensors (12) (14). ) Using a right-angled triangle (Tf) at the position of the substrate G (the hypotenuse is partially omitted),
In addition, the fourth sensor is placed at the position of the substrate G with the third sensor (13) as a reference.
A sensor (14) can be used to form a right triangle (Tg). As described above, the wafer (F) is moved in the uniaxial direction, and six patterns of right triangles having two points radially contacting each other at the positions of the substrates B, D, E, and G are formed while the four sensors are conducting. It can be confirmed that the center of each substrate position is obtained by using these right triangles while correcting and confirming the movement amount for each substrate position. Therefore, OF (F) and notch are 1
If 6 sensors are shielded from light, 3 out of 6 right triangles
Although the normal center position is not calculated for each of the three formed by using that sensor as a reference, the center position calculated from the other three right triangles is the normal position, and therefore, among the six calculated center positions, 3 When the center positions of the individual pieces match, that position is determined to be the normal position. And the center position is the origin (C)
The wafer (F) may be centered accordingly.

【0013】又、上記ウェーハ(F)の吸着ステージへ
のセット及びセンタリングはロボット及びコンピュータ
により自動的に行なう。
The wafer (F) is set on the suction stage and centered automatically by a robot and a computer.

【0014】[0014]

【発明の効果】本発明によれば、半導体ウェーハ等の円
形基板をセンタリングする際、一軸方向に移動させるだ
けでセンタリング出来るため、センタリングに要する時
間が従来の約半分程度に短縮されて大幅にインデックス
が向上する。
According to the present invention, when a circular substrate such as a semiconductor wafer is centered, the centering can be performed only by moving it in one axis direction. Therefore, the time required for the centering is reduced to about half that of the conventional method, and the index is greatly reduced. Is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明に係る基板のセンタリング方法
の実施例を示す基板の動作説明図である。(b)は本発
明に係る異形部を有する基板のセンタリング方法の実施
例を示す基板の動作説明図である。
FIG. 1A is an operation explanatory diagram of a substrate showing an embodiment of a substrate centering method according to the present invention. FIG. 7B is an operation explanatory view of the substrate showing the embodiment of the method of centering the substrate having the deformed portion according to the present invention.

【図2】(a)は従来の基板のセンタリング方法の一例
を示す基板の動作説明図である。(b)は従来の異形部
を有する基板のセンタリング方法の他の一例を示す基板
の動作説明図である。
FIG. 2A is an operation diagram of a substrate showing an example of a conventional substrate centering method. FIG. 9B is an operation explanatory view of the substrate showing another example of the conventional centering method for a substrate having a deformed portion.

【図3】従来の基板のセンタリング方法の他の一例を示
す基板の動作説明図である。
FIG. 3 is an operation explanatory diagram of a substrate showing another example of a conventional substrate centering method.

【符号の説明】 11 センサ 12 センサ F 基板 Ta 第1直角三角形 Tb 第2直角三角形[Explanation of reference numerals] 11 sensor 12 sensor F substrate Ta first right triangle Tb second right triangle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半径寸法既知の円形基板をセンタリング
するにあたり、設定原点を中心として基板半径と同一距
離上の所定位置に一定間隔を置いて2個の位置検出用セ
ンサを配置すると共に、吸着ステージに上記基板をラン
ダムに保持してX方向又はY方向に沿って平行移動し、
最初に導通した第1センサ位置の基板移動方向延長線が
第2センサ導通位置における基板円周と交わる点と第2
センサ位置とを結んだ基板弦を斜辺としてXY方向にそ
れぞれ他の2辺を持つ第1直角三角形を形成し、上記弦
中点のXY座標を算出してその座標位置と第2センサ導
通位置における基板中心との第1距離を算出し、第1直
角三角形に相似で第1距離を斜辺としてXY方向にそれ
ぞれ他の2辺を持つ第2直角三角形を形成すると共に、
上記弦とX又はY方向とのなす角度の第2直角三角形に
おける正弦又は余弦により第2直角三角形の他の2辺の
長さを算出し、上記弦中点のXY座標と第2直角三角形
の他の2辺の長さとで第2センサ導通位置における基板
中心の設定原点に対するずれ量を算出し、そのずれ量に
基づいて基板位置を補正してセンタリングすることを特
徴とする基板のセンタリング方法。
1. When centering a circular substrate having a known radius, two position detecting sensors are arranged at predetermined positions on the same distance as the substrate radius centering on a set origin, and a suction stage is provided. Hold the above substrate randomly and move in parallel along the X or Y direction,
The point at which the extension line of the first sensor position, which is first conducted, in the substrate movement direction intersects with the circumference of the substrate at the second sensor conduction position;
A first right triangle having two other sides in the XY direction is formed with the board chord connecting the sensor position as the hypotenuse, and the XY coordinate of the midpoint of the chord is calculated to determine the coordinate position and the second sensor conduction position. A first distance from the center of the substrate is calculated, and a second right triangle is formed that is similar to the first right triangle and that has the first distance as the hypotenuse and has two other sides in the XY directions.
The lengths of the other two sides of the second right triangle are calculated from the sine or cosine of the second right triangle at the angle between the chord and the X or Y direction, and the XY coordinates of the midpoint of the chord and the second right triangle are calculated. A method of centering a substrate, wherein a displacement amount of a substrate center at a second sensor conduction position with respect to a set origin is calculated based on the other two sides, and the substrate position is corrected and centered based on the displacement amount.
【請求項2】 部分的に異形部を有する半径寸法既知の
円形基板をセンタリングするにあたり、少なくとも4個
以上の位置検出用センサを、その内の2個以上のセンサ
が上記異形部と同時に干渉しないように配置し、基板を
一軸方向に平行移動して相異なる基板位置で所定のセン
サを基準として少なくとも6個以上の請求項1記載の第
1直角三角形を形成し、各第1直角三角形についてそれ
ぞれ基板中心を求めると共に、少なくとも3個以上の基
板中心が一致した時、その位置を正規の基板中心と判断
して基板をセンタリングすることを特徴とする基板のセ
ンタリング方法。
2. When centering a circular substrate having a known radius dimension partially having a deformed portion, at least four or more position detecting sensors, two or more of which do not interfere with the deformed portion at the same time. Are arranged in such a manner that the substrates are translated in one axis direction, and at least six or more first right triangles according to claim 1 are formed with reference to predetermined sensors at different substrate positions, and each first right triangle is formed. A substrate centering method, wherein the substrate center is obtained, and when at least three or more substrate centers are coincident with each other, the position is judged to be a normal substrate center and the substrates are centered.
【請求項3】 円形基板は半導体ウェーハであることを
特徴とする請求項2記載の基板のセンタリング方法。
3. The method for centering a substrate according to claim 2, wherein the circular substrate is a semiconductor wafer.
JP23098992A 1992-08-31 1992-08-31 Substrate centering method Expired - Fee Related JP2616642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23098992A JP2616642B2 (en) 1992-08-31 1992-08-31 Substrate centering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23098992A JP2616642B2 (en) 1992-08-31 1992-08-31 Substrate centering method

Publications (2)

Publication Number Publication Date
JPH0685039A true JPH0685039A (en) 1994-03-25
JP2616642B2 JP2616642B2 (en) 1997-06-04

Family

ID=16916494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23098992A Expired - Fee Related JP2616642B2 (en) 1992-08-31 1992-08-31 Substrate centering method

Country Status (1)

Country Link
JP (1) JP2616642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018828A (en) * 2009-07-10 2011-01-27 Lintec Corp Position recognition device and position recognition method, and positioning device
CN104465472A (en) * 2013-09-22 2015-03-25 盛美半导体设备(上海)有限公司 Alignment device and method
CN111720216A (en) * 2020-06-24 2020-09-29 中国航发湖南动力机械研究所 Method for assembling engine device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018828A (en) * 2009-07-10 2011-01-27 Lintec Corp Position recognition device and position recognition method, and positioning device
CN104465472A (en) * 2013-09-22 2015-03-25 盛美半导体设备(上海)有限公司 Alignment device and method
CN104465472B (en) * 2013-09-22 2020-05-19 盛美半导体设备(上海)股份有限公司 Alignment device and alignment method
CN111720216A (en) * 2020-06-24 2020-09-29 中国航发湖南动力机械研究所 Method for assembling engine device
CN111720216B (en) * 2020-06-24 2022-02-11 中国航发湖南动力机械研究所 Method for assembling engine device

Also Published As

Publication number Publication date
JP2616642B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US7181089B2 (en) Method and apparatus for searching for fiducial marks, and method of detecting positions of the fiducial marks
US5956149A (en) Method for determining reference position
KR20060073491A (en) Substrate processing apparatus and transfer positioning method thereof
US20050156122A1 (en) Method and apparatus for aligning a substrate on a stage
JPH02165699A (en) Mounting method of flat package type ic using industrial robot
JPS6085536A (en) Wafer positioning device
JP2616642B2 (en) Substrate centering method
CN102934216B (en) For the method being directed at semi-conducting material
JPS6320380B2 (en)
JPH03161223A (en) Fitting of work
JP2626582B2 (en) Wafer position measurement unit and wafer alignment unit and method
JPS63109307A (en) Apparatus for inspecting mounting of chip part
JPH08222611A (en) Aligning method for wafer
US4893396A (en) Method of setting up apparatus for handling electrical or electronic components
JP3039645B1 (en) Electronic component position recognition method and device
JPS63140548A (en) Alignment method of planar object
JPH0770582B2 (en) Wafer positioning device and method for returning to origin thereof
KR100408722B1 (en) Stepper alignment mark
JPH06120322A (en) Method of recognizing position of semiconductor wafer, and semiconductor wafer used therefor
JP2009170586A (en) Method and apparatus for recognizing electronic component
JP2651519B2 (en) IC mounting device
JPH0523490B2 (en)
JPS6030135A (en) Alignment check pattern
JPH0343172A (en) Detection of designated hole of matrix board
JP2001176782A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970121

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees