JPH0684783A - Manufacture of semiconductor device and semiconductor manufacturing device used for it - Google Patents

Manufacture of semiconductor device and semiconductor manufacturing device used for it

Info

Publication number
JPH0684783A
JPH0684783A JP23784992A JP23784992A JPH0684783A JP H0684783 A JPH0684783 A JP H0684783A JP 23784992 A JP23784992 A JP 23784992A JP 23784992 A JP23784992 A JP 23784992A JP H0684783 A JPH0684783 A JP H0684783A
Authority
JP
Japan
Prior art keywords
catalyst
chemically amplified
substance
baking
amplified resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23784992A
Other languages
Japanese (ja)
Inventor
Toshihiko Onozuka
利彦 小野塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23784992A priority Critical patent/JPH0684783A/en
Publication of JPH0684783A publication Critical patent/JPH0684783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form a fine pattern with high dimensional accuracy by using a chemically amplified resist. CONSTITUTION:In the title manufacturing method, a developing process is performed after a baking process and catalyst inactivating process. In the catalyst inactivating process, a chemically amplified resist 2 is exposed to a basic atmosphere composed of HMDS, etc. As a result, a catalytic substance 3 is removed from the resist 2 or the function of the substance 3 as a catalyst disappears, because the substance 3 existing in the exposed and diffused parts 21 and 22 of the resist 2 are bonded to each other as a result of a neutralization reaction which occurs between them. In the manufacturing device 5 used for this method, in addition, a catalyst inactivating section 52 filled with the vapor of HMDS is provided in the semiconductor wafer 1 carrying route between a baking unit 50 and developing unit 51.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造技術
さらには高寸法精度の微細パターンを形成するリソグラ
フィ技術に適用して特に有効な技術に関し、例えば触媒
反応を利用する化学増幅型レジストを用いて高集積半導
体装置を製造する場合に利用して有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing technique and a technique particularly effective when applied to a lithography technique for forming a fine pattern with high dimensional accuracy. For example, a chemically amplified resist utilizing a catalytic reaction is used. The present invention relates to a technique useful when used to manufacture a highly integrated semiconductor device.

【0002】[0002]

【従来の技術】近年、LSI(大規模集積回路装置)の
更なる高集積化を図るため、半導体ウェハに微細パター
ンを形成するリソグラフィ技術において、高感度で優れ
た解像性能を有する所謂化学増幅型レジストを感光性被
膜として用いることが考えられている(“Preliminaly
Lithographic Characteristics of an All-organic
Chemically Amplified Resist Formulation for S
ingle Layer Deep-UV Lithography”SPIE Vo
l.1466 (1991))。この化学増幅型レジストは樹脂と酸
発生剤と溶解制御剤とを主なる成分としている。そし
て、露光により酸発生剤からH+が生じ、露光後のベー
ク処理によってそのH+が触媒として働き、溶解制御剤
の触媒反応が促進されて、ネガ形の場合には露光部分の
溶解促進性が溶解阻害性に、またポジ形の場合には露光
部分の溶解阻害性が溶解促進性に変化する。この性質を
利用して、半導体ウェハ上に塗布した化学増幅型レジス
トに露光によりホトマスク等のマスクパターンを転写
し、ベーク処理後に現像を行い、所定のパターンを形成
する。
2. Description of the Related Art In recent years, so-called chemical amplification having high sensitivity and excellent resolution performance has been achieved in a lithography technique for forming a fine pattern on a semiconductor wafer in order to further increase the integration of an LSI (Large Scale Integrated Circuit Device). It has been considered to use a type resist as a photosensitive film (“Preliminaly
Lithographic Characters of an All-organic
Chemically Amplified Resist Formation for S
ingle Layer Deep-UV Lithography "SPIE Vo
l.1466 (1991)). This chemically amplified resist mainly contains a resin, an acid generator and a dissolution controller. Then, H + is generated from the acid generator upon exposure, the baking treatment after the exposure work that H + is as a catalyst, solubility controller catalysis is promoted in the case of a negative form dissolution accelerating exposed portion Shows a dissolution inhibiting property, and in the case of a positive type, the dissolution inhibiting property of the exposed portion changes into a dissolution promoting property. By utilizing this property, a mask pattern such as a photomask is transferred onto a chemically amplified resist applied on a semiconductor wafer by exposure, and developed after baking treatment to form a predetermined pattern.

【0003】ところで、触媒となるH+は、露光完了後
化学増幅型レジストの露光部分から未露光部分に向かっ
て速やかに拡散を始める。そのため、未露光部分の、露
光部分との境界近傍にもH+が分布し、ベーク処理時
に、その部分の溶解制御剤が触媒反応して、溶解促進性
から溶解阻害性に(または、溶解阻害性から溶解促進性
に)変化する。従って、露光からベーク処理に至る放置
時間、すなわちH+が拡散し得る時間に応じて未露光部
分におけるH+の拡散領域が広がり、未露光部分と露光
部分との境界がぼやけ、露光直後の露光部分の寸法に対
して寸法誤差が生じる。そこで、従来は、ベーク処理時
の寸法誤差が許容範囲を越えないような時間内でベーク
処理を行うようにしていた。
By the way, H + , which serves as a catalyst, immediately starts to diffuse from the exposed portion to the unexposed portion of the chemically amplified resist after the exposure is completed. Therefore, H + is also distributed in the vicinity of the boundary between the unexposed portion and the exposed portion, and during the baking treatment, the dissolution control agent in that portion undergoes a catalytic reaction to change from dissolution promoting property to dissolution inhibiting property (or dissolution inhibiting property). Change from sex to dissolution-promoting). Therefore, the H + diffusion region in the unexposed portion expands according to the standing time from the exposure to the baking process, that is, the time during which the H + can diffuse, and the boundary between the unexposed portion and the exposed portion is blurred, and the exposure immediately after the exposure is performed. A dimensional error occurs with respect to the size of the part. Therefore, conventionally, the baking process is performed within a time period in which the dimensional error during the baking process does not exceed the allowable range.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た技術には、次のような問題のあることが本発明者らに
よってあきらかとされた。すなわち、ベーク処理後から
現像処理に至るまでの第2の放置時間に応じてH+がさ
らに広範囲まで拡散し、そのH+が室温においても十分
に触媒として活性であるため、ベーク処理後においても
+を触媒として溶解制御剤の触媒反応が起こり、現像
処理時には寸法誤差がさらに大きくなり、寸法誤差の許
容範囲を逸脱する虞があるというものである。
However, the present inventors have clarified that the above-mentioned technique has the following problems. That is, H + diffuses to a wider range according to the second standing time after the baking treatment to the developing treatment, and since the H + is sufficiently active as a catalyst even at room temperature, even after the baking treatment. The catalyst reaction of the dissolution control agent occurs using H + as a catalyst, and the dimensional error becomes larger during the development process, which may deviate from the allowable range of the dimensional error.

【0005】本発明はかかる事情に鑑みてなされたもの
で、触媒反応を利用する化学増幅型レジストを用いて、
高寸法精度の微細パターンの形成を可能ならしめる半導
体装置の製造方法及びそれに用いられる半導体装置の製
造装置を提供することを主たる目的としている。この発
明の前記ならびにそのほかの目的と新規な特徴について
は、本明細書の記述及び添附図面から明らかになるであ
ろう。
The present invention has been made in view of the above circumstances, and uses a chemically amplified resist which utilizes a catalytic reaction,
A main object of the present invention is to provide a semiconductor device manufacturing method and a semiconductor device manufacturing apparatus used for the same, which enable formation of a fine pattern with high dimensional accuracy. The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0006】[0006]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を説明すれば、下記のと
おりである。すなわち、本発明の半導体装置の製造方法
においては、露光工程後に行うベーク処理工程後、速や
かに、化学増幅型レジストをHMDS(Hexamethyldis
ilazane)などのアミン系の物質よりなる塩基性雰囲気
にさらす触媒不活性処理工程を設け、その触媒不活性処
理工程によって、化学増幅型レジスト中に発生させた触
媒物質となるH+を化学増幅型レジスト中から除去する
か、又はその触媒としての機能を消失させるように構成
した。また、上記製造方法に用いられる半導体装置の製
造装置においては、ベーク処理工程から現像処理工程に
至る、半導体ウェハの搬送経路に触媒不活性処理部を設
け、その触媒不活性処理部にHMDSなどの蒸気を導
き、触媒不活性処理部内を塩基性雰囲気にするように構
成した。
The typical ones of the inventions disclosed in the present application will be outlined below. That is, in the method for manufacturing a semiconductor device of the present invention, the chemically amplified resist is immediately removed from the HMDS (Hexamethyldis) after the baking process performed after the exposure process.
(ilazane) is provided with a catalytic deactivation treatment step of exposing to a basic atmosphere made of an amine-based substance, and by the catalytic deactivation treatment step, H + which is the catalytic substance generated in the chemically amplified resist is chemically amplified. It was configured to be removed from the resist or to lose its catalytic function. Further, in the semiconductor device manufacturing apparatus used in the above-described manufacturing method, a catalyst deactivation processing section is provided in the transfer path of the semiconductor wafer from the baking processing step to the development processing step, and the catalyst deactivation processing section has a catalyst deactivation processing section such as HMDS. It was constructed such that steam was introduced to make the inside of the catalyst deactivation section a basic atmosphere.

【0007】[0007]

【作用】上記した手段によれば、ベーク処理工程後の触
媒不活性処理工程において化学増幅型レジストを塩基性
雰囲気にさらすことよって、触媒として活性なH+と塩
基性雰囲気中の塩基性物質との間に中和反応が起き、化
学増幅型レジスト中からH+が除去されるか、又はその
触媒としての機能が消失して触媒として不活性になる。
従って、触媒不活性処理工程後には、化学増幅型レジス
ト中に寸法誤差の発生原因となる触媒として活性なH+
はもはや存在し得ず、触媒不活性処理工程から現像処理
工程に至るまでの寸法誤差の発生が防止される。
According to the above means, by exposing the chemically amplified resist to a basic atmosphere in the catalytic deactivation processing step after the baking processing, H + which is active as a catalyst and a basic substance in the basic atmosphere are removed. During this period, a neutralization reaction occurs and H + is removed from the chemically amplified resist, or its function as a catalyst disappears and becomes inactive as a catalyst.
Therefore, after the catalyst deactivation treatment step, H + which is active as a catalyst causing a dimensional error in the chemically amplified resist is generated.
Can no longer exist, and the occurrence of dimensional error from the catalyst deactivation processing step to the development processing step is prevented.

【0008】[0008]

【実施例】本発明に係る半導体装置の製造方法及びそれ
に用いられる半導体装置の製造装置の一実施例を図1乃
至図7に示し、以下に説明する。それらのうち、図1は
半導体装置の製造方法の工程図、図2は露光工程前の半
導体ウェハ上に化学増幅型レジストを被着させた状態の
半導体ウェハの縦断面図、図3は露光工程後の半導体ウ
ェハの縦断面図、図4はベーク処理工程後の半導体ウェ
ハの縦断面図、図5は触媒不活性処理工程後の半導体ウ
ェハの縦断面図、図6は現像処理工程後の半導体ウェハ
の縦断面図、図7は半導体装置の製造装置の概略図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method of manufacturing a semiconductor device and a semiconductor device manufacturing apparatus used therefor according to the present invention is shown in FIGS. 1 to 7 and described below. Among them, FIG. 1 is a process diagram of a method for manufacturing a semiconductor device, FIG. 2 is a vertical cross-sectional view of a semiconductor wafer in which a chemically amplified resist is deposited on the semiconductor wafer before the exposure process, and FIG. 3 is an exposure process. 4 is a vertical cross-sectional view of the semiconductor wafer after the baking process, FIG. 4 is a vertical cross-sectional view of the semiconductor wafer after the baking process, FIG. 5 is a vertical cross-sectional view of the semiconductor wafer after the catalytic deactivation process, and FIG. FIG. 7 is a schematic cross-sectional view of a semiconductor device manufacturing apparatus.

【0009】この半導体装置の製造方法は、リソグラフ
ィ技術によって所望のレジストパターンを形成するにあ
たり、図1に示すように、露光工程後に行うベーク処理
工程後、触媒不活性処理工程を経てから、現像処理工程
を行うようにしたものである。
In the method of manufacturing a semiconductor device, when a desired resist pattern is formed by a lithographic technique, as shown in FIG. 1, after a baking treatment step performed after an exposure step, a catalyst inactivation treatment step is performed, and then a development treatment is performed. The process is performed.

【0010】以下、図2〜図6に基き、工程の流れに沿
って説明をする。先ず、図2に示すように、半導体ウェ
ハ1(被加工物)上に化学増幅型レジスト2(感光性材
料)を回転塗布器(スピンナ)などで塗布する。化学増
幅型レジスト2は、樹脂と酸発生剤と溶解制御剤とを主
なる成分としていて、露光により酸発生剤から生じるH
+が触媒物質3(図3〜図5に○で示す。)となり溶解
制御剤の触媒反応が促進されるものである。この触媒反
応により、ネガ形の場合には溶解促進性が溶解阻害性
に、またポジ形の場合には溶解阻害性が溶解促進性に変
化する。図2の状態では、露光前であるため、化学増幅
型レジスト2の全面が未露光部分20となっていて、化
学増幅型レジスト2中には触媒物質3は全く生じていな
い。以下の説明では、化学増幅型レジスト2がネガ形で
あるとする。
The process will be described below with reference to FIGS. First, as shown in FIG. 2, a semiconductor wafer 1 (workpiece) is coated with a chemically amplified resist 2 (photosensitive material) by a spin coater (spinner) or the like. The chemically amplified resist 2 contains a resin, an acid generator and a dissolution control agent as main components, and H generated from the acid generator upon exposure.
The + serves as the catalyst substance 3 (indicated by a circle in FIGS. 3 to 5) to accelerate the catalytic reaction of the dissolution control agent. By this catalytic reaction, the dissolution promoting property changes to the dissolution inhibiting property in the case of the negative type, and the dissolution inhibiting property changes to the dissolution promoting property in the case of the positive type. In the state of FIG. 2, since it is before exposure, the entire surface of the chemically amplified resist 2 is the unexposed portion 20, and the catalyst substance 3 is not generated in the chemically amplified resist 2 at all. In the following description, it is assumed that the chemically amplified resist 2 is a negative type.

【0011】次に、図3に示すように、特に図示しない
が所望のマスクパターンを有するホトマスク等を用いて
化学増幅型レジスト2に紫外線や電子線やレーザー光線
等を照射する露光工程を経ることによって、化学増幅型
レジスト2の露光部分21(例えば、その幅寸法をdと
する。)に触媒物質3が生じる。この触媒物質3は速や
かに露光部分21からその周囲の未露光部分20に向か
って拡散を開始する。なお、露光工程前に必要に応じて
半導体ウェハ1に対する化学増幅型レジスト2の密着性
を向上させるプリベーク工程を経るのはいうまでもな
い。
Next, as shown in FIG. 3, by performing an exposure step of irradiating the chemically amplified resist 2 with an ultraviolet ray, an electron beam, a laser beam or the like using a photomask having a desired mask pattern, which is not particularly shown. , The catalytic substance 3 is generated on the exposed portion 21 of the chemically amplified resist 2 (for example, its width dimension is d). The catalytic substance 3 immediately starts to diffuse from the exposed portion 21 toward the unexposed portion 20 around the exposed portion 21. Needless to say, a pre-baking step of improving the adhesion of the chemically amplified resist 2 to the semiconductor wafer 1 is performed before the exposure step, if necessary.

【0012】そして、触媒物質3を触媒とする触媒反応
を促進するために、不活性ガス雰囲気中において所定の
温度及び所定の処理時間でベーク処理を行う。このベー
ク処理工程及びその前の露光工程からベーク処理工程、
さらには現像処理工程に至る放置時間によって、触媒物
質3は、図4に示すように、拡散寸法Δdだけ拡散し、
未露光部分20の、露光部分21との境界近傍に拡散部
分22を生じさせている。この拡散部分22と露光部分
21は触媒反応によって、ともに溶解阻害性に変化して
いる。従って、ベーク処理工程後の幅寸法はdからd’
(d’=d+Δd+Δd)に変化している。ここで、こ
の幅寸法d’が適正な幅寸法に対する許容誤差範囲を越
えないように、当該放置時間を許容される最大の時間内
におさめるとともに、ベーク処理条件を設定しておくの
はいうまでもない。
Then, in order to promote the catalytic reaction using the catalyst substance 3 as a catalyst, a baking process is performed at a predetermined temperature and a predetermined processing time in an inert gas atmosphere. From this baking process and the exposure process before that to the baking process,
Further, as shown in FIG. 4, the catalyst substance 3 diffuses by the diffusion dimension Δd depending on the standing time to the development processing step,
A diffusion portion 22 is formed in the vicinity of the boundary between the unexposed portion 20 and the exposed portion 21. Both the diffused portion 22 and the exposed portion 21 are changed to the dissolution inhibiting property by the catalytic reaction. Therefore, the width dimension after the baking process is from d to d '.
It has changed to (d ′ = d + Δd + Δd). Here, it goes without saying that the leaving time is kept within the maximum allowable time and the baking processing condition is set so that the width dimension d ′ does not exceed the allowable error range for the appropriate width dimension. Nor.

【0013】ベーク処理工程後、触媒不活性処理工程に
おいて、化学増幅型レジスト2を例えばHMDSなどの
アミン系の物質よりなる塩基性雰囲気にさらす。これに
よって、化学増幅型レジスト2の露光部分21および拡
散部分22中に存在する触媒物質3とHMDSのアミン
基4(図5に●で示す。)とが中和反応を起こして結合
し、化学増幅型レジスト2中から触媒物質3が除去され
るか、又はその触媒としての機能が消失され、触媒とし
て不活性になる。従って、その後現像処理工程までに前
記幅寸法d’の変動は起こらない。この際、化学増幅型
レジスト2中の触媒物質3が完全に中和されるようにH
MDSの濃度を適当に調整する。なお、この触媒不活性
処理工程をベーク処理工程の直後に行うのが望ましい。
After the baking process, in the catalyst deactivation process, the chemically amplified resist 2 is exposed to a basic atmosphere made of an amine-based substance such as HMDS. As a result, the catalyst substance 3 present in the exposed portion 21 and the diffusion portion 22 of the chemically amplified resist 2 and the amine group 4 of HMDS (indicated by a black circle in FIG. 5) cause a neutralization reaction and bond with each other to chemically The catalytic substance 3 is removed from the amplification type resist 2 or its function as a catalyst is lost, and the catalytic substance 3 becomes inactive as a catalyst. Therefore, the width dimension d ′ does not change until the subsequent development processing step. At this time, H is added so that the catalytic substance 3 in the chemically amplified resist 2 is completely neutralized.
Adjust the concentration of MDS appropriately. It should be noted that it is desirable to perform this catalyst deactivation treatment step immediately after the baking treatment step.

【0014】最後に、現像処理工程を経ることによっ
て、図6に示すように、幅寸法がd’なるレジストパタ
ーンが半導体ウェハ1上に形成される。
Finally, through a development process, a resist pattern having a width dimension d'is formed on the semiconductor wafer 1 as shown in FIG.

【0015】次に、上記したベーク処理工程から触媒不
活性処理工程を経て現像処理工程までを一貫して行う半
導体装置の製造装置(以下、単に「製造装置」とす
る。)に付いて、図7に基づいて説明する。この製造装
置5は、上記ベーク処理及び現像後のポストベーク処理
を行うベークユニット50と、上記現像処理を行う現像
ユニット51との間の、半導体ウェハ1の搬送経路に触
媒不活性処理部52が設けられているものである。
Next, a semiconductor device manufacturing apparatus (hereinafter simply referred to as a "manufacturing apparatus") which consistently performs the above-mentioned baking processing step, catalytic inactivation processing step, and development processing step will be described. It will be described based on 7. In this manufacturing apparatus 5, a catalyst deactivation processing section 52 is provided in a transfer path of the semiconductor wafer 1 between a bake unit 50 that performs the bake processing and post-bake processing after development and a developing unit 51 that performs the development processing. It is provided.

【0016】触媒不活性処理部52には、該触媒不活性
処理部52にHMDSの蒸気を矢印A,Bに示すように
導く給気部53および管路54を介して、液体HMDS
40を入れた密閉容器55が連通接続されている。この
液体HMDS40には、窒素ガスなどの不活性ガスを充
填した高圧ガスボンベ56から管路57を介して不活性
ガスが矢印Cに示すように送り込まれるようになってい
る。そして、この不活性ガスで液体HMDS40がバブ
リングされることによって、液体HMDS40が気化し
てHMDSの蒸気となる。また、触媒不活性処理部52
には、HMDSの蒸気を矢印D,Eに示すように導いて
排出する排気部58が設けられている。触媒不活性処理
部52は、ベークユニット50にHMDSの蒸気が漏出
しないように、少なくともベークユニット50に対して
は気密が保たれている。そして、前記管路54には、触
媒不活性処理部52内におけるHMDSの蒸気の濃度を
調整する、流量調整弁や圧力調整弁などの濃度調整部5
9が設けられている。
Liquid HMDS is fed to the catalyst deactivation processing section 52 via an air supply section 53 and a pipe 54 for guiding the HMDS vapor to the catalyst deactivation processing section 52 as shown by arrows A and B.
A closed container 55 containing 40 is connected for communication. An inert gas is fed into the liquid HMDS 40 from a high pressure gas cylinder 56 filled with an inert gas such as nitrogen gas through a pipe 57 as shown by an arrow C. Then, by bubbling the liquid HMDS 40 with this inert gas, the liquid HMDS 40 is vaporized and becomes vapor of HMDS. In addition, the catalyst deactivation processing unit 52
Is provided with an exhaust unit 58 that guides and discharges HMDS vapor as shown by arrows D and E. The catalyst deactivation processing section 52 is kept airtight at least with respect to the bake unit 50 so that vapor of HMDS does not leak to the bake unit 50. Then, in the conduit 54, a concentration adjusting unit 5 such as a flow rate adjusting valve or a pressure adjusting valve that adjusts the concentration of HMDS vapor in the catalyst deactivation processing unit 52.
9 is provided.

【0017】以上、詳述したように、本実施例によれ
ば、半導体ウェハ1上に化学増幅型レジスト2を用いて
リソグラフィ技術によって所望のレジストパターンを形
成する場合に、露光工程後に行うベーク処理工程後、現
像処理工程前に、化学増幅型レジスト2をHMDSなど
の塩基性雰囲気にさらす触媒不活性処理工程を行うこと
によって、化学増幅型レジスト2中から触媒物質3が除
去されるか、又はその触媒としての機能が消失されるの
で、触媒不活性処理工程から現像処理工程に至るまでの
寸法誤差の発生が防止される。従って、微細パターンを
高寸法精度で形成することができる。
As described above in detail, according to the present embodiment, when the desired resist pattern is formed on the semiconductor wafer 1 by the lithographic technique using the chemically amplified resist 2, the baking process is performed after the exposure step. After the step and before the development step, the catalyst inactivation treatment step of exposing the chemically amplified resist 2 to a basic atmosphere such as HMDS is performed to remove the catalyst substance 3 from the chemically amplified resist 2, or Since the function as a catalyst is lost, it is possible to prevent a dimensional error from the catalyst deactivation processing step to the development processing step. Therefore, a fine pattern can be formed with high dimensional accuracy.

【0018】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。例えば、H
MDSに代えて、TMSDEA(N−Trimethylsilyl
−diethylamine)やBSA(N,O−Bis(trimethylsi
lyl)−acetamide)やTMCS(Trimethyl chlorosila
ne)などを用いてもよいし、また触媒物質3がH+以外
の場合には、その触媒物質3を中和することができれ
ば、アミン系以外の物質でもよい。また、製造装置5は
上記実施例のものに限らず、ベークユニット50と現像
ユニット51との間に、化学増幅型レジスト2をHMD
S等の蒸気にさらすことができる触媒不活性処理部52
が設けられていれば、その構成等は問わない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, H
Instead of MDS, TMSDEA (N-Trimethylsilyl
-Diethylamine) and BSA (N, O-Bis (trimethylsi)
lyl) -acetamide) and TMCS (Trimethyl chlorosila)
ne) or the like may be used. If the catalyst substance 3 is other than H + , a substance other than an amine-based substance may be used as long as the catalyst substance 3 can be neutralized. Further, the manufacturing apparatus 5 is not limited to the one in the above-described embodiment, and the chemically amplified resist 2 is provided between the bake unit 50 and the developing unit 51 in the HMD.
A catalyst deactivation processing section 52 that can be exposed to steam such as S
If it is provided, the configuration does not matter.

【0019】さらに、ベークユニット50と現像ユニッ
ト51とが別装置であり、ベーク処理工程から現像処理
工程までを一貫して行うことができない場合には、ベー
ク処理工程の済んだ半導体ウェハ1を、図8に示すよう
なウェハケース6に納め、現像処理を行う装置に搬送す
ればよい。このウェハケース6は、ケース本体60に被
せられた蓋体61によって密閉される。ケース本体60
は、半導体ウェハ1を収納する収納部62の下に、HM
DS等の蒸気を通すが液体のHMDS等を通さない半透
膜63を介して、液体のHMDS等を入れる貯留部64
が設けられてできている。また、ケース本体60には、
液体のHMDS等を貯留部64に流し込むための注入部
65が設けられている。符号66で示したものは仕切り
板である。
Further, when the baking unit 50 and the developing unit 51 are separate devices and the baking process and the developing process cannot be performed consistently, the semiconductor wafer 1 that has undergone the baking process is It may be stored in a wafer case 6 as shown in FIG. 8 and transferred to an apparatus for performing a developing process. The wafer case 6 is sealed by a lid 61 that covers the case body 60. Case body 60
The HM is placed under the storage unit 62 for storing the semiconductor wafer 1.
A reservoir 64 for containing liquid HMDS or the like through a semipermeable membrane 63 that allows vapor such as DS to pass but does not pass liquid HMDS or the like.
It is made of. In addition, the case body 60,
An injection part 65 for pouring liquid HMDS or the like into the storage part 64 is provided. The reference numeral 66 indicates a partition plate.

【0020】以上の説明では主として本発明者によって
なされた発明をその背景となった利用分野である半導体
装置の製造技術に適用した場合について説明したが、こ
の発明はそれに限定されるものではなく、例えば電子部
品を実装するプリント配線基板の製造、その他化学増幅
型レジストを用いたリソグラフィ技術による加工一般に
利用することができる。
In the above description, the case where the invention made by the present inventor is mainly applied to the manufacturing technology of the semiconductor device which is the field of application in the background has been described, but the present invention is not limited thereto. For example, it can be used for the manufacture of a printed wiring board on which electronic parts are mounted, and other general processing by lithography using a chemically amplified resist.

【0021】[0021]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば下記
のとおりである。すなわち、触媒反応を利用する化学増
幅型レジストを用いて半導体ウェハ上に所望のレジスト
パターンを形成する場合に、ベーク処理工程後に行う触
媒不活性処理工程によって、触媒不活性処理工程から現
像処理工程に至るまでの寸法誤差の発生が防止されるの
で、微細パターンを高寸法精度で形成することができ
る。
The effects obtained by the representative one of the inventions disclosed in the present application will be briefly described as follows. That is, when a desired resist pattern is formed on a semiconductor wafer by using a chemically amplified resist that utilizes a catalytic reaction, the catalyst inactivation treatment step performed after the baking treatment step changes the catalyst inactivation treatment step to the development treatment step. Since occurrence of dimensional error up to this point is prevented, a fine pattern can be formed with high dimensional accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例における半導体装置の製造方法の工程
図である。
FIG. 1 is a process drawing of a method for manufacturing a semiconductor device according to an embodiment.

【図2】露光工程前の半導体ウェハ上に化学増幅型レジ
ストを被着させた状態の半導体ウェハの縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view of a semiconductor wafer in a state where a chemically amplified resist is deposited on the semiconductor wafer before the exposure step.

【図3】露光工程後の半導体ウェハの縦断面図である。FIG. 3 is a vertical cross-sectional view of a semiconductor wafer after an exposure process.

【図4】ベーク処理工程後の半導体ウェハの縦断面図で
ある。
FIG. 4 is a vertical cross-sectional view of the semiconductor wafer after the baking process.

【図5】触媒不活性処理工程後の半導体ウェハの縦断面
図である。
FIG. 5 is a vertical cross-sectional view of a semiconductor wafer after a catalyst deactivation processing step.

【図6】現像処理工程後の半導体ウェハの縦断面図であ
る。
FIG. 6 is a vertical cross-sectional view of a semiconductor wafer after a development processing step.

【図7】半導体装置の製造装置の概略図である。FIG. 7 is a schematic view of a semiconductor device manufacturing apparatus.

【図8】ウェハケースの一部を切り欠いた斜視図であ
る。
FIG. 8 is a perspective view in which a part of the wafer case is cut away.

【符号の説明】[Explanation of symbols]

1 半導体ウェハ(被加工物) 2 化学増幅型レジスト(感光性材料) 3 触媒物質 52 触媒不活性処理部 1 Semiconductor Wafer (Workpiece) 2 Chemically Amplified Resist (Photosensitive Material) 3 Catalytic Substance 52 Catalytic Inactivity Treatment Section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被加工物上に被着させた感光性材料を露
光して該感光性材料中に触媒物質を発生させ、ベーク処
理により前記触媒物質を触媒とする触媒反応を促進させ
て前記感光性材料の所定部分の性質を変化させた後、現
像処理により感光性材料の不要部分を除去することによ
って、被加工物上に感光性材料の所定パターンを形成す
るにあたり、ベーク処理後に速やかに前記触媒物質を前
記感光性材料中から除去又はその触媒としての機能を消
失させ得る触媒不活性処理工程を設けたことを特徴とす
る半導体装置の製造方法。
1. A photosensitive material deposited on a work piece is exposed to generate a catalytic substance in the photosensitive material, and a catalytic reaction using the catalytic substance as a catalyst is promoted by a baking treatment. After changing the property of the predetermined part of the photosensitive material, the unnecessary part of the photosensitive material is removed by the developing process to quickly form the predetermined pattern of the photosensitive material on the work piece after the baking process. A method of manufacturing a semiconductor device, comprising a catalyst deactivation treatment step capable of removing the catalyst substance from the photosensitive material or eliminating its function as a catalyst.
【請求項2】 前記触媒不活性処理工程は、前記感光性
材料を塩基性の雰囲気にさらすことにより行われること
を特徴とする請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the catalyst inactivation treatment step is performed by exposing the photosensitive material to a basic atmosphere.
【請求項3】 ベーク処理工程から現像処理工程に至
る、被加工物の搬送経路の一部又は全部が、塩基性雰囲
気の触媒不活性処理部となっていることを特徴とする請
求項2記載の半導体装置の製造方法に用いられる半導体
装置の製造装置。
3. The catalyst inactivation treatment section in a basic atmosphere is provided in a part or all of a conveyance path of the work piece from the baking treatment step to the development treatment step. Apparatus for manufacturing a semiconductor device used in the method for manufacturing a semiconductor device according to claim 1.
JP23784992A 1992-09-07 1992-09-07 Manufacture of semiconductor device and semiconductor manufacturing device used for it Pending JPH0684783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23784992A JPH0684783A (en) 1992-09-07 1992-09-07 Manufacture of semiconductor device and semiconductor manufacturing device used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23784992A JPH0684783A (en) 1992-09-07 1992-09-07 Manufacture of semiconductor device and semiconductor manufacturing device used for it

Publications (1)

Publication Number Publication Date
JPH0684783A true JPH0684783A (en) 1994-03-25

Family

ID=17021325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23784992A Pending JPH0684783A (en) 1992-09-07 1992-09-07 Manufacture of semiconductor device and semiconductor manufacturing device used for it

Country Status (1)

Country Link
JP (1) JPH0684783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017415A1 (en) * 2014-08-01 2016-02-04 東京エレクトロン株式会社 Substrate processing method, computer storage medium and substrate processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017415A1 (en) * 2014-08-01 2016-02-04 東京エレクトロン株式会社 Substrate processing method, computer storage medium and substrate processing system
JP2016035956A (en) * 2014-08-01 2016-03-17 東京エレクトロン株式会社 Board processing method, program, compute storage medium, and board processing system

Similar Documents

Publication Publication Date Title
JP2002015971A (en) Pattern-forming method and manufacturing apparatus for semiconductor device
US11467497B2 (en) Method of forming mask
US6022672A (en) Method of manufacturing semiconductors having improved temperature control
JPH06186754A (en) Formation of fine resist pattern
TW201626117A (en) Board processing method, program, compute storage medium, and board processing system
US20080220379A1 (en) Pattern forming method and pattern formation apparatus
JPH0684783A (en) Manufacture of semiconductor device and semiconductor manufacturing device used for it
JPH07142356A (en) Resist pattern forming method and resist pattern forming system used therefor
US6107002A (en) Reducing resist shrinkage during device fabrication
JPH09129535A (en) Thermal treatment equipment
JP2000267298A (en) Pattern forming method for chemical amplification type resist
JP2005123651A (en) Resist film processing apparatus and method of forming resist pattern
JPH09320930A (en) Pattern forming method and pattern forming device
US6100015A (en) Resist pattern forming method
JP2007096347A (en) Rotation compensating device of processed substrate, processing device of resist film, method for compensating rotation of processed substrate, method for processing resist film
TWI825960B (en) Method of manufacturing semiconductor device
JPH11153867A (en) Resist pattern forming method
JPH09292707A (en) Pattern forming material and pattern forming method
EP0855621A2 (en) Manufacturing method and apparatus for semiconductor device
JP3517563B2 (en) Semiconductor exposure apparatus and semiconductor device manufacturing process using the same
JPH07263295A (en) Device and method for manufacturing semiconductor device
JPH1048832A (en) Resist pattern forming method
JP3048318B2 (en) Resist processing equipment
JPH07297098A (en) Pattern forming method and electron beam drawing device
JPH07312335A (en) Substrate conveyance system, resist coating/developing apparatus usint it, and its usage method