JPH068414B2 - Method for producing liquid vaporizer fuel for gasoline engine - Google Patents

Method for producing liquid vaporizer fuel for gasoline engine

Info

Publication number
JPH068414B2
JPH068414B2 JP61024280A JP2428086A JPH068414B2 JP H068414 B2 JPH068414 B2 JP H068414B2 JP 61024280 A JP61024280 A JP 61024280A JP 2428086 A JP2428086 A JP 2428086A JP H068414 B2 JPH068414 B2 JP H068414B2
Authority
JP
Japan
Prior art keywords
phenol
secondary stream
dimethyl carbonate
coal
gasoline engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61024280A
Other languages
Japanese (ja)
Other versions
JPS61200198A (en
Inventor
リカルド・ヴエツセンドルフ
ヴエルネル・デーレル
アルフオンス・ヤンコフスキー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAG AG
Original Assignee
Ruhrkohle AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle AG filed Critical Ruhrkohle AG
Publication of JPS61200198A publication Critical patent/JPS61200198A/en
Publication of JPH068414B2 publication Critical patent/JPH068414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/22Organic compounds not containing metal atoms containing oxygen as the only hetero atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石炭液化によつて得られる石炭ナフサ留分を
蒸留により、精製処理とそれに続く改質処理とを受ける
主流と、フエノールおよび種々のアルキルフエノールの
多い二次流とに分け、場合によつてはさらに単離後多い
フエノールを含む二次流をメチル化剤と反応させる、ガ
ソリン機関用液状気化器燃料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a main stream which undergoes a purification treatment and a subsequent reforming treatment by distillation of a coal naphtha fraction obtained by coal liquefaction, a phenol and various To a secondary stream enriched in alkylphenols, optionally further after isolation, the secondary stream containing more enriched phenol is reacted with a methylating agent for a liquid vaporizer fuel for gasoline engines.

〔従来の技術〕[Conventional technology]

石炭または褐炭の分解水素添加または精製水素添加また
は石炭抽出物の水素添加による処理の際、フエノールお
よび種々のフエノール特にアルキルフエノールを変動す
る量で含む石炭油が生ずる。フエノールとそのアルキル
化された誘導体は気化器燃料のすぐれたアンチノツク剤
であるが、強い腐食作用をもち、生理学的に危険なの
で、オクタン価改良剤として使用できない。
During the treatment of cracked or refined hydrogenations of coal or lignite or the hydrogenation of coal extracts, coal oils containing varying amounts of phenols and various phenols, especially alkylphenols, are produced. Although phenol and its alkylated derivatives are excellent anti-noxious agents for carburetor fuels, they have strong corrosive effects and are physiologically dangerous, so they cannot be used as octane improvers.

一般に石炭油はガス状水素による触媒精製段階(精製)
により液状気化器燃料に処理される。この段階では、石
炭油に含まれるフエノールからナフテンへの分解と、窒
素および硫黄を含むヘテロ化合物から炭化水素への分解
が行なわれ、ヘテロ原子O,NおよびSが簡単な炭化水
素に分解される。この分解は適当な条件のもとでは困難
なしに行なわれる。続く改質の際、とりわけナフテンの
芳香族化と直鎖パラフインからの芳香族生成も行なわ
れ、改質段階で生ずる水素の一部が、精製段階および他
の変換過程で生ずる水素需要をまかなうのに役立つ。粗
石炭油の高いフエノール含有量のため、精製の際ナフテ
ン特にシクロヘキサンの高い含有量が生ずる。改質処理
でこれにより石炭ガソリン中のベンゼン含有量が高くな
るので、ガソリン機関用燃料のこのような製造方法は望
ましくないほど高いベンゼン含有量になる。
In general, coal oil is a catalyst refining stage (refining) using gaseous hydrogen
Is processed into liquid vaporizer fuel. In this stage, decomposition of phenol contained in coal oil into naphthenes and decomposition of hetero compounds containing nitrogen and sulfur into hydrocarbons are carried out, and heteroatoms O, N and S are decomposed into simple hydrocarbons. . This decomposition takes place without difficulty under suitable conditions. During the subsequent reforming, among other things, aromatization of naphthenes and aromatics from linear paraffins are also carried out, with some of the hydrogen produced in the reforming stage supplying the hydrogen demand produced in the refining stage and other conversion processes. To help. The high phenol content of crude coal oil results in a high content of naphthenes, especially cyclohexane, during refining. Such a method of making gasoline engine fuels results in undesirably high benzene content as the reforming process increases the benzene content in coal gasoline.

もちろん本発明による方法とは異なる目的ではあるが、
フエノールを分離するために、米国特許第4319981号に
次の方策が提案されている。すなわち石炭油のフエノー
ル含有留分を分離して、フエノールおよびそのアルキル
化された誘導体をメチルアリルエーテルの混合物に変換
し、この混合物を精製および改質された石炭ガソリンに
再添加する。ジー・エム・シンガマン・ガルフ研究開発
会社の基本論文では、このようにして得られたメチルア
ルリエーテルの混合物が燃料添加物およびオクタン価改
良剤として適していることが示されている(C.A.95:153
300j)。
Of course it has a different purpose than the method according to the invention,
The following strategies have been proposed in U.S. Pat. No. 4319981 to separate the phenols. That is, the phenol-containing fraction of coal oil is separated, the phenol and its alkylated derivatives are converted into a mixture of methylallyl ethers, which mixture is added back to the refined and reformed coal gasoline. A basic paper by GM Singaman Gulf Research and Development Company has shown that the mixture of methyl aryl ethers thus obtained is suitable as a fuel additive and an octane number improver (CA95: 153).
300j).

このメチルアリルエーテル混合物の5容積%の添加によ
り、例えばリサーチ法によるオクタン価(ROZ)が0.6だ
け高められる。
Addition of 5% by volume of this methylallyl ether mixture increases the octane number (ROZ) according to the research method by 0.6, for example.

フエノール混合物からエーテル混合物への移行は、前記
米国特許によれば硫酸ジメチルにより行なわれ、水酸化
ナトリウム水溶液による抽出、、抽出物の洗浄、洗浄剤
の除去、再酸性化および塩化ナトリウムの添加、遊離フ
エノールを分離するため、フエノールを含む相の洗浄、
単離されかつ浄化されたフエノール混合物への水酸化ナ
トリウム水溶液および硫酸ジメチルの添加、反応しなか
つた過剰な硫酸ジメチルを加水分解してエーテル化され
ないフエノールを除去するため過剰な水酸化ナトリウム
水溶液の添加、メチルアリルエーテル相の分離、蒸留に
よる反応生成物の洗浄および処理の段階を含んでいる。
The transition from a phenol mixture to an ether mixture is carried out according to said U.S. patent with dimethylsulfate, extraction with aqueous sodium hydroxide, washing of the extract, removal of the detergent, reacidification and addition of sodium chloride, liberation. Washing the phase containing phenol to separate the phenol,
Addition of aqueous sodium hydroxide and dimethyl sulphate to the isolated and clarified phenol mixture, addition of excess aqueous sodium hydroxide to hydrolyze unreacted excess dimethyl sulphate to remove unetherified phenol , Separation of the methylallyl ether phase, washing of the reaction product by distillation and processing.

得られたフエノールの単離とエーテル化は時間と材料が
かかる。
Isolation and etherification of the resulting phenol is time consuming and material consuming.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

したがつて本発明の課題は、最初にあげた種類の方法に
おいて、石炭油のフエノール化合物の費用のかかる単離
を回避することにある。
The object of the present invention is therefore to avoid, in a process of the type mentioned at the outset, the costly isolation of phenolic compounds from coal oil.

〔問題点を解決するための手段〕 この課題を解決するため本発明によれば、二次流をメチ
ル化剤としての炭酸ジメチルで、メチル化剤としての炭
酸ジメチルで、メチル化条件のもとで触媒の添加なしに
処理し、続いて生ずる副産物であるメタノールおよび二
酸化炭素を除去し、こうして得られてアニソールおよび
種々のメチルアリルエーテルを含む二次流の少なくとも
一部を、前記の後続処理段階を受ける主流の少なくとも
一部と合流させる。
[Means for Solving the Problems] In order to solve this problem, according to the present invention, the secondary stream is dimethyl carbonate as a methylating agent, and dimethyl carbonate as a methylating agent under a methylation condition. At least a portion of the secondary stream thus obtained, containing the anisole and various methylallyl ethers, which has been treated without the addition of a catalyst, to remove the by-products methanol and carbon dioxide which subsequently form. Join at least part of the mainstream receiving.

内燃機関用燃料として加鉛または非加鉛ガソリンへ炭酸
ジアルキルなるべく炭酸ジメチルおよび炭酸ジエチルを
添加することも提案される。この添加によりこのような
ガソリンのアンチノツク性の向上が行なわれる(欧州特
許公開第82688号明細書)。
It is also proposed to add dialkyl carbonate, preferably dimethyl carbonate and diethyl carbonate, to leaded or unleaded gasoline as fuel for internal combustion engines. By this addition, the gasoline anti-knock property is improved (European Patent Publication No. 82688).

石炭油または石炭油の留分を約150ないし180℃の温度で
なるべく炭酸ジメチルと反応させることによつて、簡段
な1段合成で所望のエーテル化生成物が得られることが
わかつた。反応は、オートクレーブ中で、または石炭油
からガソリン燃料を製造する全装置へ一体化された反応
器中で連続的に行なうことができる。
It has been found that the desired etherification product can be obtained in a simple one-step synthesis by reacting coal oil or a fraction of coal oil with dimethyl carbonate at a temperature of about 150 to 180 ° C., if possible. The reaction can be carried out continuously in an autoclave or in a reactor integrated into the overall equipment for producing gasoline fuel from coal oil.

反応生成物として、エーテル化されたフエノールとメタ
ノールとの混合物が次の反応式に従つて生ずる。
As a reaction product, a mixture of etherified phenol and methanol is produced according to the following reaction formula.

本発明による方法を実施する際副産物として生ずる二酸
化炭素は、困難なしに排出することができる。フエノー
ル含有留分と炭酸ジメチルとの反応の反応混合物の引続
く処理は、前留出物において65℃で同様に副産物として
生成されるメタノールを分離するように行なわれるのが
よい。
The carbon dioxide produced as a by-product when carrying out the process according to the invention can be discharged without difficulty. Subsequent treatment of the reaction mixture of the reaction of the phenol-containing fraction with dimethyl carbonate may be carried out at 65 ° C. in the pre-distillate so as to separate the methanol which is also formed as a by-product.

本発明による方法で使用される炭酸ジメチルでは、種々
の製造業者から提供される化学工業の大量生成物が用い
られる。炭酸ジメチルの合成は例えば次式によつて行な
われる。
The dimethyl carbonate used in the process according to the invention employs large-scale products of the chemical industry provided by various manufacturers. Dimethyl carbonate is synthesized, for example, according to the following formula.

2CH3OH+CO+1/2O2−(H3CO)2CO+H2O さらに本発明によれば、炭酸ジメチルによりメチル化を
受ける二次流中に、副産物として得られたメタノールが
残される。本方法により得られてアニソールと種々のメ
チルアリルエーテルと場合によつてはメタノールを含む
二次流は、鉱油精油所ガソリン用の中間成分として特に
適している。
2CH 3 OH + CO + 1 / 2O 2 − (H 3 CO) 2 CO + H 2 O Further, according to the present invention, methanol obtained as a by-product remains in the secondary stream that undergoes methylation by dimethyl carbonate. Be done. The secondary stream obtained by the process and comprising anisole and various methylallyl ethers and optionally methanol is particularly suitable as an intermediate component for petroleum refinery gasoline.

炭酸ジメチルによるフエノールのオルトメチル化は公知
であり、文献に記載されている反応は、第三アミン、第
三ホスフインまたは水酸化ナトリウムとよう化カリウム
との混合物のような触媒の存在下で行なわれる。
Orthomethylation of phenols with dimethyl carbonate is known and the reactions described in the literature are carried out in the presence of a catalyst such as a tertiary amine, tertiary phosphine or a mixture of sodium hydroxide and potassium iodide.

驚くべきことに、フエノールおよびフエノールのアルキ
ル化誘導体の多い石炭油の留分と炭酸ジメチルとの反応
には、続く処理の際再び除去せねばならない付加的な触
媒を必要としないことがわかつた。
It was surprisingly found that the reaction of the fraction of coal oil rich in phenols and alkylated derivatives of phenols with dimethyl carbonate does not require an additional catalyst which must be removed again in the subsequent treatment.

本発明による方法は精製段階および改質段階の負担を著
しく少なくし、水素を著しく節約する。
The process according to the invention significantly reduces the burden of refining and reforming steps and saves considerable hydrogen.

本発明による方法における反応はエーテルの高い収率で
行なわれるので、生成物を中間成分として使用する場
合、メチル化されないフエノールの分離を省略すること
ができる。
Since the reaction in the process according to the invention is carried out in high yields of ether, the separation of unmethylated phenol can be omitted when the product is used as an intermediate component.

〔実施例〕〔Example〕

本発明による方法を次の例によりさらに説明する。 The method according to the invention is further illustrated by the following example.

例 1 ボートトロツプ市において実験設備として運転される石
炭液化設備の石炭油から、分別蒸留により150ないし220
℃で沸騰する留分が単離された。フエノールについての
ガスクロマトグラフ(GC)分析から次の成分がわかつ
た。
Example 1 150 to 220 by fractional distillation from coal oil of coal liquefaction facility operated as an experimental facility in Boat Trop.
A fraction boiling at 0 ° C was isolated. The following components were found from the gas chromatographic (GC) analysis for phenol.

フエノール 8.84重量% オルトクレゾール 3.94重量% メタクレゾール 2.86重量% パラクレゾール 8.02重量% この石炭油留分200gが72gの炭酸ジメチルと共に攪拌オ
ートクレーブ中で160℃に加熱された。その際4.5時
間以内に圧力が19barに上昇した。冷却後オートクレー
ブはガス計を介して圧力を除かれた。この過程が2回反
覆された。全体として13.8のガスが生じた(99.6容積
%のCO、20℃のガス密度は1.842g/)。秤量は242gの
液状生成物と25.3gのガス状生成物を示した。反応生成
物はまだ1.7重量%のフエノール系物質を含んでい
た。これが引続く処理なしに改質された留分へ添加され
た。この気化器燃料のガソリン含有量は3.6重量%で
あつた。
Phenols 8.84% by weight Orthocresol 3.94% by weight Metacresol 2.86% by weight Paracresol 8.02% by weight 200 g of this coal oil fraction was heated to 160 ° C. in a stirred autoclave with 72 g of dimethyl carbonate. The pressure rose to 19 bar within 4.5 hours. After cooling, the autoclave was depressurized via a gas meter. This process was repeated twice. Overall 13.8 gas was produced (99.6 vol% CO 2 , gas density at 20 ° C. 1.842 g /). Weighed 242 g of liquid product and 25.3 g of gaseous product. The reaction product still contained 1.7% by weight of phenolic material. This was added to the reformed cut without subsequent treatment. The gasoline content of this vaporizer fuel was 3.6% by weight.

例 2 例1と同じ起源の石炭油から、150℃の温度以下で沸騰
する留分が分離された。
Example 2 From coal oil of the same origin as in Example 1, a fraction boiling below a temperature of 150 ° C was separated.

150ないし220℃の沸騰範囲にある石炭油留分2,127gと炭
酸ジメチル319gが、オートクレーブ中で窒素により覆
われた後攪拌しながら185℃に加熱された。10時間以内
に圧力が40barに上昇し、続いて25℃への冷却後16barに
低下した。オートクレーブはガス計を介して圧力を除か
れ、20℃で1.832g/のガス密度をもつ98.6容積%のCO
を含む91のガスが生じた。
2,127 g of a coal oil fraction in the boiling range of 150 to 220 ° C. and 319 g of dimethyl carbonate were covered with nitrogen in an autoclave and then heated to 185 ° C. with stirring. Within 10 hours the pressure rose to 40 bar and subsequently dropped to 16 bar after cooling to 25 ° C. The autoclave was depressurized via a gas meter and had a gas density of 1.832 g / 98.6% CO 2 at 20 ° C.
91 gases, including 2 , were produced.

液状生成物は2,311gであつた。The liquid product weighed 2,311 g.

GC分析の結果 95.6重量%のフエノールがアニソールに 75.8重量%のオルトクレゾールがオルトクレシルメチル
エーテルに 83.8重量%のメタクレゾールがメタクレシルメチルエー
テルに 97.0重量%のパラクレゾールがパラクレシルメチルエー
テルに 変換されたことがわかつた。
GC analysis results 95.6% by weight phenol to anisole 75.8% by weight orthocresol to orthocresyl methyl ether 83.8% by weight metacresol to metacresyl methyl ether 97.0% by weight paracresol to paracresyl methyl ether I knew it was converted to.

例3 本発明による方法によつて得られたエーテル化された石
炭油の3つの留分の検査結果は次のとおりである。
Example 3 The test results of three fractions of etherified coal oil obtained by the method according to the invention are as follows.

沸 点 留分A 150〜215℃ 留分B 150〜185℃ 留分C 185〜215℃ 上記の留分の10容積%を市販の加鉛特級燃料(SVK)に
混合して、次の混合オクタン価が得られた。
Boiling point fraction A 150 to 215 ° C Fraction B 150 to 185 ° C Fraction C 185 to 215 ° C 10% by volume of the above fraction is mixed with a commercially available leaded special grade fuel (SVK) and the following mixed octane number is obtained. was gotten.

ここでMOZはモータ法によるオクタン価である。 MOZ is the octane number by the motor method.

60容積%の特級燃料と40容積%の熱分解全ガソリンとの
混合物は、DIN51600により260分の耐酸化性の値を示し
た。
A mixture of 60% by volume of special grade fuel and 40% by volume of pyrolysis total gasoline showed an oxidation resistance value according to DIN 51600 of 260 minutes.

それぞれ留分AないしCの10容積%を上記の60:40混合
物へ混合することによつて、すべての場合において耐酸
化性が960分以上の値に高まつた。
By mixing 10% by volume of the respective cuts A to C into the abovementioned 60:40 mixture, the oxidation resistance was increased in all cases to values of 960 minutes and above.

市販の特級燃料への10容積%混合において、3つの留分
AないしCについて、蒸発残留物の次の値が求められた
(DIN EN5によるDIN51 600最大5mg/100mlの蒸発残留
物)。
The following values of evaporation residue were determined for the three fractions A to C in 10% by volume mixing with commercial grade fuel (DIN 51 according to DIN EN 5 600 maximum evaporation residue of 5 mg / 100 ml).

すべての留分A,B,Cはブランデー色で、AはCより
明るく、BはAより明るかつた。留分は次の密度をもつ
ていた。
All fractions A, B and C were brandy in color, A brighter than C and B brighter than A. The cut had the following densities:

15(g/ml) 留分A 0.927 留分B 0.920 留分C 0.934 特級燃料との10容積%混合では、-25℃まで混濁はおこ
らなかつた。
The 10 volume% mixture of d 15 (g / ml) fraction A 0.927 fraction B 0.920 fraction C 0.934 grade fuel, turbidity up to -25 ° C. is has failed occur.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】石炭液化によつて得られる石炭ナフサ留分
を蒸留により、精製処理とそれに続く改質処理とを受け
る主流と、フエノールおよび種々のアルキルフエノール
の多い二次流とに分け、場合によつてはさらに単離後多
いフエノールを含む二次流をメチル化剤と反応させる方
法において、この二次流をメチル化剤としての炭酸ジメ
チルで、メチル化条件のもとで触媒の添加なしに処理
し、続いて生ずる副産物であるメタノールおよび二酸化
炭素を除去し、こうして得られてアニソールおよび種々
のメチルアリルエーテルを含む二次流の少なくとも一部
を、前記の後続処理段階を受ける主流の少なくとも一部
と合流させることを特徴とする、ガソリン機関用液状気
化器燃料の製造方法。
1. A coal naphtha fraction obtained by coal liquefaction is divided by distillation into a main stream which undergoes a purification treatment and a subsequent reforming treatment and a secondary stream rich in phenol and various alkylphenols. According to the method, after the isolation, a secondary stream containing a large amount of phenol is reacted with a methylating agent, and the secondary stream is treated with dimethyl carbonate as a methylating agent without adding a catalyst under methylation conditions. At least a portion of the resulting secondary stream comprising anisole and various methylallyl ethers is removed from at least the main stream which has been subjected to the subsequent treatment step. A method for producing a liquid vaporizer fuel for a gasoline engine, which is characterized by joining with a part.
【請求項2】炭酸ジメチルでメチル化を受ける二次流
に、副産物として生ずるメタノールを残すことを特徴と
する、特許請求の範囲第1項に記載の方法。
2. A process according to claim 1, characterized in that the secondary stream undergoing methylation with dimethyl carbonate leaves behind methanol which is produced as a by-product.
JP61024280A 1985-02-11 1986-02-07 Method for producing liquid vaporizer fuel for gasoline engine Expired - Lifetime JPH068414B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3504529.9 1985-02-11
DE3504529A DE3504529C2 (en) 1985-02-11 1985-02-11 Process for producing a liquid carburettor fuel for Otto engines

Publications (2)

Publication Number Publication Date
JPS61200198A JPS61200198A (en) 1986-09-04
JPH068414B2 true JPH068414B2 (en) 1994-02-02

Family

ID=6262149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024280A Expired - Lifetime JPH068414B2 (en) 1985-02-11 1986-02-07 Method for producing liquid vaporizer fuel for gasoline engine

Country Status (4)

Country Link
EP (1) EP0191388B1 (en)
JP (1) JPH068414B2 (en)
DE (1) DE3504529C2 (en)
ZA (1) ZA86918B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899102B (en) * 2012-10-30 2014-08-06 世纪国宏新能源科技(北京)有限公司 Methanol gasoline instantizer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192949A (en) * 1977-06-28 1980-03-11 Basf Aktiengesellschaft Preparation of aralkyl phenyl ethers and alkyl phenyl ethers
DE2729031A1 (en) * 1977-06-28 1979-01-18 Basf Ag Aralkyl- and alkyl-phenol-ether prepn. - by reacting phenol and di:aralkyl- or di:alkyl-carbonate using tert. amine or phosphine catalyst
IT1099572B (en) * 1978-07-21 1985-09-18 Snam Progetti PROCEDURE FOR THE PREPARATION OF PHENCLIC ETHERS
US4319981A (en) * 1980-11-12 1982-03-16 The United States Of America As Represented By The United States Department Of Energy Process for preparing a liquid fuel composition

Also Published As

Publication number Publication date
DE3504529A1 (en) 1986-08-14
EP0191388B1 (en) 1990-04-25
EP0191388A2 (en) 1986-08-20
JPS61200198A (en) 1986-09-04
DE3504529C2 (en) 1987-02-12
ZA86918B (en) 1986-11-26
EP0191388A3 (en) 1988-03-23

Similar Documents

Publication Publication Date Title
EP2014643B1 (en) Para-methoxyaniline derivatives increasing the antiknock rating of hydrocarbon fuels and compositions based thereon
EP0177307B1 (en) Catalytic hydroconversion of carbonaceous materials
US4659453A (en) Hydrovisbreaking of oils
US4371727A (en) Fuel oils from coal
GB2132222A (en) Process for producing petrol
WO2004033512A2 (en) Process for improving production of fischer-tropsch distillate fuels
WO2015001520A1 (en) Process for the refining of crude oil
Fischer The conversion of coal into oils
US4827045A (en) Etherification of extracted crude methanol and conversion of raffinate
JPH01246236A (en) Improved etherification
JPH068414B2 (en) Method for producing liquid vaporizer fuel for gasoline engine
Sharypov et al. Steam cracking of coal-derived liquids and some aromatic compounds in the presence of haematite
WO2004033599A2 (en) Recovery of alcohols from fischer-tropsch naphtha and distillate fuels containing the same
EP0289232A2 (en) Feedstock dewatering and etherification of crude methanol
EP0091047B1 (en) Fuel for a carburettor engine
DE69103312T2 (en) Etherification of gasoline.
US4382855A (en) Process for removal of hydroxy- and/or mercapto-substituted hydrocarbons from coal liquids
WO1982001716A1 (en) Novel anisole mixture and liquid hydrocarbon fuels containing the same
RU2232793C1 (en) Low-viscosity marine fuel production process
US4277327A (en) Treatment of phenol-containing feed streams
EP0051909A2 (en) Process for preparing a liquid fuel composition
US4236030A (en) Process for recovering phenols from a hydrocarbon mixture containing the same
SU1444333A1 (en) Method of producing high-octane gasoline components
CN1019311B (en) Process for producing liquid fuel of otto engine
SU1033532A1 (en) Method for preparing boiler fuel