JPH0682649B2 - Insulation film for electric / electronic devices - Google Patents
Insulation film for electric / electronic devicesInfo
- Publication number
- JPH0682649B2 JPH0682649B2 JP63001935A JP193588A JPH0682649B2 JP H0682649 B2 JPH0682649 B2 JP H0682649B2 JP 63001935 A JP63001935 A JP 63001935A JP 193588 A JP193588 A JP 193588A JP H0682649 B2 JPH0682649 B2 JP H0682649B2
- Authority
- JP
- Japan
- Prior art keywords
- polyimide resin
- electronic devices
- electric
- tetracarboxylic acid
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は電気・電子デバイス、特に半導体装置に用いら
れる新規な絶縁膜を提供するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention provides a novel insulating film used in electric / electronic devices, particularly in semiconductor devices.
更に具体的には、ジャンクションコート用、パッシベー
ション用、防湿用、バッファコート用、α線遮蔽用及び
層間絶縁用等の電気特性に優れ且つ耐熱性、密着性に優
れた新規な絶縁膜に関する。More specifically, the present invention relates to a novel insulating film having excellent electrical properties such as junction coat, passivation, moisture proof, buffer coat, α-ray shielding, and interlayer insulation, and excellent heat resistance and adhesion.
(ロ)従来の技術 芳香族テトラカルボン酸及びその誘導体とジアミンを反
応させて得られるポリイミド樹脂は優れた耐熱性、耐薬
品性を示すため、種々の用途に用いられている。(B) Conventional Technology A polyimide resin obtained by reacting an aromatic tetracarboxylic acid and its derivative with a diamine exhibits excellent heat resistance and chemical resistance, and is therefore used for various purposes.
ポリイミド樹脂の半導体装置への使用に関しては、例え
ば半導体基体に形成されたpn接合の露出端面を保護する
ためpn接合部にポリイミド樹脂を塗布すること(ジャン
クションコート膜)、外界からの半導体素子表面の汚染
防止のため素子表面にポリイミド樹脂を塗布すること
(パッシベーション膜)、半導体素子の防湿性の向上の
ためパッシベーション膜上にポリイミド樹脂を塗布する
こと(防湿膜)、半導体素子の機械的保護のためパッシ
ベーション膜上にポリイミド樹脂を塗布すること(バッ
ファコート膜)、α線によるメモリ素子のソフトエラー
防止のためポリイミド樹脂をパッシベーション膜上にポ
リイミド樹脂を塗布すること(α線遮蔽膜)及び配線層
間の絶縁のためポリイミド樹脂を配線層間に形成するこ
と(層間絶縁膜)等が既に公知であり一部試みられてい
る。(機能材料、1983年、7月号、9頁、発行所株式会
社シエムシー) (ハ)発明が解決しようとする問題点 しかしながら、ポリイミド樹脂を上記各分野で使用する
場合その電気特性が不十分である場合が多い。Regarding the use of polyimide resin in semiconductor devices, for example, apply polyimide resin to the pn junction (junction coat film) in order to protect the exposed end surface of the pn junction formed on the semiconductor substrate. To prevent contamination, apply polyimide resin to the surface of the device (passivation film), to improve the moisture resistance of the semiconductor device, to apply polyimide resin on the passivation film (moisture prevention film), to protect the semiconductor device mechanically. Applying a polyimide resin on the passivation film (buffer coat film), applying a polyimide resin on the passivation film to prevent a soft error of the memory element due to α-rays (α-ray shielding film), and between the wiring layers. Forming polyimide resin between wiring layers for insulation (interlayer insulation film) Attempts have been made to some are known to. (Functional material, July 1983 issue, p. 9, p.c., CMC Co., Ltd.) (C) Problems to be solved by the invention However, when the polyimide resin is used in each of the above fields, its electrical characteristics are insufficient. Often there is.
即ち、ポリイミド樹脂は極性基を有するため、電圧印加
時に分極し、半導体素子表面に影響を与えて素子特性を
変動させるという短所を有することが知られている〔シ
ーエムシー、テクニカル、レポート(CMC Technical Re
port)、27号、エレクトロニクス用特殊塗料、88頁、発
行所株式会社シーエムシー〕。That is, since the polyimide resin has a polar group, it is known that it has a disadvantage that it is polarized when a voltage is applied and affects the surface of the semiconductor element to change the element characteristics [CMC Technical Report. Re
port), No. 27, special paint for electronics, page 88, publishing company CMC Co., Ltd.].
又、ポリイミド樹脂の分極(空間電荷分極)を静電容量
−電圧(以下、C−Vと略称する。)特性を測定するこ
とにより定量化し、ポリイミド樹脂が電圧印加時に大き
く分極することも知られている〔アニュアル、レポー
ト、コンファランス、オン、エレクトリカル、インシュ
レイション、アンド、ディエレクトリック、フェノミナ
(Annual Report Conferennce on Electrical Insulati
on & Dielectric Phenomina)、1985巻、176〜181頁、
ナショナル、アカデミイ、オブ、サイエンス、ワシント
ン、ユーエスエー(National Academy of Science,Wash
ington USA)〕。It is also known that the polarization (space charge polarization) of the polyimide resin is quantified by measuring the capacitance-voltage (hereinafter abbreviated as CV) characteristic, and the polyimide resin is significantly polarized when a voltage is applied. (Annual Report Conferennce on Electrical Insulati (Annual Report Conferennce on Electrical Insulati)
on & Dielectric Phenomina), 1985, 176-181,
National, Academic, Of, Science, Washington, USA (National Academy of Science, Wash
(ington USA)].
本発明は電圧印加時に分極しない、即ち低分極性を示す
優れた電気特性を有し、且つ耐熱性、密着性に優れた新
規なポリイミド樹脂からなる電気・電子デバイス用絶縁
膜を提供することにある。The present invention provides an insulating film for an electric / electronic device, which is made of a novel polyimide resin that has excellent electric characteristics that do not polarize when a voltage is applied, that is, exhibits low polarizability, and that has excellent heat resistance and adhesion. is there.
(ニ)問題点を解決するための手段 本発明者らは、上記問題点を解決すべく鋭意努力検討し
た結果、テトラカルボン酸及びその誘導体を構成する4
個のカルボニル基に直接結合する4個の原子が不飽和結
合を有しない炭素原子であるようなテトラカルボン酸及
びその誘導体を用いたポリイミド樹脂が電圧印加時に分
極せず、即ち低分極性で優れた電気特性を有し、且つ耐
熱性、密着性に優れた電気・電子デバイス用絶縁膜とな
ることを見出し本発明を完成するに至った。(D) Means for Solving the Problems As a result of diligent efforts and studies to solve the above problems, the present inventors have constructed tetracarboxylic acid and its derivatives.
Polyimide resin using tetracarboxylic acid and its derivatives in which four atoms directly bonded to each carbonyl group are carbon atoms having no unsaturated bond are not polarized when a voltage is applied, that is, excellent in low polarizability. The inventors have found that the insulating film for electric / electronic devices has excellent electrical characteristics, and has excellent heat resistance and adhesiveness, and has completed the present invention.
即ち、本発明は一般式〔I〕で表される 〔式中、R1はテトラカルボン酸及びその誘導体を構成す
る4価の有機基であって、4個のカルボニル基に直接結
合する4個の原子は不飽和結合を有しない炭素原子であ
り、R2はジアミンを構成する2価の有機基である。) 繰り返し単位を含有するポリイミド樹脂からなる電気・
電子デバイス用絶縁膜に関するものである。That is, the present invention is represented by the general formula [I]. [In the formula, R 1 is a tetravalent organic group constituting tetracarboxylic acid and its derivative, and the four atoms directly bonded to the four carbonyl groups are carbon atoms having no unsaturated bond, R 2 is a divalent organic group constituting diamine. ) Electricity consisting of polyimide resin containing repeating units
The present invention relates to an insulating film for electronic devices.
本発明の電気・電子デバイス用絶縁膜に使用される一般
式〔I〕のポリイミド樹脂を得るために使用されるR1を
構成するテトラカルボン酸及びその誘導体の具体例とし
ては、1,2,3,4−ブタンテトラカルボン酸、シクロブタ
ンテトラカルボン酸、シクロペンタンテトラカルボン
酸、シクロヘキサンテトラカルボン酸、3,4−ジカルボ
キシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク
酸等のテトラカルボン酸及びこれらの二無水物、更には
ジカルボン酸ジ酸ハロゲン化物等が挙げられる。Specific examples of the tetracarboxylic acid and its derivative constituting R 1 used to obtain the polyimide resin of the general formula [I] used for the insulating film for electric / electronic devices of the present invention include 1,2, Tetra such as 3,4-butanetetracarboxylic acid, cyclobutanetetracarboxylic acid, cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, and 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalenesuccinic acid. Examples thereof include carboxylic acids and their dianhydrides, and further dicarboxylic acid diacid halides.
又、上記テトラカルボン酸及びその誘導体は1種であっ
ても2種以上混合して使用してもよい。The tetracarboxylic acid and its derivative may be used alone or in combination of two or more.
更に、本発明の効果を阻害しない程度に4個のカルボニ
ル基に直接結合する4個の原子が不飽和結合を有する炭
素原子であるようなテトラカルボン酸及びその誘導体を
混合して使用してもよい。Further, even if a tetracarboxylic acid and its derivative in which four atoms directly bonded to four carbonyl groups are carbon atoms having an unsaturated bond, are mixed and used, to the extent that the effects of the present invention are not impaired. Good.
このようなテトラカルボン酸及びその誘導体の具体例と
しては、ピロメリット酸、ベンゾフェノンテトラカルボ
ン酸、ビフェニルテトラカルボン酸のテトラカルボン酸
及びこれらの二無水物、更にはジカルボン酸ジ酸ハロゲ
ン化物等が挙げられる。Specific examples of such tetracarboxylic acid and its derivative include pyromellitic acid, benzophenonetetracarboxylic acid, tetracarboxylic acid of biphenyltetracarboxylic acid and dianhydrides thereof, and further dicarboxylic acid diacid halide and the like. To be
本発明の電気・電子デバイス用絶縁膜に使用される一般
式〔I〕のポリイミド樹脂を得るために使用されるR2を
構成するジアミンの具体例としては、p−フェニレンジ
アミン、m−フェニレンジアミン、ジアミノフェニルメ
タン、ジアミノジフェニルエーテル、2,2−ジアミノジ
フェニルプロパン、ジアミノジフェニルスルホン、ジア
ミノベンゾフェノン、ジアミノナフタレン、1,3−ビス
(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−
アミノフェノキシ)ベンゼン、4,4′−ジ(4−アミノ
フェノキシ)ジフェニルスルホン、2,2′−ビス〔4
(4−アミノフェノキシ)フェニル〕プロパン等の芳香
族ジアミンが挙げられる。Specific examples of the diamine constituting R 2 used for obtaining the polyimide resin of the general formula [I] used for the insulating film for electric / electronic devices of the present invention include p-phenylenediamine and m-phenylenediamine. , Diaminophenylmethane, diaminodiphenyl ether, 2,2-diaminodiphenylpropane, diaminodiphenylsulfone, diaminobenzophenone, diaminonaphthalene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-
Aminophenoxy) benzene, 4,4'-di (4-aminophenoxy) diphenylsulfone, 2,2'-bis [4
Aromatic diamines such as (4-aminophenoxy) phenyl] propane are mentioned.
その他、目的に応じ脂環式ジアミン及び脂肪族ジアミン
を使用しても良い。In addition, alicyclic diamine and aliphatic diamine may be used depending on the purpose.
又、これらジアミンの1種又は2種以上を混合して使用
することもできる。Further, one kind or a mixture of two or more kinds of these diamines can be used.
本発明の電気・電子デバイス用絶縁膜に使用される一般
式〔I〕のポリイミド樹脂を得るための重合方法には特
に限定はないが、テトラカルボン酸及びその誘導体とジ
アミンとの反応からポリイミド樹脂前駆体を合成し脱水
閉環する方法が好ましい。The polymerization method for obtaining the polyimide resin of the general formula [I] used for the insulating film for electric / electronic devices of the present invention is not particularly limited, but the polyimide resin can be obtained by the reaction of tetracarboxylic acid or its derivative with diamine. A method of synthesizing a precursor and performing dehydration ring closure is preferable.
通常の重縮合反応と同様に、使用されるテトラカルボン
酸及びその誘導体とジアミンの反応モル比を変えること
により、得られるポリイミド樹脂前駆体及びポリイミド
樹脂の重合度nを任意に調節することが可能であり、両
者の反応モル比が1に近いほど得られるポリイミド樹脂
の重合度nは大きくなる。Like the usual polycondensation reaction, the polymerization degree n of the obtained polyimide resin precursor and polyimide resin can be arbitrarily adjusted by changing the reaction molar ratio of the tetracarboxylic acid or its derivative and the diamine used. Therefore, the closer the reaction molar ratio of both is to 1, the greater the degree of polymerization n of the obtained polyimide resin.
本発明においては、この重合度nは3以上1000以下、好
ましくは5以上500以下である。In the present invention, the degree of polymerization n is 3 or more and 1000 or less, preferably 5 or more and 500 or less.
nが3より小さい場合は、ポリイミド樹脂を電気・電子
デバイス用絶縁膜として使用した場合、絶縁膜の機械的
強度が充分でない。When n is less than 3, the mechanical strength of the insulating film is insufficient when polyimide resin is used as the insulating film for electric / electronic devices.
nが1000より大きい場合には、絶縁膜形成の際の作業性
が著しく低下する。When n is larger than 1000, workability in forming the insulating film is significantly reduced.
テトラカルボン酸及びその誘導体とジアミンの反応温度
は−20〜150℃の任意の温度を選択することができる
が、特に−5〜100℃の範囲が好ましい。The reaction temperature of the tetracarboxylic acid or its derivative and the diamine can be selected at an arbitrary temperature of -20 to 150 ° C, but is preferably in the range of -5 to 100 ° C.
更に、ポリイミド樹脂前駆体をポリイミド樹脂に転化す
るには、通常は加熱により脱水閉環する方法が採用され
る。この加熱脱水閉環温度は、150〜450℃、好ましくは
170〜350℃の任意の温度を選択することができる。Furthermore, in order to convert the polyimide resin precursor into a polyimide resin, a method of dehydration ring closure by heating is usually adopted. The heat dehydration ring-closing temperature is 150 to 450 ° C., preferably
Any temperature between 170 and 350 ° C can be selected.
又、この脱水閉環に要する時間は、上記反応温度にもよ
るが30秒〜10時間、好ましくは5分〜5時間が適当であ
る。The time required for the dehydration ring closure is 30 seconds to 10 hours, preferably 5 minutes to 5 hours, depending on the reaction temperature.
ポリイミド樹脂前駆体をポリイミド樹脂に転化する他の
方法として、公知の脱水閉環触媒を使用して化学的に閉
環することもできる。As another method of converting the polyimide resin precursor into a polyimide resin, a known dehydration ring-closing catalyst may be used to chemically perform ring closure.
本発明のテトラカルボン酸及びその誘導体とジアミンか
ら得られるポリイミド樹脂又はポリイミド樹脂前駆体溶
液をスピンコート法もしくは印刷法で半導体装置に塗布
し、加熱、硬化せしめることによりジャンクションコー
ト用、パッシベーション用、防湿用、バッファコート
用、α線遮蔽用及び層間絶縁用等の用途に使用すること
ができる。A polyimide resin or a polyimide resin precursor solution obtained from a tetracarboxylic acid or a derivative thereof and a diamine of the present invention is applied to a semiconductor device by a spin coating method or a printing method, and then heated and cured to form a junction coat, for passivation, or moisture proof. , Buffer coat, α-ray shielding, interlayer insulation, etc.
(ホ)発明の効果 本発明の一般式〔I〕のポリイミド樹脂は、電圧を印加
した場合でも低分極性を示す優れた電気特性を有し、且
つ耐熱性、密着性も優れており電気・電子デバイス用絶
縁膜として使用することができる。(E) Effect of the Invention The polyimide resin of the general formula [I] of the present invention has excellent electrical characteristics of exhibiting low polarizability even when a voltage is applied, and has excellent heat resistance and adhesiveness. It can be used as an insulating film for electronic devices.
(ヘ)実施例 以下に実施例を挙げ、本発明を更に詳しく説明するが本
発明はこれらに限定されるものではない。(F) Examples The present invention will be described in more detail below with reference to Examples, but the present invention is not limited thereto.
実施例1 ジアミノジフェニルエーテル10.61g、シクロブタンテト
ラカルボン酸二無水物10.03gをN−メチル−2−ピロリ
ドン(以下、NMPと略称する。)122g中、室温で4時間
反応させポリイミド樹脂前駆体溶液を調製した。得られ
たポリイミド樹脂前駆体溶液は固形分14.5重量%で粘度
は5.8psであった。Example 1 Diaminodiphenyl ether 10.61 g and cyclobutane tetracarboxylic acid dianhydride 10.03 g were reacted in 122 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) at room temperature for 4 hours to prepare a polyimide resin precursor solution. did. The resulting polyimide resin precursor solution had a solid content of 14.5% by weight and a viscosity of 5.8 ps.
ポリエチレングリコール(以下、PEGと略記する)を標
準としたGPC測定により、この数平均分子量は28000であ
った。The number average molecular weight was 28,000 as measured by GPC using polyethylene glycol (hereinafter abbreviated as PEG) as a standard.
この溶液をNMPにより総固形分を7.0重量%に希釈後、10
00Åの熱酸化膜を形成したn型シリコン基板上にスピン
コートし300℃で60分間熱処理してポリイミド樹脂膜を
形成した。得られたポリイミド樹脂膜の厚さは2000Åで
あった。After diluting this solution with NMP to a total solid content of 7.0% by weight,
A polyimide resin film was formed by spin-coating on an n-type silicon substrate having a thermal oxide film of 00Å formed thereon and heat-treating it at 300 ° C. for 60 minutes. The thickness of the obtained polyimide resin film was 2000 liters.
得られたポリイミド樹脂膜上に直径2mmのアルミニウム
電極を真空蒸着法により形成し、更にシリコン基板の裏
面にもアルミニウム電極を形成した。シリコン基板の裏
面にアルミニウム電極を形成する際は前もってフッ化水
素酸によりエッチング処理を施した。An aluminum electrode having a diameter of 2 mm was formed on the obtained polyimide resin film by a vacuum evaporation method, and an aluminum electrode was also formed on the back surface of the silicon substrate. Before forming the aluminum electrode on the back surface of the silicon substrate, etching treatment was performed with hydrofluoric acid.
このようにしてMetal Polyimide Oxide Semiconductor
(以下、MPOSと略称する。)モデル素子を作製し、C−
V特性を測定した。In this way Metal Polyimide Oxide Semiconductor
(Hereinafter, it is abbreviated as MPOS.) A model element is manufactured and C-
The V characteristic was measured.
MPOSモデル素子の概略図を図−1に示す。Figure 1 shows a schematic diagram of the MPOS model device.
図−1中、1はアルミニウム電極、2はポリイミド樹脂
(膜厚2000Å)、3は熱酸化膜(膜厚1000Å)、4はシ
リコン基板を示す。In FIG. 1, 1 is an aluminum electrode, 2 is a polyimide resin (film thickness 2000Å), 3 is a thermal oxide film (film thickness 1000Å), and 4 is a silicon substrate.
C−V特性測定条件は次の通りである。The CV characteristic measurement conditions are as follows.
即ち、+15Vで40秒放置、2V/秒で電圧を負に掃引し−15
Vで40秒放置、次に2V/秒で電圧を正に掃引し+15Vに到
達したところで停止する。That is, leave at + 15V for 40 seconds, sweep the voltage negative at 2V / second, and
Leave for 40 seconds at V, then sweep the voltage positively at 2V / second and stop when + 15V is reached.
上記測定で得られたC−V特性図を図−2に示す。The C-V characteristic diagram obtained by the above measurement is shown in FIG.
図−2中、縦軸C/Coはバイアス電圧が+15Vの時の静電
容量に対する静電容量の比(%)、横軸はバイアス電圧
(ボルト)を示す。又、下向きの矢印は正から負方向へ
掃引した場合、上向きの矢印は負から正方向に掃引した
場合を示している。(以下、図−3〜図−9についても
同じ。) 図−2より、バイアス電圧掃引方向にかかわらずC−V
曲線は一致しポリイミド樹脂が分極していないことが分
る。In FIG. 2, the vertical axis C / Co represents the ratio (%) of the electrostatic capacity to the electrostatic capacity when the bias voltage is +15 V, and the horizontal axis represents the bias voltage (volt). The downward arrow indicates a case of sweeping from the positive direction to the negative direction, and the upward arrow indicates a case of sweeping from the negative direction to the positive direction. (The same applies to FIGS. 3 to 9 below.) From FIG. 2, C-V is obtained regardless of the bias voltage sweep direction.
It can be seen that the curves match and the polyimide resin is not polarized.
尚、C−V特性についてはジャーナル、エレクトロケミ
カル、ソサイヤティ(J.Electrochem.Soc.)、121巻、
6号、198C)に詳述されている。For C-V characteristics, Journal, Electrochemical, Society (J. Electrochem. Soc.), 121 volumes,
No. 6, 198C).
実施例2 1,4−ビス(4−アミノフェノキシ)ベンゼン12.57g、
シクロブタンテトラカルボン酸二無水物8.09gをNMP117g
中、室温で4時間反応させポリイミド樹脂前駆体溶液を
調製した。得られたポリイミド樹脂前駆体溶液は固形分
15.0重量%で粘度は5.6psであった。PEGを標準としたGP
C測定により、この数平均分子量は27000であった。Example 2 12.57 g of 1,4-bis (4-aminophenoxy) benzene,
Cyclobutane tetracarboxylic acid dianhydride 8.09 g NMP 117 g
A polyimide resin precursor solution was prepared by reacting at room temperature for 4 hours. The obtained polyimide resin precursor solution has a solid content
At 15.0 wt% the viscosity was 5.6 ps. GP with PEG as standard
According to C measurement, this number average molecular weight was 27,000.
以下、実施例1と同様に操作し得られたC−V特性図を
図−3に示す。Hereinafter, a CV characteristic diagram obtained by operating in the same manner as in Example 1 is shown in FIG.
図−3より、バイアス電圧掃引方向にかかわらずC−V
曲線は一致しポリイミド樹脂が分極していないことが分
る。From Fig. 3, C-V regardless of the bias voltage sweep direction
It can be seen that the curves match and the polyimide resin is not polarized.
実施例3 1,4−ビス(4−アミノフェノキシ)ベンゼン5.85g、3,
4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタ
レンコハク酸二無水物5.89gをNMP101g中、室温で24時間
反応させポリイミド樹脂前駆体溶液を調製した。得られ
たポリイミド樹脂前駆体溶液は固形分10.4重量%で粘度
は70.3psであった。PEGを標準としたGPC測定により、こ
の数平均分子量は24000であった。Example 3 1,4-bis (4-aminophenoxy) benzene 5.85 g, 3,
5.89 g of 4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride was reacted in 101 g of NMP at room temperature for 24 hours to prepare a polyimide resin precursor solution. The obtained polyimide resin precursor solution had a solid content of 10.4% by weight and a viscosity of 70.3 ps. According to GPC measurement using PEG as a standard, this number average molecular weight was 24,000.
以下、スピンコート後の熱処理温度が200℃である他は
実施例1と同様に操作し、得られたC−V特性図を図−
4に示す。Hereinafter, a CV characteristic diagram obtained by operating in the same manner as in Example 1 except that the heat treatment temperature after spin coating was 200 ° C.
4 shows.
図−4より、バイアス電圧掃引方向にかかわらずC−V
曲線は一致しポリイミド樹脂が分極していないことが分
る。From Fig.-4, C-V regardless of bias voltage sweep direction
It can be seen that the curves match and the polyimide resin is not polarized.
実施例4 4,4′−ジアミノ−3,3′−ジメチルジシクロヘキシルメ
タン11.92g、シクロブタンテトラカルボン酸二無水物1
0.30gをNMP187g中、室温で48時間反応させポリイミド樹
脂前駆体溶液を調製した。得られたポリイミド樹脂前駆
体溶液は固形分10.6重量%で粘度は18.9psであった。PE
Gを標準としたGPC測定により、この数平均分子量は7000
0であった。Example 4 11.4 g of 4,4'-diamino-3,3'-dimethyldicyclohexylmethane, cyclobutanetetracarboxylic dianhydride 1
0.30 g was reacted in 187 g of NMP at room temperature for 48 hours to prepare a polyimide resin precursor solution. The obtained polyimide resin precursor solution had a solid content of 10.6% by weight and a viscosity of 18.9 ps. PE
By GPC measurement with G as standard, this number average molecular weight is 7,000
It was 0.
以下、スピンコート後の熱処理温度が200℃である他は
実施例1と同様に操作し、得られたC−V特性図を図−
5に示す。Hereinafter, a CV characteristic diagram obtained by operating in the same manner as in Example 1 except that the heat treatment temperature after spin coating was 200 ° C.
5 shows.
図−5より、バイアス電圧掃引方向にかかわらずC−V
曲線は一致しポリイミド樹脂が分極していないことが分
る。From Fig. 5, C-V regardless of bias voltage sweep direction
It can be seen that the curves match and the polyimide resin is not polarized.
比較例1 ジアミノジフェニルエーテル19.66g、ピロメリット酸二
無水物20.34gをNMP460g中、室温で4時間反応させポリ
イミド樹脂前駆体溶液を調製した。得られたポリイミド
樹脂前駆体溶液は固形分8.0重量%で粘度は161cpsであ
った。Comparative Example 1 19.66 g of diaminodiphenyl ether and 20.34 g of pyromellitic dianhydride were reacted in 460 g of NMP at room temperature for 4 hours to prepare a polyimide resin precursor solution. The obtained polyimide resin precursor solution had a solid content of 8.0% by weight and a viscosity of 161 cps.
以下、実施例1と同様に操作し、得られたC−V特性図
を図−6に示す。Hereinafter, the same CV characteristic diagram obtained by operating as in Example 1 is shown in FIG.
図−6よりバイアス電圧の掃引方向が異なるとC−V曲
線にヒステリシスが生じポリイミド樹脂が分極している
ことが分る。It can be seen from FIG. 6 that when the sweep direction of the bias voltage is different, hysteresis occurs in the CV curve and the polyimide resin is polarized.
比較例2 1,4−ビス(4−アミノフェノキシ)ベンゼン14.62g、
ピロメリット酸二無水物10.69gをNMP180g中、室温で4
時間反応させポリイミド樹脂前駆体溶液を調製した。得
られたポリイミド樹脂前駆体溶液は固形分12.3重量%で
粘度は31.7psであった。Comparative Example 2 1,4-bis (4-aminophenoxy) benzene 14.62 g,
4.69 g of pyromellitic dianhydride in 180 g of NMP at room temperature
The reaction was carried out for a time to prepare a polyimide resin precursor solution. The obtained polyimide resin precursor solution had a solid content of 12.3% by weight and a viscosity of 31.7 ps.
以下、実施例1と同様に操作し、得られたC−V特性図
を図−7に示す。Thereafter, the CV characteristic diagram obtained by operating in the same manner as in Example 1 is shown in FIG.
図−7より、バイアス電圧の掃引方向が異なると、C−
V曲線にヒステリシスが生じポリイミド樹脂が分極して
いることが分る。From Fig. 7, if the sweep direction of the bias voltage is different, C-
It can be seen that hysteresis occurs on the V curve and the polyimide resin is polarized.
比較例3 ジアミノジフェニルエーテル10.01g、ベンゾフェノンテ
トラカルボン酸二無水物15.79gをNMP177g中、室温で4
時間反応させポリイミド樹脂前駆体溶液を調製した。得
られたポリイミド樹脂前駆体溶液は固形分12.7重量%で
粘度はで435cpsであった。Comparative Example 3 10.01 g of diaminodiphenyl ether and 15.79 g of benzophenone tetracarboxylic acid dianhydride were added at room temperature in 4 g of NMP of 177 g.
The reaction was carried out for a time to prepare a polyimide resin precursor solution. The obtained polyimide resin precursor solution had a solid content of 12.7% by weight and a viscosity of 435 cps.
以下、実施例1と同様に操作し、得られたC−V特性図
を図−8に示す。Hereinafter, the CV characteristic diagram obtained by operating in the same manner as in Example 1 is shown in FIG.
図−8より、バイアス電圧の掃引方向が異なるとC−V
曲線にヒステリシスが生じポリイミド樹脂が分極してい
ることが分る。From Figure-8, if the sweep direction of bias voltage is different, C-V
It can be seen that hysteresis occurs in the curve and the polyimide resin is polarized.
比較例4 4,4′−ジアミノ−3,3′−ジメチルジシクロヘキシルメ
タン11.92g、ピロメリット酸二無水物11.45gをNMP200g
中、室温で20時間反応させポリイミド樹脂前駆体溶液を
調製した。得られたポリイミド樹脂前駆体溶液は固形分
10.5重量%で粘度は16.2psであった。Comparative Example 4 4,4'-diamino-3,3'-dimethyldicyclohexylmethane 11.92 g, pyromellitic dianhydride 11.45 g were added to NMP 200 g.
The reaction was carried out at room temperature for 20 hours to prepare a polyimide resin precursor solution. The obtained polyimide resin precursor solution has a solid content
At 10.5 wt% the viscosity was 16.2 ps.
以下、スピンコート後の熱処理温度が200℃である他は
実施例1と同様に操作し、得られたC−V特性図を図−
9に示す。Hereinafter, a CV characteristic diagram obtained by operating in the same manner as in Example 1 except that the heat treatment temperature after spin coating was 200 ° C.
9 shows.
図−9より、バイアス電圧の掃引方向が異なるとC−V
曲線にヒステリシスが生じポリイミド樹脂が分極してい
ることが分る。According to Fig. 9, if the sweep direction of bias voltage is different, C-V
It can be seen that hysteresis occurs in the curve and the polyimide resin is polarized.
図−1は、実施例1〜比較例4のMetal Polyimide Oxid
e Semiconductor(MPOS)モデル素子である。 1……アルミニウム電極、2……ポリイミド樹脂、3…
…熱酸化膜、4……シリコン基板 図−2〜図−9は実施例1〜比較例4のC−V特性図で
ある。 縦軸C/Coはバイアス電圧が+15Vの時の静電容量に対す
る静電容量の比(%)、横軸はバイアス電圧(ボルト)
を示す。下向きの矢印は正から負方向へ掃引した場合、
上向きの矢印は負から正方向に掃引した場合を示す。FIG. 1 shows Metal Polyimide Oxid of Examples 1 to 4.
It is an e Semiconductor (MPOS) model device. 1 ... Aluminum electrode, 2 ... Polyimide resin, 3 ...
Thermal oxide film, 4 Silicon substrate FIGS. 2 to 9 are CV characteristic diagrams of Example 1 to Comparative Example 4. The vertical axis C / Co is the ratio (%) of the electrostatic capacity to the electrostatic capacity when the bias voltage is + 15V, and the horizontal axis is the bias voltage (volts).
Indicates. If the down arrow is swept from positive to negative direction,
The upward arrow indicates the case of sweeping from negative to positive direction.
Claims (1)
る4価の有機基であって、4個のカルボニル基に直接結
合する4個の原子は不飽和結合を有しない炭素原子であ
り、R2はジアミンを構成する2価の有機基であり、繰り
返し単位nは3以上、1000以下の整数である。〕 ポリイミド樹脂からなる電気・電子デバイス用絶縁膜。1. Represented by the general formula [I] [In the formula, R 1 is a tetravalent organic group constituting tetracarboxylic acid and its derivative, and the four atoms directly bonded to the four carbonyl groups are carbon atoms having no unsaturated bond, R 2 is a divalent organic group constituting the diamine, and the repeating unit n is an integer of 3 or more and 1000 or less. ] An insulating film for electric / electronic devices made of a polyimide resin.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63001935A JPH0682649B2 (en) | 1988-01-08 | 1988-01-08 | Insulation film for electric / electronic devices |
EP19930109530 EP0564009B1 (en) | 1988-01-08 | 1988-12-29 | Electric and electronic devices having a polyimide resin insulating film |
DE3888666T DE3888666T2 (en) | 1988-01-08 | 1988-12-29 | Polyimide resin and insulation layer for electrical or electronic devices. |
DE3856028T DE3856028T2 (en) | 1988-01-08 | 1988-12-29 | Electrical and electronic devices with a polyimide resin insulation layer |
EP19880121856 EP0323644B1 (en) | 1988-01-08 | 1988-12-29 | Polyimide resin and insulating film for electric and electronic devices |
US07/293,766 US5059677A (en) | 1988-01-08 | 1989-01-05 | Polyimide resin and insulating film for electric and electronic devices |
KR1019890000135A KR0136275B1 (en) | 1988-01-08 | 1989-01-07 | Electric and electronic device having a polyimide resin insulating film |
US07/514,945 US5070182A (en) | 1988-01-08 | 1990-04-26 | Polyimide resin and insulating film for electric and electronic devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63001935A JPH0682649B2 (en) | 1988-01-08 | 1988-01-08 | Insulation film for electric / electronic devices |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01181430A JPH01181430A (en) | 1989-07-19 |
JPH0682649B2 true JPH0682649B2 (en) | 1994-10-19 |
Family
ID=11515466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63001935A Expired - Lifetime JPH0682649B2 (en) | 1988-01-08 | 1988-01-08 | Insulation film for electric / electronic devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0682649B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5741884B2 (en) * | 2008-10-22 | 2015-07-01 | 学校法人東京工芸大学 | Image display device and flexible transparent organic electroluminescence element |
JP2010189510A (en) * | 2009-02-17 | 2010-09-02 | Hitachi Cable Ltd | Insulating coating and insulated wire |
JP2016004112A (en) * | 2014-06-16 | 2016-01-12 | 株式会社ジャパンディスプレイ | Manufacturing method of display device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57188853A (en) * | 1981-05-18 | 1982-11-19 | Hitachi Ltd | Plastic molded type semiconductor device |
-
1988
- 1988-01-08 JP JP63001935A patent/JPH0682649B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01181430A (en) | 1989-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6992820B2 (en) | Polyimide precursor resin composition for forming flexible device substrates | |
US5916632A (en) | Polyimide varnish | |
KR0136275B1 (en) | Electric and electronic device having a polyimide resin insulating film | |
JP3346228B2 (en) | Aromatic polyimide film, laminate and solar cell | |
EP0659856B1 (en) | Polyimide varnish | |
JPH0682649B2 (en) | Insulation film for electric / electronic devices | |
JPS584816B2 (en) | Semiconductor elements and their manufacturing methods | |
JPH0259622B2 (en) | ||
JPH11246760A (en) | Polyamideimide resin paste and film-forming material containing sane | |
JP2003261823A (en) | Method for producing coating fluid for forming porous film and the coating fluid, a method for producing porous film and porous film | |
JP7439898B2 (en) | Polyimide precursor for insulated wire, resin composition, insulated wire, and method for producing insulated wire | |
JP4423705B2 (en) | Low dielectric constant polymer | |
JPH0129370B2 (en) | ||
JPS5835368B2 (en) | Semiconductor device and its surface coating composition | |
Kuntman et al. | A new polyimide film for VLSI and its electrical characterization | |
JPWO2021176779A5 (en) | ||
JPS62261149A (en) | Manufacture of semiconductor device | |
JPS60177659A (en) | Manufacture of semiconductor device | |
JPS6047741B2 (en) | Copolymer liquid for coating and coated semiconductor device | |
JPS6222830A (en) | Silicon-containing polyimide resin and its production | |
JPH0259619B2 (en) | ||
JP2000017073A (en) | Preparation of polyamideimide resin and composition and paste containing the same | |
JP2014111693A (en) | Low temperature resistant resin composition and superconductive wire material using the same | |
JP2843333B2 (en) | Low thermal expansion polyimide | |
JP2024035165A (en) | resin composition |