JP2843333B2 - Low thermal expansion polyimide - Google Patents

Low thermal expansion polyimide

Info

Publication number
JP2843333B2
JP2843333B2 JP63172157A JP17215788A JP2843333B2 JP 2843333 B2 JP2843333 B2 JP 2843333B2 JP 63172157 A JP63172157 A JP 63172157A JP 17215788 A JP17215788 A JP 17215788A JP 2843333 B2 JP2843333 B2 JP 2843333B2
Authority
JP
Japan
Prior art keywords
polyimide resin
diamine
thermal expansion
polyimide
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63172157A
Other languages
Japanese (ja)
Other versions
JPH0222329A (en
Inventor
宣昭 向當
孝史 小林
昌彦 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSAN KAGAKU KOGYO KK
Original Assignee
NITSUSAN KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63172157A priority Critical patent/JP2843333B2/en
Application filed by NITSUSAN KAGAKU KOGYO KK filed Critical NITSUSAN KAGAKU KOGYO KK
Priority to EP19880121856 priority patent/EP0323644B1/en
Priority to EP19930109530 priority patent/EP0564009B1/en
Priority to DE3888666T priority patent/DE3888666T2/en
Priority to DE3856028T priority patent/DE3856028T2/en
Priority to US07/293,766 priority patent/US5059677A/en
Priority to KR1019890000135A priority patent/KR0136275B1/en
Publication of JPH0222329A publication Critical patent/JPH0222329A/en
Priority to US07/514,945 priority patent/US5070182A/en
Application granted granted Critical
Publication of JP2843333B2 publication Critical patent/JP2843333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は電気・電子デバイス、特に半導体装置に用い
られるに好適な新規な低分極性、低着色性、高透明性を
有した低熱膨張性ポリイミドに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is a novel low-polarization, low-coloring and high-transparency low thermal expansion suitable for use in electric and electronic devices, particularly semiconductor devices. It relates to a functional polyimide.

(ロ)従来の技術 芳香族テトラカルボン酸及びその誘導体とジアミンを
反応させて得られるポリイミド樹脂は優れた耐熱性、耐
薬品性を示す為、種々の用途に用いられている。
(B) Conventional technology A polyimide resin obtained by reacting an aromatic tetracarboxylic acid or a derivative thereof with a diamine exhibits excellent heat resistance and chemical resistance, and is therefore used in various applications.

ポリイミド樹脂の半導体装置への使用に関しては、例
えばジャンクションコート膜、パッシベーション膜、防
湿膜、バッファコート膜、α線遮蔽膜、層間絶縁膜等が
公知であり一部試みられていることが機能材料(1983
年,7月号,9頁,発行所(株)シーエムシー)に述べられ
ている。
With respect to the use of polyimide resin in semiconductor devices, for example, junction materials, passivation films, moisture-proof films, buffer coat films, α-ray shielding films, interlayer insulating films, and the like are known and some attempts have been made for functional materials ( 1983
(July, July issue, p. 9, Issued by CMC Co., Ltd.).

ところが上記用途に関しては無機材料及び金属材料と
ポリイミド樹脂を積層して用いる必要性がある為に、無
機材料及び金属材料とポリイミド樹脂の熱膨張係数の差
に起因する熱応力により、ポリイミド樹脂にクラック或
いは剥離が生じたり、無機材料及び金属材料を破壊して
しまう場合がある。
However, for the above applications, it is necessary to laminate the inorganic material and the metal material with the polyimide resin, so that the polyimide resin cracks due to the thermal stress caused by the difference in thermal expansion coefficient between the inorganic material and the metal material and the polyimide resin. Alternatively, peeling may occur or the inorganic material and the metal material may be broken.

そこで特定の芳香族テトラカルボン酸二無水物と芳香
族ジアミンとから得られるポリイミド樹脂が低熱膨張性
を示し、上記半導体装置への使用に関し有用であるとい
う提案が既に特開昭60−32827号公報及び特開昭60−208
358号公報に開示されている。
Therefore, a proposal has been made that a polyimide resin obtained from a specific aromatic tetracarboxylic dianhydride and an aromatic diamine exhibits low thermal expansion properties and is useful for use in the above semiconductor device. And JP-A-60-208
No. 358 discloses this.

尚、これら特許公報で用いられる特定の芳香族テトラ
カルボン酸二無水物とはピロメリット酸二無水物、ビフ
ェニルテトラカルボン酸二無水物等の芳香族テトラカル
ボン酸二無水物である。
The specific aromatic tetracarboxylic dianhydride used in these patent publications is an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride and biphenyltetracarboxylic dianhydride.

(ハ)発明が解決しようとする課題 上記の芳香族テトラカルボン酸二無水物を用いたポリ
イミド樹脂は低熱膨張性ではあるがその電気特性を測定
した場合、分極するという致命的欠陥が存在することが
既に特開平1−181430号公報で知られている。
(C) Problems to be Solved by the Invention The polyimide resin using the above-mentioned aromatic tetracarboxylic dianhydride has a low thermal expansion property, but has a fatal defect of polarization when its electric characteristics are measured. Is already known in JP-A-1-181430.

更に、これらのポリイミドは濃い茶褐色に着色してお
り、無色透明性を必要とする部品、装置には使用に適さ
ないという難点があった。
Furthermore, these polyimides are colored dark brown and have a drawback that they are not suitable for use in parts and devices that require colorless and transparent.

本発明は電圧印加時に分極しない、即ち低分極性と着
色がほとんどない高透明性を兼ね備え、且つ低熱膨張性
であるところの新規な低熱膨張性ポリイミドを提供する
ことにある。
An object of the present invention is to provide a novel low thermal expansion polyimide which does not polarize when a voltage is applied, that is, has both low polarizability and high transparency with almost no coloring, and low thermal expansion.

(ニ)課題を解決する為の手段 本発明者等は、上記問題点を解決すべく鋭意努力検討
した結果、低分極性を発現するテトラカルボン酸並びに
その誘導体であるところのシクロプタンテトラカルボン
酸及びその誘導体と特定のジアミンを用いたポリイミド
樹脂が意外にも低熱膨張性を示すことを見出し、本発明
を完成するに至った。
(D) Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have found that tetracarboxylic acid exhibiting low polarizability and cyclobutanetetracarboxylic acid which is a derivative thereof. The present inventors have also found that a polyimide resin using a derivative thereof and a specific diamine has unexpectedly low thermal expansion properties, and have completed the present invention.

シクロブタンテトラカルボン酸及びその誘導体とジア
ミンを反応させて得られる一般式[1] (式中、Rはジアミンを構成する2価の有機基であ
る。) で表される繰り返し単位を有するポリイミドにおいて、
Rが下記構造 (Xは水素原子、メチル基、メトキシ基又はハロゲン基
を表す。) より選ばれるジアミンを構成する2価の有機基であるこ
とを特徴とする低熱膨張性ポリイミドに関するものであ
る。
General formula [1] obtained by reacting cyclobutanetetracarboxylic acid or a derivative thereof with a diamine (In the formula, R is a divalent organic group constituting a diamine.) In a polyimide having a repeating unit represented by the following formula:
R is the following structure (X represents a hydrogen atom, a methyl group, a methoxy group or a halogen group.) The present invention relates to a low thermal expansion polyimide, which is a divalent organic group constituting a diamine selected from the group consisting of:

本発明の低熱膨張性ポリイミドを得るために使用され
るテトラカルボン酸及びその誘導体は、シクロブタンテ
トラカルボン酸及びその二無水物、更にはジカルボン酸
ジ酸ハロゲン化物等が挙げられる。更に、低分極性、低
着色性、高透明性を阻害しない程度に芳香族テトラカル
ボン酸及びその誘導体を混合して使用してもよい。この
ようなテトラカルボン酸及びその誘導体の具体例として
は、ピロメリット酸、ベンゾフェノンテトラカルボン
酸、ビフェニルテトラカルボン酸等のテトラカルボン酸
及びこれらの二無水物、更にはジカルボン酸ジ酸ハロゲ
ン化物等が挙げられる。
Examples of the tetracarboxylic acid and its derivative used for obtaining the low thermal expansion polyimide of the present invention include cyclobutanetetracarboxylic acid and its dianhydride, and further, dicarboxylic acid diacid halide. Further, aromatic tetracarboxylic acids and derivatives thereof may be mixed and used to such an extent that low polarizability, low coloring property and high transparency are not impaired. Specific examples of such tetracarboxylic acids and derivatives thereof include pyromellitic acid, benzophenone tetracarboxylic acid, tetracarboxylic acids such as biphenyltetracarboxylic acid and dianhydrides thereof, and further include dicarboxylic acid diacid halides. No.

本発明の低熱膨張性ポリイミドに使用される一般式
〔1〕のポリイミド樹脂を得るために使用されるジアミ
ンの具体例としては、ベンジジン、3,3′−ジメトキシ
−4,4′−ジアミノビフェニル、3,3′−ジメチル−4,
4′−ジアミノビフェニル、4,4′−ジアミノ−p−ター
フェニル、9,10−ビス(4−アミノフェニル)アントラ
セン等の芳香族ジアミンが挙げられる。
Specific examples of the diamine used to obtain the polyimide resin of the general formula [1] used for the low thermal expansion polyimide of the present invention include benzidine, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,
Aromatic diamines such as 4'-diaminobiphenyl, 4,4'-diamino-p-terphenyl, and 9,10-bis (4-aminophenyl) anthracene are exemplified.

本発明の一般式〔1〕の低膨張性ポリイミドを得るた
めの重合方法には特に限定はないが、テトラカルボン酸
及びその誘導体とジアミンとの反応からポリイミド樹脂
前駆体を合成し脱水閉環する方法が好ましい。テトラカ
ルボン酸及びその誘導体とジアミンの反応温度は−20〜
150℃の任意の温度を選択することができるが、特に−
5〜100℃の範囲が好ましい。
The polymerization method for obtaining the low-expansion polyimide of the general formula [1] of the present invention is not particularly limited, but a method of synthesizing a polyimide resin precursor from a reaction of tetracarboxylic acid and its derivative with a diamine to effect dehydration and ring closure. Is preferred. Reaction temperature of tetracarboxylic acid and its derivative with diamine is -20 to
Any temperature of 150 ° C can be selected, especially-
A range from 5 to 100 ° C is preferred.

更に、ポリイミド樹脂前駆体をポリイミド樹脂に転化
するには、通常は加熱により脱水閉環する方法が採用さ
れる。この加熱脱水閉環温度は、150〜450℃、好ましく
は170〜350℃の任意の温度を選択することができる。
Further, in order to convert the polyimide resin precursor into a polyimide resin, a method of dehydrating and ring-closing by heating is usually employed. As this heat dehydration ring closure temperature, any temperature of 150 to 450 ° C, preferably 170 to 350 ° C can be selected.

又、この脱水閉環に要する時間は、上記反応温度にも
よるが30秒〜10時間、好ましくは5分〜5時間が適当で
ある。
The time required for this dehydration ring closure depends on the reaction temperature, but is suitably 30 seconds to 10 hours, preferably 5 minutes to 5 hours.

ポリイミド樹脂前駆体をポリイミド樹脂に転化する他
の方法として、公知の脱水閉環触媒を使用して化学的に
閉環することもできる。
As another method of converting the polyimide resin precursor into a polyimide resin, the ring can be chemically closed using a known dehydration ring-closing catalyst.

本発明のテトラカルボン酸及びその誘導体とジアミン
から得られるポリイミド樹脂又は、ポリイミド樹脂前駆
体溶液をスピンコート法若しくは印刷法で半導体装置に
塗布し、加熱、硬化せしめることによりジャンクション
コート用、パッシベーション用、防湿用、バッファコー
ト用、α線遮蔽用及び層間絶縁用等の用途に使用するこ
とができる。
A polyimide resin obtained from the tetracarboxylic acid and its derivative of the present invention and a diamine, or a polyimide resin precursor solution is applied to a semiconductor device by a spin coating method or a printing method, and is heated and cured for junction coating, for passivation, It can be used for applications such as moisture proofing, buffer coating, α-ray shielding and interlayer insulation.

(ホ)発明の効果 本発明の一般式〔1〕のポリイミド樹脂は低熱膨張性
を有し且つ低分極性、低着色性、高透明性であるため、
電気・電子デバイス、特に半導体装置に使用するにあた
り有用である。
(E) Effect of the Invention Since the polyimide resin of the general formula [1] of the present invention has low thermal expansion property, low polarization property, low coloring property and high transparency,
It is useful when used for electric / electronic devices, especially semiconductor devices.

(ヘ)実施例 以下に実施例を挙げ、本発明を更に詳しく説明するが
本発明はこれらに限定されるものではない。
(F) Examples The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.

実施例 1 1)ポリイミド樹脂前駆体溶液の調整 温度計、撹拌装置、還流コンデンサー及び窒素吹き込
み口を有する4つ口フラスコに3,3′−ジメチル−4,4′
−ジアミノビフェニル8.49gを入れ、溶媒N−メチル−
2−ピロリドン(以下NMPと記載)100mlに溶解した。次
いで0〜50℃の水浴中にフラスコを浸漬し、発熱を抑制
しながらシクロブタンテトラカルボン酸二無水物7.84g
を投入した。シクロブタンテトラカルボン酸二無水物が
溶解した後、水浴を外し室温付近で約10時間反応を続
け、高粘稠なポリイミド樹脂前駆体溶液を得た。
Example 11 1) Preparation of polyimide resin precursor solution 3,3'-dimethyl-4,4 'was placed in a four-necked flask having a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet.
-Diaminobiphenyl (8.49 g) was added, and the solvent N-methyl-
It was dissolved in 100 ml of 2-pyrrolidone (hereinafter referred to as NMP). Next, the flask was immersed in a water bath at 0 to 50 ° C., and 7.84 g of cyclobutanetetracarboxylic dianhydride was obtained while suppressing heat generation.
Was introduced. After the cyclobutanetetracarboxylic dianhydride was dissolved, the water bath was removed and the reaction was continued at about room temperature for about 10 hours to obtain a highly viscous polyimide resin precursor solution.

2)熱膨張係数の測定 この溶液をガラス板にアプリケータを用いて均一に塗
布し、100℃で30分乾燥してフイルム状にし、ガラス板
から剥がしてバネでつるして170℃、300℃にそれぞれ60
分間保持して21μm厚のポリイミドフイルムを得た。
2) Measurement of coefficient of thermal expansion This solution is uniformly applied to a glass plate using an applicator, dried at 100 ° C for 30 minutes to form a film, peeled off the glass plate and suspended with a spring to 170 ° C and 300 ° C. 60 each
After holding for 21 minutes, a polyimide film having a thickness of 21 μm was obtained.

これを4mm×20mmに切出し、熱機械試験機(サーモフ
レックス 理学電気(株)製)で5℃/minの条件で寸法
変化を測定した。
This was cut into 4 mm × 20 mm, and the dimensional change was measured at 5 ° C./min using a thermomechanical tester (manufactured by Thermoflex Rigaku Denki KK).

このポリイミドフイルムの50〜200℃の寸法変化から
計算した熱膨張係数は1.3×10-5K-1であった。
The thermal expansion coefficient calculated from the dimensional change of this polyimide film at 50 to 200 ° C. was 1.3 × 10 −5 K −1 .

3)分極特性の測定 上記ポリイミド樹脂前駆体溶液をNMPで希釈し、1000
Åの熱酸化膜を形成したn型シリコン基板上にスピンコ
ートし、300℃で60分間熱処理してポリイミド樹脂膜を
形成した。
3) Measurement of polarization characteristics The above polyimide resin precursor solution was diluted with NMP, and 1000
The film was spin-coated on the n-type silicon substrate on which the thermal oxide film was formed and heat-treated at 300 ° C. for 60 minutes to form a polyimide resin film.

得られたポリイミド樹脂膜の厚さは2000Åであった。 The thickness of the obtained polyimide resin film was 2000 mm.

得られたポリイミド樹脂膜上に直径2mmのアルミニウ
ム電極を真空蒸着法により形成し、更にシリコン基板の
裏面にもアルミニウム電極を形成した。シリコン基板の
裏面にアルミニウム電極を形成する際は前もってフッ化
水素酸によりエッチング処理を施した。
An aluminum electrode having a diameter of 2 mm was formed on the obtained polyimide resin film by a vacuum evaporation method, and an aluminum electrode was further formed on the back surface of the silicon substrate. When an aluminum electrode was formed on the back surface of the silicon substrate, etching was performed in advance using hydrofluoric acid.

このようにしてMetal Polyimide Oxide Semiconducto
r(以下、MPOSと略称する。)モデル素子を作製し、C
−V特性を測定した。
In this way, Metal Polyimide Oxide Semiconducto
r (hereinafter abbreviated as MPOS) model element, and C
-V characteristics were measured.

MPOSモデル素子の概略図を図−1に示す。 Figure 1 shows a schematic diagram of the MPOS model device.

図−1中、1はアルミニウム電極、2はポリイミド樹
脂(膜厚2000Å)、3は熱酸化膜(膜厚1000Å)、4は
シリコン基板を示す。
In FIG. 1, reference numeral 1 denotes an aluminum electrode, 2 denotes a polyimide resin (film thickness: 2000 Å), 3 denotes a thermal oxide film (film thickness: 1000 Å), and 4 denotes a silicon substrate.

C−V特性測定条件は次の通りである。 The CV characteristic measurement conditions are as follows.

即ち、+15Vで40秒放置、2V/秒で電圧を負に掃引し−
15Vで40秒放置、次に2V/秒で電圧を正に掃引し+15Vに
到達したところで停止する。
That is, leave it at + 15V for 40 seconds, sweep the voltage negatively at 2V / second-
Leave at 15V for 40 seconds, then sweep the voltage positively at 2V / sec and stop when it reaches + 15V.

上記測定で得られたC−V特性を図−2に示す。 FIG. 2 shows CV characteristics obtained by the above measurement.

図−2中、縦軸C/C0はバイアス電圧が+15Vの時の静
電容量に対する静電容量の比(%)を、横軸はバイアス
電圧(ボルト)を示す。
In FIG. 2, the vertical axis C / C 0 indicates the ratio (%) of the capacitance to the capacitance when the bias voltage is +15 V, and the horizontal axis indicates the bias voltage (volt).

又、下向きの矢印は正から負方向へ掃引した場合を、
上向きの矢印は負から正方向に掃引した場合を示してい
る。
Also, the downward arrow indicates the case of sweeping from positive to negative.
The upward arrow indicates the case where the sweep is performed from the negative direction to the positive direction.

図−2より、バイアス電圧掃引方向にかかわらずC−
V曲線は一致しないポリイミド樹脂が分極していないこ
とが分る。
From Fig. 2, C- regardless of the bias voltage sweep direction
The V curves show that the polyimide resin that does not match is not polarized.

尚、C−V特性についてはジャーナル エレクトロケ
ミカル ソサイヤティ(J.Electrochem.Soc.)、121
巻、6号、198Cに詳述されている。
The CV characteristics are described in Journal Electrochemical Society (J. Electrochem. Soc.), 121
Vol. 6, No. 198C.

4)透明性、着色性の評価 上記ポリイミド樹脂前駆体溶液をガラス板上にスピン
コートし、300℃で60分間熱処理することにより厚さ5
μmのポリイミド樹脂膜を得た。
4) Evaluation of Transparency and Colorability The above polyimide resin precursor solution was spin-coated on a glass plate and heat-treated at 300 ° C. for 60 minutes to obtain a thickness of 5 μm.
A μm polyimide resin film was obtained.

このポリイミド樹脂膜は透明性が非常に良好でほとん
ど着色していなかった。
This polyimide resin film had very good transparency and was hardly colored.

実施例 2 ジアミンとして4,4′−ジアミノ−p−ターフェニル
を、テトラカルボン酸二無水物としてシクロブタンテト
ラカルボン酸二無水物を用いた他は実施例1と同様にし
て評価を行った。
Example 2 Evaluation was performed in the same manner as in Example 1 except that 4,4'-diamino-p-terphenyl was used as a diamine and cyclobutanetetracarboxylic dianhydride was used as a tetracarboxylic dianhydride.

結果を表−1に示した。 The results are shown in Table 1.

実施例 3 ジアミンとして9,10−ビス(4−アミノフェニル)ア
ントラセンを、テトラカルボン酸二無水物としてシクロ
ブタンテトラカルボン酸二無水物を用いた他は実施例1
と同様にして評価を行った。結果を表−1に示した。
Example 3 Example 1 except that 9,10-bis (4-aminophenyl) anthracene was used as the diamine and cyclobutanetetracarboxylic dianhydride was used as the tetracarboxylic dianhydride.
The evaluation was performed in the same manner as described above. The results are shown in Table 1.

実施例 4 ジアミンとして3,3′−ジメトキシ−4,4′−ジアミノ
ビフェニルを、テトラカルボン酸二無水物としてシクロ
ブタンテトラカルボン酸二無水物を用いた他は実施例1
と同様にして評価を行った。結果を表−1に示した。
Example 4 Example 1 was repeated except that 3,3'-dimethoxy-4,4'-diaminobiphenyl was used as the diamine and cyclobutanetetracarboxylic dianhydride was used as the tetracarboxylic dianhydride.
The evaluation was performed in the same manner as described above. The results are shown in Table 1.

比較例 1 ジアミンとして4,4′−ジアミノジフェニルエーテル
を、テトラカルボン酸二無水物としてシクロブタンテト
ラカルボン酸二無水物を用いた他は実施例1と同様にし
て評価を行った。結果を表−1に示した。
Comparative Example 1 Evaluation was performed in the same manner as in Example 1 except that 4,4′-diaminodiphenyl ether was used as the diamine and cyclobutanetetracarboxylic dianhydride was used as the tetracarboxylic dianhydride. The results are shown in Table 1.

比較例 2 ジアミンとして1,4−ビス(4−アミノフェノキシ)
ベンゼンを、テトラカルボン酸二無水物としてシクロブ
タンテトラカルボン酸二無水物を用いた他は実施例1と
同様にして評価を行った。結果を表−1に示した。
Comparative Example 2 1,4-bis (4-aminophenoxy) as a diamine
The evaluation was performed in the same manner as in Example 1 except that benzene was used as the tetracarboxylic dianhydride, and cyclobutanetetracarboxylic dianhydride was used. The results are shown in Table 1.

比較例 3 ジアミンとして3,3′−ジメチル−4,4′−ジアミノビ
フェニルを、テトラカルボン酸二無水物としてピロメリ
ット酸二無水物を、又溶媒としてジメチルアセトアミド
を用いた他は実施例1と同様にして評価を行った。結果
を表−1に示した。
Comparative Example 3 Example 1 was repeated except that 3,3'-dimethyl-4,4'-diaminobiphenyl was used as the diamine, pyromellitic dianhydride was used as the tetracarboxylic dianhydride, and dimethylacetamide was used as the solvent. Evaluation was performed in the same manner. The results are shown in Table 1.

比較例 4 ジアミンとして4,4′−ジアミノフェニルエーテル
を、テトラカルボン酸二無水物としてピロメリット酸二
無水物を用いた他は実施例1と同様にして評価を行っ
た。結果を表−1に示した。
Comparative Example 4 Evaluation was performed in the same manner as in Example 1 except that 4,4′-diaminophenyl ether was used as the diamine and pyromellitic dianhydride was used as the tetracarboxylic dianhydride. The results are shown in Table 1.

【図面の簡単な説明】[Brief description of the drawings]

図−1は実施例1〜比較例4のMetal Polyimide Oxide
Semiconductor(MPOS)モデル素子の概略図であり、図
−1中の1はアルミニウム電極、2はポリイミド樹脂
(膜厚2000Å)、3は熱酸化膜(膜厚1000Å)、4はシ
リコン基板を示す。 図−2はC−V特性図であり、図−2中の縦軸C/C0はバ
イアス電圧が+15Vの時の静電容量に対する静電容量の
比(%)を、横軸はバイアス電圧(ボルト)を示す。 又、下向きの矢印は正から負方向へ掃引した場合を、上
向きの矢印は負から正方向に掃引した場合を示してい
る。
FIG. 1 shows Metal Polyimide Oxide of Example 1 to Comparative Example 4.
FIG. 1 is a schematic diagram of a semiconductor (MPOS) model element. In FIG. 1, reference numeral 1 denotes an aluminum electrode, 2 denotes a polyimide resin (thickness: 2000 mm), 3 denotes a thermal oxide film (thickness: 1000 mm), and 4 denotes a silicon substrate. FIG. 2 is a CV characteristic diagram. In FIG. 2, the vertical axis C / C 0 represents the ratio (%) of the capacitance to the capacitance when the bias voltage is +15 V, and the horizontal axis represents the bias voltage. (Volt). Further, a downward arrow indicates a case of sweeping from the positive to the negative direction, and an upward arrow indicates a case of sweeping from the negative to the positive direction.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−275352(JP,A) 特開 昭59−196319(JP,A) 特開 昭60−6726(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-275352 (JP, A) JP-A-59-196319 (JP, A) JP-A-60-6726 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シクロブタンテトラカルボン酸及びその誘
導体とジアミンを反応させて得られる一般式[1] (式中、Rはジアミンを構成する2価の有機基であ
る。) で表される繰り返し単位を有するポリイミドにおいて、
Rが下記構造 (Xは水素原子、メチル基、メトキシ基又はハロゲン基
を表す。) より選ばれるジアミンを構成する2価の有機基であるこ
とを特徴とする低熱膨張性ポリイミド。
1. A compound of the general formula [1] obtained by reacting cyclobutanetetracarboxylic acid and its derivative with a diamine. (In the formula, R is a divalent organic group constituting a diamine.) In a polyimide having a repeating unit represented by the following formula:
R is the following structure (X represents a hydrogen atom, a methyl group, a methoxy group or a halogen group.) A low thermal expansion polyimide, which is a divalent organic group constituting a diamine selected from the group consisting of:
JP63172157A 1988-01-08 1988-07-11 Low thermal expansion polyimide Expired - Lifetime JP2843333B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63172157A JP2843333B2 (en) 1988-07-11 1988-07-11 Low thermal expansion polyimide
EP19930109530 EP0564009B1 (en) 1988-01-08 1988-12-29 Electric and electronic devices having a polyimide resin insulating film
DE3888666T DE3888666T2 (en) 1988-01-08 1988-12-29 Polyimide resin and insulation layer for electrical or electronic devices.
DE3856028T DE3856028T2 (en) 1988-01-08 1988-12-29 Electrical and electronic devices with a polyimide resin insulation layer
EP19880121856 EP0323644B1 (en) 1988-01-08 1988-12-29 Polyimide resin and insulating film for electric and electronic devices
US07/293,766 US5059677A (en) 1988-01-08 1989-01-05 Polyimide resin and insulating film for electric and electronic devices
KR1019890000135A KR0136275B1 (en) 1988-01-08 1989-01-07 Electric and electronic device having a polyimide resin insulating film
US07/514,945 US5070182A (en) 1988-01-08 1990-04-26 Polyimide resin and insulating film for electric and electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172157A JP2843333B2 (en) 1988-07-11 1988-07-11 Low thermal expansion polyimide

Publications (2)

Publication Number Publication Date
JPH0222329A JPH0222329A (en) 1990-01-25
JP2843333B2 true JP2843333B2 (en) 1999-01-06

Family

ID=15936626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172157A Expired - Lifetime JP2843333B2 (en) 1988-01-08 1988-07-11 Low thermal expansion polyimide

Country Status (1)

Country Link
JP (1) JP2843333B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196319A (en) * 1983-04-22 1984-11-07 Hitachi Chem Co Ltd Production of polyamic acid
JPS61275352A (en) * 1985-05-31 1986-12-05 Japan Synthetic Rubber Co Ltd Soluble polyimide solution

Also Published As

Publication number Publication date
JPH0222329A (en) 1990-01-25

Similar Documents

Publication Publication Date Title
Elsner Residual stress and thermal expansion of spun‐on polyimide films
JPH10316853A (en) Resin composition for interlaminar insulating membrane for multilayer interconnection of semiconductor, and production of the insulating membrane
US5070182A (en) Polyimide resin and insulating film for electric and electronic devices
JPS5813087B2 (en) Method for producing siloxane-modified polyimide precursor
JP2000128987A (en) Polybenzoxazole precursor and polybenzoxazole
KR100686568B1 (en) Cured fluorenyl polyimides
JPS61171762A (en) Soluble polyimide resin composition
JP2011148955A (en) Method for producing polyimide film, and the resultant polyimide film
US5714572A (en) Polyimide resin composition
JP4180284B2 (en) Heat resistant resin precursor, heat resistant resin, insulating film, and semiconductor device
JP2843333B2 (en) Low thermal expansion polyimide
JP3681106B2 (en) Organic insulating film material and organic insulating film
JPS62135529A (en) Polyimide precursor
JP2001302913A (en) Polyimide precursor solution and polyamide coating film obtainable therefrom
JP2001348428A (en) Polyamic acid composition, soluble polyimide composition, and polybenzoxazole-polyimide composition
JPS6222830A (en) Silicon-containing polyimide resin and its production
JPS62261149A (en) Manufacture of semiconductor device
JPH02209923A (en) New polyamide
JPH01181430A (en) Insulating film for electric and electronic device
JP3702449B2 (en) Polyimide precursor for optical parts and optical parts using the same
JP2841426B2 (en) Soluble polyimide resin
JPH0259619B2 (en)
JP2023145039A (en) Resin composition, polyimide film, method for manufacturing electronic device, and electronic device
JPH0214367B2 (en)
JPH03231923A (en) Resin solution composition and cured material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10