JPH0682595A - Production of nuclear fuel element - Google Patents

Production of nuclear fuel element

Info

Publication number
JPH0682595A
JPH0682595A JP4234580A JP23458092A JPH0682595A JP H0682595 A JPH0682595 A JP H0682595A JP 4234580 A JP4234580 A JP 4234580A JP 23458092 A JP23458092 A JP 23458092A JP H0682595 A JPH0682595 A JP H0682595A
Authority
JP
Japan
Prior art keywords
nuclear fuel
cladding tube
fuel element
temperature
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4234580A
Other languages
Japanese (ja)
Inventor
Toshio Kubo
利雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP4234580A priority Critical patent/JPH0682595A/en
Publication of JPH0682595A publication Critical patent/JPH0682595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To protect the outer face of pipe against corrosion by placing a nuclear fuel element in a high temperature, high pressure steam for a predetermined time to form an oxide film on the outer surface of a metal pipe while shrinking the cover pipe thereby suppressing emission of gaseous fission product (FP gas) and the phenomenon (PCl) for enlarging the cover pipe. CONSTITUTION:Nuclear fuel pellets 2 are contained in a cover metal pipe 1 to assemble a nuclear fuel element which is then placed in steam of a specific high temperature and high pressure for a predetermined time to subject the outer face of the cover pipe 1 to autoclave-treating and to form an oxide film thereon and then the cover pipe 1 is shrinked. When the pellets are contained in the cover pipe 1, the cover pipe 1 is held at first at a high temperature to be thermally expanded and then the pellets 2 are inserted while being kept at a low temperature to be thermally shrinked thus producing a narrow gap nuclear fuel element. This constitution suppresses emission of FP gas, PC1, and corrosion on the outer surface of the cover pipe 1 thus producing an excellent nuclear fuel element, i.e., a fuel having high degree of burn-up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、核燃料要素の製造方法
に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a nuclear fuel element.

【0002】[0002]

【従来の技術】現在実用化されている発電用原子炉の多
くは、ウラン酸化物、プルトニウム酸化物、トリウム酸
化物、又はこれらの混合物を主成分とする核燃料ペレッ
トを金属製被覆管内に密封した構造の核燃料要素が使用
されている。
2. Description of the Related Art Most of the power generation reactors currently in practical use have a nuclear fuel pellet containing uranium oxide, plutonium oxide, thorium oxide, or a mixture thereof as a main component, sealed in a metal cladding tube. Structural nuclear fuel elements are used.

【0003】図2に、核燃料要素の1例の模式縦断面図
を示す。核燃料要素は、図2に示すように、ジルコニウ
ム又はジルコニウム合金からなる金属製被覆管1の中
に、複数個のウラン酸化物、プルトニウム酸化物、トリ
ウム酸化物又はこれらの混合物を焼結成形した核燃料ペ
レット2を、積層して収納するとともに、金属製被覆管
1の両端を上部端栓3a、及び下部端栓3bでそれぞれ
密封したものである。なお、金属製被覆管1の上部には
ガス溜めとしてのプレナム4を設け、スプリング5を取
り付けてある。
FIG. 2 shows a schematic vertical sectional view of an example of a nuclear fuel element. As shown in FIG. 2, the nuclear fuel element is a nuclear fuel obtained by sintering a plurality of uranium oxides, plutonium oxides, thorium oxides or a mixture thereof in a metallic cladding tube 1 made of zirconium or a zirconium alloy. The pellets 2 are stacked and housed, and both ends of the metal covered tube 1 are sealed with an upper end plug 3a and a lower end plug 3b, respectively. A plenum 4 serving as a gas reservoir is provided on the upper portion of the metallic cladding tube 1, and a spring 5 is attached to the plenum 4.

【0004】上記の核燃料ペレット2を、原子炉中で燃
焼させた場合、核分裂生成物が生成され、核燃料ペレッ
ト2中に蓄積される。このうち、クリプトン及びキセノ
ンなどの気体状核分裂生成物(FPガス)は、一部が核
燃料ペレット2外へ放出され、燃料棒内圧上昇又は核燃
料ペレット中心温度上昇の原因となる。また、金属製被
覆管1と核燃料ペレット2との熱膨張差が起因して、核
燃料ペレット2が金属製被覆管1を押し拡げる現象(P
CI)が生じる。
When the above-mentioned nuclear fuel pellets 2 are burned in a nuclear reactor, fission products are produced and accumulated in the nuclear fuel pellets 2. Of these, some of the gaseous fission products (FP gas) such as krypton and xenon are released to the outside of the nuclear fuel pellet 2 and cause an increase in the fuel rod internal pressure or an increase in the nuclear fuel pellet center temperature. Further, due to the difference in thermal expansion between the metallic cladding 1 and the nuclear fuel pellets 2, the nuclear fuel pellets 2 spread the metallic cladding 1 (P
CI) occurs.

【0005】一方、水冷却型原子炉では金属製被覆管1
の材料としてジルコニウム合金が使用されているが、ジ
ルコニウム合金は使用期間中冷却水と反応し、ノジュラ
ー腐食と呼ばれる局部腐食が生じることが知られてい
る。
On the other hand, in a water-cooled reactor, a metallic cladding tube 1
A zirconium alloy is used as a material for the above, but it is known that the zirconium alloy reacts with cooling water during the period of use to cause local corrosion called nodular corrosion.

【0006】[0006]

【発明が解決しようとする課題】FPガス放出及びPC
I低減のためには、核燃料ペレットの温度を低下させる
ことが有効である。従来例では、二酸化ウランに微量元
素を添加し、核燃料ペレットの熱伝導度を上げる方法が
採られている。しかし、この場合は、二酸化ウランのイ
ンベントリー低下や、核燃料ペレットにおける熱伝導度
以外の性能低下などが懸念される。
Problems to be Solved by the Invention FP gas release and PC
To reduce I, it is effective to lower the temperature of the nuclear fuel pellets. In the conventional example, a method of increasing the thermal conductivity of the nuclear fuel pellet by adding a trace element to uranium dioxide is adopted. However, in this case, there is concern that the inventory of uranium dioxide may be reduced and the performance of nuclear fuel pellets other than thermal conductivity may be reduced.

【0007】また、金属製被覆管と核燃料ペレットとの
製造時ギャップを小さくして、核燃料ペレットの温度を
下げることができるが、狭ギャップ化は燃料棒組み立て
時の作業性の低下を伴うことになる。
Further, it is possible to reduce the temperature of the nuclear fuel pellets by making the gap between the metal cladding tube and the nuclear fuel pellets small, but the narrowing of the gap entails a decrease in workability during fuel rod assembly. Become.

【0008】本発明では、FPガス放出及びPCIが少
なく、かつ金属製被覆管の外面腐食量も少なく、高燃焼
度燃料として優れた核燃料要素の製造方法を提供するこ
とを目的とする。
It is an object of the present invention to provide a method for producing a nuclear fuel element which has a small amount of FP gas emission and PCI and a small amount of outer surface corrosion of a metal cladding tube and which is excellent as a high burnup fuel.

【0009】[0009]

【課題を解決するための手段】上記目的は、次のように
して達成することができる。
The above object can be achieved as follows.

【0010】(1)ウラン酸化物、プルトニウム酸化
物、トリウム酸化物、又はこれらの混合物を主成分とす
る核燃料ペレットを金属製被覆管に収納し、かつ金属製
被覆管の内面と核燃料ペレットの外面との製造時ギャッ
プを100μm以下とする核燃料要素の製造方法におい
て、金属製被覆管に核燃料ペレットを収納し核燃料要素
に組み立てた後で、核燃料要素を高温、高圧の水蒸気中
で所要時間保持して、金属製被覆管の外表面に酸化被膜
を形成させるとともに、金属製被覆管の外面直径を収縮
せしめること。
(1) A nuclear fuel pellet containing uranium oxide, plutonium oxide, thorium oxide, or a mixture thereof as a main component is housed in a metal cladding tube, and the inner surface of the metal cladding tube and the outer surface of the nuclear fuel pellet. In a method of manufacturing a nuclear fuel element with a manufacturing gap of 100 μm or less, the nuclear fuel element is stored in a metal cladding tube and assembled into the nuclear fuel element, and then the nuclear fuel element is held in steam at high temperature and high pressure for a required time. , Forming an oxide film on the outer surface of the metal cladding tube and shrinking the outer diameter of the metal cladding tube.

【0011】(2)ウラン酸化物、プルトニウム酸化
物、トリウム酸化物、又はこれらの混合物を主成分とす
る核燃料ペレットを金属製被覆管に収納し、かつ金属製
被覆管の内面と核燃料ペレットの外面との製造時ギャッ
プを100μm以下とする核燃料要素の製造方法におい
て、金属製被覆管に核燃料ペレットを収納し核燃料要素
に組み立てた後で、核燃料要素を温度300〜500
℃、1〜110気圧(ゲージ圧力)の水蒸気中で1〜2
4時間保持して、金属製被覆管の外表面に酸化被膜を形
成させるとともに、金属製被覆管の外面直径を収縮せし
めること。
(2) A nuclear fuel pellet containing uranium oxide, plutonium oxide, thorium oxide, or a mixture thereof as a main component is housed in a metal cladding tube, and the inner surface of the metal cladding tube and the outer surface of the nuclear fuel pellets. In the method of manufacturing a nuclear fuel element in which the manufacturing gap is 100 μm or less, the nuclear fuel element is stored in a metal cladding tube and assembled into the nuclear fuel element, and then the nuclear fuel element is heated to a temperature of 300 to 500
1-2 in steam at 1 to 110 atm (gauge pressure)
Hold for 4 hours to form an oxide film on the outer surface of the metal-coated tube and shrink the outer surface diameter of the metal-coated tube.

【0012】(3)(1)又は(2)において、金属製
被覆管に核燃料ペレットを収納する際、金属製被覆管を
高温に保持して熱膨張を生ぜしめた状態で核燃料ペレッ
トを挿入すること。
(3) In (1) or (2), when the nuclear fuel pellets are stored in the metallic cladding tube, the nuclear fuel pellets are inserted in a state in which the metallic cladding tube is kept at a high temperature to cause thermal expansion. thing.

【0013】(4)(3)において、核燃料ペレット挿
入時の金属製被覆管の温度が50〜300℃であるこ
と。
(4) In (3), the temperature of the metal cladding tube at the time of inserting the nuclear fuel pellets is 50 to 300 ° C.

【0014】(5)(1)又は(2)において、金属製
被覆管に核燃料ペレットを収納する際、核燃料ペレット
を低温度に保持して熱収縮を生ぜしめた状態で核燃料ペ
レットを挿入すること。
(5) In (1) or (2), when the nuclear fuel pellets are stored in the metal cladding tube, the nuclear fuel pellets are inserted in a state where the nuclear fuel pellets are kept at a low temperature to cause thermal contraction. .

【0015】(6)(5)において、核燃料ペレット挿
入時の前記核燃料ペレット温度が−0〜−200℃であ
ること。
(6) In (5), the nuclear fuel pellet temperature at the time of inserting the nuclear fuel pellets is −0 to −200 ° C.

【0016】[0016]

【作用】発明者は、金属製被覆管と核燃料ペレットとの
製造時ギャップと、炉内使用時の核燃料ペレット中心温
度及びFPガス放出との関係を解析した。図3はその解
析結果の説明図であり、製造時ギャップを異にする従来
と本発明の各場合の核燃料ペレット半径方向の温度分布
が示してある。
The present inventor analyzed the relationship between the manufacturing gap between the metallic cladding tube and the nuclear fuel pellets, the core temperature of the nuclear fuel pellets during use in the reactor, and the FP gas release. FIG. 3 is an explanatory diagram of the analysis result, and shows the temperature distribution in the radial direction of the nuclear fuel pellet in the conventional case and the present invention in which the manufacturing gap is different.

【0017】従来例では、上記製造時ギャップはおよそ
200μmであったが、これを約100μmと小さくす
れば、核燃料ペレット中心温度は約50℃低下し、更に
約50μmにすれば、約100℃低下する。また、核燃
料ペレット中心温度が約100℃低下した場合、FPガ
ス放出率は従来と比較し約1/2に減少する。
In the conventional example, the above-described manufacturing gap was about 200 μm, but if this gap is reduced to about 100 μm, the core temperature of the nuclear fuel pellets decreases by about 50 ° C., and if it is further reduced to about 50 μm, about 100 ° C. decreases. To do. Further, when the core temperature of the nuclear fuel pellets is lowered by about 100 ° C., the FP gas release rate is reduced to about ½ compared with the conventional case.

【0018】なお、上記製造時ギャップを小さくした場
合、PCIがより厳しくなることが懸念されるが、核燃
料ペレット温度が低下するので、核燃料ペレットの熱膨
張量が減少するため、PCIの緩和が可能である。
Although there is a concern that the PCI will become more severe when the manufacturing gap is reduced, the temperature of the nuclear fuel pellets decreases, and the thermal expansion amount of the nuclear fuel pellets decreases, so that the PCI can be relaxed. Is.

【0019】また、製造時ギャップを小さくした場合、
核燃料ペレットを金属製被覆管に収納する際の作業性の
悪くなることが懸念される。しかし、本発明では、内径
が十分に大きい金属製被覆管に核燃料ペレットを挿入し
核燃料要素を組み立てた後、高温度、高圧力の水蒸気中
でオートクレーブ処理して、金属製被覆管の直径を収縮
させ、狭ギャップ核燃料要素を製造したので、作業性の
悪くなるのが回避され、狭ギャップ核燃料要素の製造が
容易になっている。
When the manufacturing gap is reduced,
There is a concern that the workability of storing the nuclear fuel pellets in the metal cladding tube may deteriorate. However, in the present invention, after the nuclear fuel pellets are inserted into the metal cladding tube having a sufficiently large inner diameter to assemble the nuclear fuel element, the diameter of the metal cladding tube is contracted by autoclaving in high temperature and high pressure steam. Since the narrow gap nuclear fuel element is manufactured, the workability is prevented from deteriorating and the narrow gap nuclear fuel element is easily manufactured.

【0020】また、上記オートクレーブ処理により、金
属製被覆管の外面に数μm厚さの一様な酸化膜が形成さ
れるので、腐食に対する保護性が高くなる。
Further, since a uniform oxide film having a thickness of several μm is formed on the outer surface of the metal-coated tube by the autoclave treatment, the protection against corrosion is enhanced.

【0021】[0021]

【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0022】本発明の第1実施例では、作用の項で述べ
たように、内径が十分に大きい金属製被覆管に核燃料ペ
レットを挿入し核燃料要素を組み立てた後、高温度、高
圧力の水蒸気中でオートクレーブ処理して、金属製被覆
管の直径を収縮させ、狭ギャップ核燃料要素を製造し
た。
In the first embodiment of the present invention, as described in the section of the operation, after the nuclear fuel pellets are inserted into the metallic cladding tube having a sufficiently large inner diameter to assemble the nuclear fuel element, steam at high temperature and high pressure is used. And autoclaved in to shrink the diameter of the metal cladding to produce a narrow gap nuclear fuel element.

【0023】従来の金属製被覆管のオートクレーブ処理
は、核燃料ペレット挿入−核燃料要素組み立て工程の前
に実施されていたが、本実施例では上記のように、組み
立て後に実施している。また、従来例のオートクレーブ
条件は温度約400℃、圧力数気圧であったが、本実施
例のオートクレーブ条件は、温度300〜500℃、圧
力1〜110気圧(ゲージ圧力)、処理時間1〜24時
間である。
The conventional autoclave treatment of the metallic cladding tube is carried out before the nuclear fuel pellet insertion-nuclear fuel element assembling step, but in this embodiment, it is carried out after the assembly as described above. Further, the autoclave conditions of the conventional example were a temperature of about 400 ° C. and a pressure of several atmospheres, but the autoclave conditions of this example were a temperature of 300 to 500 ° C., a pressure of 1 to 110 atmospheres (gauge pressure), and a treatment time of 1 to 24. It's time.

【0024】このオートクレーブ条件下では、高温高圧
水蒸気の外圧力を受けて、金属製被覆管の直径が収縮
し、核燃料ペレットと接触した状態で収縮が停止する。
更にこのオートクレーブ処理により、金属製被覆管の外
面に、腐食に対する保護性が高い一様な厚さの酸化膜
(厚さ数μm)が形成されることが、発明者らの実験に
より分かった。
Under the autoclave conditions, the diameter of the metal cladding tube contracts under the external pressure of high-temperature high-pressure steam, and the contraction stops in the state of being in contact with the nuclear fuel pellets.
Further, it was found from the experiments by the inventors that the autoclave treatment forms an oxide film (thickness of several μm) having a uniform thickness and high protection against corrosion on the outer surface of the metal cladding tube.

【0025】本実施例のオートクレーブ処理を施した金
属製被覆管と従来金属製被覆管との耐食性比較を図1に
示す。図1は、高温高圧水蒸気中、温度400℃、圧力
105気圧(ゲージ圧力)、及び製造時間24時間の諸
条件における、本実施例のオートクレーブ処理被覆管と
従来の被覆管との腐食量の比較図であるが、この図か
ら、本実施例のオートクレーブ処理により腐食量が大幅
に減少することが分かる。
FIG. 1 shows a comparison of corrosion resistance between the autoclave-treated metal-clad tube and the conventional metal-clad tube. FIG. 1 is a comparison of the amount of corrosion between the autoclave-coated tube of this example and the conventional tube under various conditions of a temperature of 400 ° C., a pressure of 105 atmospheres (gauge pressure), and a manufacturing time of 24 hours in high-temperature high-pressure steam. Although it is a figure, it can be seen from this figure that the amount of corrosion is significantly reduced by the autoclave treatment of this example.

【0026】金属製被覆管の直径を収縮させるために
は、オートクレーブ温度を400℃以上とすることが望
ましいが、500℃以上では外面酸化膜が厚くなり過ぎ
るためかえって耐食性が低下する。圧力は高いほうが望
ましいが、オートクレーブ作業時の安全性を考慮して、
耐食性評価試験で実績のある110気圧(ゲージ圧力)
以下とした。
In order to shrink the diameter of the metal coated tube, it is desirable to set the autoclave temperature to 400 ° C. or higher. However, if the temperature is 500 ° C. or higher, the outer oxide film becomes too thick, and the corrosion resistance deteriorates. Higher pressure is desirable, but considering safety during autoclave work,
110 atmospheres (gauge pressure) with a proven record in corrosion resistance evaluation tests
Below.

【0027】本実施例により、所望の狭ギャップ核燃料
要素を製造し得るとともに、外面腐食性にも優れた核燃
料要素を提供できる。
According to the present embodiment, a desired narrow gap nuclear fuel element can be manufactured, and a nuclear fuel element excellent in external corrosiveness can be provided.

【0028】本発明の第2実施例では、金属製被覆管の
温度を50〜300℃に保持した状で核燃料ペレットを
挿入し、作業性を確保した。一例として、金属製被覆管
の温度を約300℃にすることで、金属製被覆管の内表
面直径が約30μm増加するので核燃料ペレットの挿入
が容易になる。金属製被覆管の温度を約300℃を超え
た場合、金属製被覆管の表面の酸化が懸念されるため、
保持温度は300℃以下としている。
In the second embodiment of the present invention, the workability was secured by inserting the nuclear fuel pellets while keeping the temperature of the metal cladding tube at 50 to 300 ° C. As an example, by setting the temperature of the metal cladding tube to about 300 ° C., the inner surface diameter of the metal cladding tube is increased by about 30 μm, which facilitates insertion of nuclear fuel pellets. When the temperature of the metal cladding tube exceeds about 300 ° C, the surface of the metal cladding tube may be oxidized, so
The holding temperature is 300 ° C or lower.

【0029】本発明の第3実施例では、核燃料ペレット
の温度を−0℃から約−200℃(液体窒素温度にほぼ
相当)に保持した状態で、核燃料ペレットを挿入し、作
業性を確保している。核燃料ペレットの温度を約200
℃低くすることで、核燃料ペレットの直径を約20μm
減少させている。
In the third embodiment of the present invention, the workability is ensured by inserting the nuclear fuel pellets while maintaining the temperature of the nuclear fuel pellets at −0 ° C. to about −200 ° C. (approximately the liquid nitrogen temperature). ing. The temperature of nuclear fuel pellets is about 200
℃ lower, the diameter of nuclear fuel pellets is about 20μm
Is decreasing.

【0030】本発明の第4実施例では、核燃料ペレット
収納作業時に、金属製被覆管の温度を50〜300℃
に、また核燃料ペレットの温度を−0〜−200℃に保
持し、核燃料ペレットの挿入を容易にしている。
In the fourth embodiment of the present invention, the temperature of the metallic cladding tube is set to 50 to 300 ° C. during the nuclear fuel pellet storage operation.
In addition, the temperature of the nuclear fuel pellets is maintained at −0 to −200 ° C. to facilitate the insertion of the nuclear fuel pellets.

【0031】[0031]

【発明の効果】本発明により、FPガス放出及びPCI
が少なく、かつ被覆管外面腐食も少なく、高燃焼度燃料
として優れた核燃料要素の製造が可能になった。
According to the present invention, FP gas release and PCI
It is also possible to manufacture a nuclear fuel element excellent as a high burnup fuel because it has less fuel consumption and less corrosion on the outer surface of the cladding tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例におけるオートクレーブ処
理を施した被覆管と従来被覆管との腐食量の比較図であ
る。
FIG. 1 is a comparison diagram of the amount of corrosion between an autoclaved cladding tube and a conventional cladding tube according to a first embodiment of the present invention.

【図2】核燃料要素の模式縦断面図である。FIG. 2 is a schematic vertical sectional view of a nuclear fuel element.

【図3】本発明と従来例との各核燃料ペレットにおける
半径方向温度分布の説明図である。
FIG. 3 is an explanatory view of a radial temperature distribution in each nuclear fuel pellet of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1…金属製被覆管、2…核燃料ペレット、3a…上部端
栓、3b…下部端栓、4…プレナム、5…スプリング。
DESCRIPTION OF SYMBOLS 1 ... Metal cladding tube, 2 ... Nuclear fuel pellet, 3a ... Upper end plug, 3b ... Lower end plug, 4 ... Plenum, 5 ... Spring.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ウラン酸化物、プルトニウム酸化物、ト
リウム酸化物、又はこれらの混合物を主成分とする核燃
料ペレットを金属製被覆管に収納し、かつ前記金属製被
覆管の内面と前記核燃料ペレットの外面との製造時ギャ
ップを100μm以下とする核燃料要素の製造方法にお
いて、前記金属製被覆管に前記核燃料ペレットを収納し
前記核燃料要素に組み立てた後で、前記核燃料要素を高
温、高圧の水蒸気中で所要時間保持して、前記金属製被
覆管の外表面に酸化被膜を形成させるとともに、前記金
属製被覆管の外面直径を収縮せしめることを特徴とする
核燃料要素の製造方法。
1. A nuclear fuel pellet containing uranium oxide, plutonium oxide, thorium oxide, or a mixture thereof as a main component is housed in a metallic cladding tube, and the inner surface of the metallic cladding tube and the nuclear fuel pellets are In a method of manufacturing a nuclear fuel element having a manufacturing gap with an outer surface of 100 μm or less, the nuclear fuel element is housed in the metal cladding tube and assembled to the nuclear fuel element, and then the nuclear fuel element is heated in high-temperature, high-pressure steam. A method for producing a nuclear fuel element, which is maintained for a required time to form an oxide film on the outer surface of the metallic cladding tube and shrink the outer surface diameter of the metallic cladding tube.
【請求項2】 ウラン酸化物、プルトニウム酸化物、ト
リウム酸化物、又はこれらの混合物を主成分とする核燃
料ペレットを金属製被覆管に収納し、かつ前記金属製被
覆管の内面と前記核燃料ペレットの外面との製造時ギャ
ップを100μm以下とする核燃料要素の製造方法にお
いて、前記金属製被覆管に前記核燃料ペレットを収納し
前記核燃料要素に組み立てた後で、前記核燃料要素を温
度300〜500℃、1〜110気圧(ゲージ圧力)の
水蒸気中で1〜24時間保持して、前記金属製被覆管の
外表面に酸化被膜を形成させるとともに、前記金属製被
覆管の外面直径を収縮せしめることを特徴とする核燃料
要素の製造方法。
2. A nuclear fuel pellet containing uranium oxide, plutonium oxide, thorium oxide, or a mixture thereof as a main component is housed in a metallic cladding tube, and the inner surface of the metallic cladding tube and the nuclear fuel pellets are In a method of manufacturing a nuclear fuel element having a manufacturing gap with an outer surface of 100 μm or less, the nuclear fuel element is housed in the metal cladding tube and assembled into the nuclear fuel element, and then the nuclear fuel element is heated to a temperature of 300 to 500 ° C. Holding in water vapor of ~ 110 atm (gauge pressure) for 1 to 24 hours to form an oxide film on the outer surface of the metal-coated tube and shrink the outer surface diameter of the metal-coated tube. Method for manufacturing a nuclear fuel element.
【請求項3】 前記金属製被覆管に前記核燃料ペレット
を収納する際、前記金属製被覆管を高温に保持して熱膨
張を生ぜしめた状態で前記核燃料ペレットを挿入する請
求項1又は2記載の核燃料要素の製造方法。
3. The nuclear fuel pellets are inserted into the metallic cladding tube when the nuclear fuel pellets are stored in the metallic cladding tube in a state in which the metallic cladding tube is kept at a high temperature to cause thermal expansion. Of manufacturing nuclear fuel elements of.
【請求項4】 前記核燃料ペレット挿入時の前記金属製
被覆管の温度が50〜300℃である請求項3記載の核
燃料要素の製造方法。
4. The method for producing a nuclear fuel element according to claim 3, wherein the temperature of the metallic cladding tube at the time of inserting the nuclear fuel pellets is 50 to 300 ° C.
【請求項5】 前記金属製被覆管に前記核燃料ペレット
を収納する際、前記核燃料ペレットを低温度に保持して
熱収縮を生ぜしめた状態で前記核燃料ペレットを挿入す
る請求項1又は2記載の核燃料要素の製造方法。
5. The nuclear fuel pellet according to claim 1 or 2, wherein, when the nuclear fuel pellet is stored in the metallic cladding tube, the nuclear fuel pellet is held at a low temperature to cause thermal contraction. Manufacturing method of nuclear fuel element.
【請求項6】 前記核燃料ペレット挿入時の前記核燃料
ペレット温度が−0〜−200℃である請求項5記載の
核燃料要素の製造方法。
6. The method for producing a nuclear fuel element according to claim 5, wherein the nuclear fuel pellet temperature at the time of inserting the nuclear fuel pellets is −0 to −200 ° C.
JP4234580A 1992-09-02 1992-09-02 Production of nuclear fuel element Pending JPH0682595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234580A JPH0682595A (en) 1992-09-02 1992-09-02 Production of nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4234580A JPH0682595A (en) 1992-09-02 1992-09-02 Production of nuclear fuel element

Publications (1)

Publication Number Publication Date
JPH0682595A true JPH0682595A (en) 1994-03-22

Family

ID=16973247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234580A Pending JPH0682595A (en) 1992-09-02 1992-09-02 Production of nuclear fuel element

Country Status (1)

Country Link
JP (1) JPH0682595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077759A (en) * 2013-01-11 2013-05-01 吕应中 Universal uranium-thorium conversion-proliferation reactor device and method for producing nuclear fuel uranium-233

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077759A (en) * 2013-01-11 2013-05-01 吕应中 Universal uranium-thorium conversion-proliferation reactor device and method for producing nuclear fuel uranium-233

Similar Documents

Publication Publication Date Title
US3145150A (en) Fuel-moderator element for a nuclear reactor and method of making
US3969185A (en) Getter for nuclear fuel elements
US3647623A (en) Fuel element for a nuclear reactor
US3230150A (en) Metal-clad fuel element with copper foil interlayer
US3098024A (en) Composite fuel elements for nuclear reactors
JPH0682595A (en) Production of nuclear fuel element
JPS61228382A (en) Nuclear fuel element
JP2000147174A (en) Nuclear fuel element for light water reactor
JPS58205889A (en) Nuclear fuel rod
JPS58165085A (en) Nuclear fuel element
JPS64675B2 (en)
JPH06281766A (en) Nuclear reactor fuel rod
JPS5940195A (en) Nuclear fuel element for fast breeder
JP2522627B2 (en) Fuel cladding
JPS6367591A (en) Fuel aggregate for fast breeder reactor
JPH0315718B2 (en)
JPH02293693A (en) Nuclear fuel element
JP3597596B2 (en) Fuel assembly
JPS61140890A (en) Nuclear fuel rod
JPS6247115Y2 (en)
JPH05346472A (en) Fuel assembly
JPS58161877A (en) Nuclear fuel element
JPS59187289A (en) Nuclear fuel rod
JPH0799398B2 (en) Nuclear fuel element
JPH03267794A (en) Nuclear fuel