JPS6140587A - Fuel rod for boiling-water type reactor - Google Patents

Fuel rod for boiling-water type reactor

Info

Publication number
JPS6140587A
JPS6140587A JP16157284A JP16157284A JPS6140587A JP S6140587 A JPS6140587 A JP S6140587A JP 16157284 A JP16157284 A JP 16157284A JP 16157284 A JP16157284 A JP 16157284A JP S6140587 A JPS6140587 A JP S6140587A
Authority
JP
Japan
Prior art keywords
fuel
cladding tube
fuel rod
boiling
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16157284A
Other languages
Japanese (ja)
Inventor
小原 浩史
越後谷 寛法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16157284A priority Critical patent/JPS6140587A/en
Publication of JPS6140587A publication Critical patent/JPS6140587A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、沸騰水型原子炉に用いられる燃料棒に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to fuel rods used in boiling water nuclear reactors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の沸騰水型原子炉に用いられる燃料棒を第4図を参
照して説明する。ここで第4図に沸騰水型原子炉用燃料
棒の縦断面図を示す。燃料棒1は円筒状の被覆管2内に
多数個の燃料ペレット3が積層状に装填され、前記被覆
管2を密封するためて構成されている。
A fuel rod used in a conventional boiling water nuclear reactor will be explained with reference to FIG. Here, FIG. 4 shows a longitudinal sectional view of a fuel rod for a boiling water reactor. The fuel rod 1 is constructed such that a large number of fuel pellets 3 are stacked in a cylindrical cladding tube 2, and the cladding tube 2 is sealed.

また、前記被覆管2内の上部には上部プレナム6が形成
され、この上部プレナムには前記燃料ペレット3を固定
する上部プレナムスプリング7が配置されている。以上
の構成において、前記被覆管2の役目は燃料ペレット3
と原子炉内の冷却材との反応を防ぐこと、及び燃料ペレ
ット3から放出された放射性核分裂生成物が冷却材中に
混入するのを防ぐことである。したがって、原子炉運転
中に万一被覆管2に破損が生じた場合には核分裂生成物
が冷却材中に混入して冷却材の放射能レベルが上昇し、
遂にはプラントの運転を中止させるおそれがある。通常
、被覆管2に用いられるジルカロイは水及び水蒸気に対
して耐腐食性に優れ、中性子吸収断面積が小さくかつ放
射線照射下でも十分な延性を持つ金属である。しかし、
原子炉の出力を急上昇させた場合、被覆管2に割れが発
生することが見出されている。この割れはほとんど塑性
変形しておらず脆性破壊を示しているため、燃料ベレッ
ト3が燃焼するに従って蓄積する腐食性核分裂生成物(
主によう素)によるジルカロイの応力腐食割れであるこ
とが判明している。応力腐食割れの原因となる被覆管2
に働く引張応力は、燃料ベレット3と被覆管2との機械
的相互作用に基づいている。すなわち、燃料ベレット3
の熱膨張率は被覆管の熱膨張率より大きいために、原子
炉の出力上昇中に燃料ベレット3と被覆管2が接触し、
被覆管2に大きな引張り応力が働くことになる。この引
張応力は、出力上昇による燃料ベレット3の温度上昇幅
が大きいほど大きくなる。さらに出力上昇中には燃料ベ
レット3がら腐食性核分裂生成物が急激に放出され応力
腐食割れの原因となっていた。
Further, an upper plenum 6 is formed in the upper part of the cladding tube 2, and an upper plenum spring 7 for fixing the fuel pellets 3 is disposed in the upper plenum. In the above configuration, the role of the cladding tube 2 is to hold the fuel pellets 3.
The purpose is to prevent a reaction between the fuel pellets 3 and the coolant in the reactor, and to prevent radioactive fission products released from the fuel pellets 3 from being mixed into the coolant. Therefore, in the unlikely event that the cladding tube 2 is damaged during reactor operation, fission products will mix into the coolant and the radioactivity level of the coolant will increase.
There is a risk that the plant will eventually stop operating. Zircaloy, which is normally used for the cladding tube 2, is a metal that has excellent corrosion resistance against water and steam, has a small neutron absorption cross section, and has sufficient ductility even under radiation irradiation. but,
It has been found that cracks occur in the cladding tube 2 when the output of the nuclear reactor is suddenly increased. Since this crack shows a brittle fracture with almost no plastic deformation, corrosive fission products (
It has been determined that this is stress corrosion cracking of Zircaloy caused mainly by iodine). Cladding tube 2 causes stress corrosion cracking
The tensile stress acting on the fuel pellet 3 is based on the mechanical interaction between the fuel pellet 3 and the cladding tube 2. That is, fuel pellet 3
Since the coefficient of thermal expansion of
A large tensile stress will act on the cladding tube 2. This tensile stress increases as the temperature rise in the fuel pellet 3 due to the increase in output increases. Further, during the power increase, corrosive fission products were rapidly released from the fuel pellet 3, causing stress corrosion cracking.

〔発明の目的〕[Purpose of the invention]

大発明の目的は、原子炉の出力上昇中に生ずる燃料ベレ
ットの温度上昇幅を低減きせることによって被N管に働
く引張応力を低減させ、燃料棒の健全性を向上させるこ
とにろる。
The purpose of the invention is to reduce the temperature rise of the fuel pellet that occurs during the increase in the output of a nuclear reactor, thereby reducing the tensile stress acting on the N tube and improving the integrity of the fuel rod.

〔発明の概要〕[Summary of the invention]

本発明は、被覆管内に燃料ベレットを積層状に装填し、
ヘリウムガスをこの被覆管内に封入した後、前記被覆管
の上・下両端を上部端栓及び下両端栓によって密封して
成る沸騰水型原子炉用燃料棒において、@記ヘリウムガ
スの封入圧を0.01気圧以下にしたことを特徴とする
沸騰水型原子炉用燃料棒にある。
In the present invention, fuel pellets are loaded in a stacked manner in a cladding tube,
After helium gas is sealed in the cladding tube, the pressure of the helium gas sealed in the boiling water reactor fuel rod is made by sealing both the upper and lower ends of the cladding tube with an upper end plug and a lower end plug. A fuel rod for a boiling water reactor characterized by having a pressure of 0.01 atmosphere or less.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図から第3図を参照して説
明する。なお、本発明の一実施例を示す燃料棒は第4図
に示す従来の燃料棒と構成は同じであるが、被覆管内部
のヘリウムガスの封入圧は0.01気圧以下に設定され
ている。この様にヘリウムガスの封入圧を小さくすると
燃料ベレットと被覆管との隙間のギャップ熱伝達率は小
さくなり、燃料ベレットの温度は高くなる。ここで第1
図に核分裂生成ガスの放出を考慮せず被覆管内に存在す
るガスがヘリウムのみとし、ヘリウムガスの封   “
入圧を変えた場合の出力と燃料ベレットの温度との関係
を示す燃料棒の特性図を示す。第1図において、曲線A
は従来のヘリウム封入圧が1気圧の場合を示し5、曲線
Bは帆1気圧を、曲線Cは0.01気圧の場合を示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. The fuel rod showing an embodiment of the present invention has the same structure as the conventional fuel rod shown in FIG. 4, but the pressure of helium gas sealed inside the cladding tube is set to 0.01 atmosphere or less. . When the helium gas sealing pressure is reduced in this manner, the gap heat transfer coefficient in the gap between the fuel pellet and the cladding tube becomes smaller, and the temperature of the fuel pellet becomes higher. Here the first
The figure assumes that the only gas existing in the cladding tube is helium, without considering the release of fission product gas, and the helium gas sealing.
A characteristic diagram of the fuel rod showing the relationship between the output and the temperature of the fuel pellet when the input pressure is changed is shown. In Figure 1, curve A
5 shows the case where the conventional helium filling pressure is 1 atm, curve B shows the case where the sail is 1 atm, and curve C shows the case where the sail is 0.01 atm.

第1図に示す様にヘリウム封入圧が低くなるに従って、
燃料ベレットの温度は高くなるが、らる程度出力が高く
なるとこの温度差は小さくなる。
As shown in Figure 1, as the helium filling pressure decreases,
Although the temperature of the fuel pellet increases, this temperature difference becomes smaller as the output increases to a certain degree.

次に第2図に原子炉の出力上昇中に核分裂生成ガスが発
生(〜た場合の出力と燃料ベレットの温度との関係を示
す燃料棒の特性図を示す。なお第2図において、曲線り
け従来のヘリウム封入圧が1気圧の場合を示し、曲線E
は0.1気圧を、曲線FF1O,旧気圧の場合を示す。
Next, Fig. 2 shows a fuel rod characteristic diagram showing the relationship between the output and the temperature of the fuel pellet when fission product gas is generated during the increase in the reactor's output. This shows the case where the conventional helium filling pressure is 1 atm, and curve E
shows 0.1 atm, curve FF1O, old atmospheric pressure.

第2図に示す様に核分裂生成ガスが燃料ベレットから放
出ghると、核分裂生成ガスの熱伝導度が悪いために燃
料ベレットと被覆管との隙間のギャップ熱伝達率が悪く
なり、燃料ベレットの温度が急激に上昇する。しか17
、被覆管内のガス組成がほとんど核分裂生成ガスで占め
られるようになると、初期のヘリウム封入圧による差は
ほとんど見られなくなる。第2図中ニ示シタΔT1.Δ
T2.ΔT8は出力’e 100 W/CrfLから5
00W/crILまで上昇させた時に生じる燃料ベレッ
トの温度上昇幅である。初期のヘリウム封入圧を低くす
るに従って、温度上昇幅はΔT+>ΔT2〉ΔT3と小
さくなっている。この温度上昇幅が小さくなることは、
燃料ベレットの熱膨張による変形が小さくなることにつ
なかっ、このことから燃料ベレットと被覆管の相互作用
によって被覆管に発生する引張応力を小ざくすることが
できる。
As shown in Figure 2, when the fission product gas is released from the fuel pellet, the gap heat transfer coefficient between the fuel pellet and the cladding becomes poor due to the poor thermal conductivity of the fission product gas, and the fuel pellet Temperature rises rapidly. Only 17
, when the gas composition within the cladding tube comes to be dominated by fission product gas, the difference due to the initial helium filling pressure becomes almost invisible. Indicated in FIG. 2 is ΔT1. Δ
T2. ΔT8 is 5 from the output 'e 100 W/CrfL
This is the range of temperature increase in the fuel pellet that occurs when the temperature is increased to 00W/crIL. As the initial helium filling pressure is lowered, the temperature rise width becomes smaller as ΔT+>ΔT2>ΔT3. This decrease in temperature rise means that
This leads to a reduction in the deformation of the fuel pellet due to thermal expansion, and as a result, the tensile stress generated in the cladding due to the interaction between the fuel pellet and the cladding can be reduced.

ここで第3図にヘリウム封入圧と燃料ベレットの温度上
昇幅の関係を示す燃料棒の特性図を示す。
Here, FIG. 3 shows a characteristic diagram of the fuel rod showing the relationship between the helium filling pressure and the temperature rise width of the fuel pellet.

第3図に示す様にヘリウム封入圧を0.01気圧以下と
することにより燃料ベレットの温度上昇幅が急激に減少
し4、被覆管に生ずる引張応力を小さくすることができ
る。
As shown in FIG. 3, by setting the helium filling pressure to 0.01 atmosphere or less, the temperature rise in the fuel pellet is rapidly reduced 4, and the tensile stress generated in the cladding tube can be reduced.

以上の様に、被覆管内に封入するヘリウムガスの封入圧
を0.01気圧以下にすることによって、原子炉の出力
上昇時の被覆管に生ずる応力を低減させ、それにともな
って燃料の健全性を向上させることができる。
As mentioned above, by reducing the sealing pressure of helium gas in the cladding tube to 0.01 atmosphere or less, the stress generated in the cladding tube when the reactor output increases is reduced, and the integrity of the fuel is accordingly improved. can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料棒内に封入するヘリウムガスの封
入圧を0.01気圧以下に設定したため、原子炉の出力
上昇時に被覆管に生ずる応力を低減させることができ、
ひいては燃料棒の健全性を向上させることができる。
According to the present invention, since the pressure of helium gas sealed in the fuel rods is set to 0.01 atmosphere or less, it is possible to reduce the stress generated in the cladding tube when the output of the reactor increases.
In turn, the integrity of the fuel rods can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は出力と燃料ペレットの温度との関係を従来と本
発明とで比較する燃料棒の特性図、第2図は原子炉の出
力上昇中に核分裂生成ガスの放出が起った場合の出力と
燃料ペレットの温度との関係を示す燃料棒の特性図、第
3図はヘリウム封入圧と燃料ペレットの温度上昇幅の関
係金示す燃料棒の特性図、第4図は従来の沸騰水型原子
炉用燃料棒の従来例を示す縦断面図である。 1・・燃料棒     2・・被覆管 3・・燃料ペレット  4・・上部端栓5・・・下両端
栓    6・・上部ブレナム7・・上部プレナムスプ
リング 代理人 弁理士 則 近 憲 佑(ほか1名)第4図
Figure 1 is a characteristic diagram of fuel rods that compares the relationship between power output and temperature of fuel pellets between conventional and inventive fuel rods, and Figure 2 shows the relationship between the output and temperature of fuel pellets when fission product gas is released during the increase in reactor output. A characteristic diagram of a fuel rod showing the relationship between output and temperature of fuel pellets. Figure 3 is a characteristic diagram of a fuel rod showing the relationship between helium filling pressure and temperature rise range of fuel pellets. Figure 4 is a diagram of a conventional boiling water type fuel rod. FIG. 2 is a longitudinal cross-sectional view showing a conventional example of a fuel rod for a nuclear reactor. 1. Fuel rod 2. Cladding tube 3. Fuel pellet 4. Upper end plug 5. Lower both end plugs 6. Upper plenum 7. Upper plenum spring agent, patent attorney Noriyuki Chika (and 1 others) name) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 被覆管内に燃料ペレットを積層状に装填し、ヘリウムガ
スをこの被覆管内に封入した後、前記被覆管の上・下両
端を上部端栓及び下部端栓によつて密封して成る沸騰水
型原子炉用燃料棒において、前記ヘリウムガスの封入圧
を0.01気圧以下にしたことを特徴とする沸騰水型原
子炉用燃料棒。
A boiling water type atom that is made by loading fuel pellets in a layered manner into a cladding tube, sealing helium gas into the cladding tube, and then sealing both the upper and lower ends of the cladding tube with an upper end plug and a lower end plug. A fuel rod for a boiling water reactor, characterized in that the helium gas is sealed at a pressure of 0.01 atmosphere or less.
JP16157284A 1984-08-02 1984-08-02 Fuel rod for boiling-water type reactor Pending JPS6140587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16157284A JPS6140587A (en) 1984-08-02 1984-08-02 Fuel rod for boiling-water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16157284A JPS6140587A (en) 1984-08-02 1984-08-02 Fuel rod for boiling-water type reactor

Publications (1)

Publication Number Publication Date
JPS6140587A true JPS6140587A (en) 1986-02-26

Family

ID=15737657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16157284A Pending JPS6140587A (en) 1984-08-02 1984-08-02 Fuel rod for boiling-water type reactor

Country Status (1)

Country Link
JP (1) JPS6140587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036729A (en) * 2007-08-03 2009-02-19 Global Nuclear Fuel-Japan Co Ltd Core of nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036729A (en) * 2007-08-03 2009-02-19 Global Nuclear Fuel-Japan Co Ltd Core of nuclear reactor

Similar Documents

Publication Publication Date Title
US3925151A (en) Nuclear fuel element
US4131511A (en) Nuclear fuel element
US2984613A (en) Fuel element for nuclear reactors
US3230150A (en) Metal-clad fuel element with copper foil interlayer
US3098024A (en) Composite fuel elements for nuclear reactors
US3215607A (en) Multi-region neutronic fuel element
US3625823A (en) Nuclear fuel rod
JPS6140587A (en) Fuel rod for boiling-water type reactor
Troyanov et al. Cermet fuel in a light water reactor: a possible way to improve safety. Part I. Fabrication and characterization
JPS58165085A (en) Nuclear fuel element
JP3021283B2 (en) Fuel assemblies for fast reactors
US4368170A (en) Method of operating nuclear reactors
Ferrari et al. Fuel-Element Experience in Pressurized-Water Reactors
Sanderson et al. Reduction of pressure-tube to calandria-tube contact conductance to enhance the passive safety of a CANDU-PHW reactor
JPS58161877A (en) Nuclear fuel element
JPS59220677A (en) Nuclear fuel pellet
Buckman et al. Development of annular-coated-pressurized and sphere-pac LWR fuels
JPS58186081A (en) Nuclear fuel assembly
JPS61140890A (en) Nuclear fuel rod
JPS6165186A (en) Nuclear fuel element for boiling-water type reactor
JPS62228192A (en) Nuclear fuel element
JPS58205889A (en) Nuclear fuel rod
JPS60259988A (en) Fuel rod for nuclear reactor
Janes Further Studies of Graphite-Based Materials for High Temperature Applications
Brown et al. MOLTEN ZIRCAL0Y-4/BALL00NED PRESSURE TUBE INTERACTION EXPERIMENTS