JPH0682231A - Interference measurement method - Google Patents

Interference measurement method

Info

Publication number
JPH0682231A
JPH0682231A JP25904392A JP25904392A JPH0682231A JP H0682231 A JPH0682231 A JP H0682231A JP 25904392 A JP25904392 A JP 25904392A JP 25904392 A JP25904392 A JP 25904392A JP H0682231 A JPH0682231 A JP H0682231A
Authority
JP
Japan
Prior art keywords
inspected
interference fringes
surface shape
optical axis
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25904392A
Other languages
Japanese (ja)
Other versions
JP3199487B2 (en
Inventor
Kaneyasu Ookawa
金保 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25904392A priority Critical patent/JP3199487B2/en
Publication of JPH0682231A publication Critical patent/JPH0682231A/en
Application granted granted Critical
Publication of JP3199487B2 publication Critical patent/JP3199487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure the surface shape of a surface to be inspected comprising a non-spherical plane accurately and simply. CONSTITUTION:In an interference measurement method of evaluating a surface shape using a Fiseau's type interferrometer, the distance in the optical axis between a focusing point Oc or an apparent focusing point Oc' of a luminous flux passing through a reference lens 2 and the center OR of the curvature of a reference plane 2 is changed to allow the luminous flux enter a plane S to be inspected so that the number of interference fringes to be observed may be minimized. The surface S to be inspected is moved three dimensionally to determine the values of the surface shape or the value correlated with the surface shape from the data of the interference fringes obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズ,鏡などの光学
部品の表面形状を干渉縞により測定する干渉測定方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference measuring method for measuring the surface shape of optical parts such as lenses and mirrors by means of interference fringes.

【0002】[0002]

【従来の技術】光学部品の表面形状を測定する装置のひ
とつとして、フィゾー型干渉計が知られている。図12
はこのフィゾー型干渉計の測定原理を示し、参照レンズ
110に入射した光束100が参照レンズ110の参照
面110aの曲率中心OR に集光するようになってい
る。被検体である光学部品はその被検面120の曲率中
心が参照面110aの曲率中心に一致するように光路内
に挿入されるが、曲率中心が一致しているため参照面1
10aおよび被検面120からの反射光束により生じる
干渉縞はヌルの状態(干渉縞の本数が零)で観察され
る。そしてこの状態から被検面120を光軸Lの方向に
微小距離だけ移動させることにより、図13に示すよう
に等間隔の干渉縞130が観察される。
2. Description of the Related Art A Fizeau interferometer is known as one of the devices for measuring the surface shape of an optical component. 12
Indicates the measurement principle of this Fizeau interferometer, in which the light beam 100 incident on the reference lens 110 is focused on the center of curvature O R of the reference surface 110 a of the reference lens 110. The optical component, which is the subject, is inserted into the optical path so that the center of curvature of the surface 120 to be inspected coincides with the center of curvature of the reference surface 110a.
The interference fringes generated by the reflected light flux from the surface 10a and the surface 120 to be inspected are observed in a null state (the number of interference fringes is zero). Then, by moving the test surface 120 from this state in the direction of the optical axis L by a minute distance, the interference fringes 130 at equal intervals are observed as shown in FIG.

【0003】この図13は被検面120が球面の場合で
あり、被検面120が非球面度の比較的小さな非球面
(球面でも平面でもない面)の場合においては、上述の
操作でその近軸曲率中心(中心付近の曲率中心)を参照
面110aの曲率中心OR に一致させる。これにより、
図14に示すように内側が疎で、外側が密となった状態
の干渉縞130が観察される。そして、この被検面を光
軸Lの方向に微小距離移動させると、干渉縞130は図
15に示すように、外側が疎で内側が密となった状態で
観察される。
FIG. 13 shows a case where the surface 120 to be inspected is a spherical surface, and when the surface 120 to be inspected is an aspherical surface having a relatively small asphericity (a surface which is neither spherical nor flat), the above-mentioned operation is performed. match paraxial curvature center (center of curvature near the center) to the center of curvature O R of the reference surface 110a. This allows
As shown in FIG. 14, interference fringes 130 in which the inside is sparse and the outside is dense are observed. Then, when the surface to be inspected is moved a small distance in the direction of the optical axis L, the interference fringes 130 are observed in a state where the outside is sparse and the inside is dense as shown in FIG.

【0004】これに対し、非球面度が大きな非球面の被
検面の場合には、図16および図17に示すように密な
部分がさらに密となって、干渉縞としての観察が不可能
となる。このため図16および図17に示すように、そ
の観察領域140が疎の部分にのみ限定され、これによ
り被検面120の一部の形状情報しか得ることができな
い。このようにフィゾー型干渉計により非球面の被検面
を測定する場合においては、干渉縞の密度が場所によっ
て異なるため、例えば干渉縞の本数を中心付近で少なく
するように調整すると、周辺付近では干渉縞の本数が多
くなり過ぎて干渉縞として認識することができず、部分
的な形状しか測定できない不都合がある。
On the other hand, in the case of an aspherical surface having a large degree of asphericity, the dense portions become denser as shown in FIGS. 16 and 17, and it is impossible to observe as interference fringes. Becomes For this reason, as shown in FIGS. 16 and 17, the observation region 140 is limited to only a sparse portion, and only part of the shape information of the surface 120 to be inspected can be obtained. In this way, when measuring an aspherical surface to be inspected by the Fizeau interferometer, the density of the interference fringes varies depending on the location.For example, if the number of interference fringes is adjusted to be small near the center, the The number of interference fringes is too large to be recognized as interference fringes, and only a partial shape can be measured.

【0005】このようなことから、特開昭62−126
305号公報では、被検面を光軸に沿って移動させて被
検面を径方向に分割測定している。そして、分割測定し
た各部の測定データをつなぎ合わせることにより、被検
面全体としての測定データを作成している。
From the above, the Japanese Unexamined Patent Publication No. 62-126
In Japanese Patent No. 305, the surface to be inspected is moved along the optical axis and the surface to be inspected is divided and measured in the radial direction. Then, the measurement data of the entire surface to be inspected is created by connecting the measurement data of the respective parts that have been divided and measured.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述した
測定方法では、分割毎に行なうアライメントや複数面の
干渉縞の測定を必要とするため、測定に多大の工程を必
要としている。また、各分割面の相対的な関係を求める
必要があり、しかも測定データをつなぎ合わせるため、
被検面の全面の干渉縞から形状を測定する方法に比べて
測定密度が低下する問題があった。
However, in the above-described measuring method, since alignment required for each division and measurement of interference fringes on a plurality of surfaces are required, a large number of steps are required for the measurement. In addition, it is necessary to find the relative relationship of each divided surface, and moreover, to connect the measurement data,
There is a problem that the measurement density is lower than the method of measuring the shape from the interference fringes on the entire surface to be inspected.

【0007】本発明は上記事情を考慮してなされたもの
であり、非球面からなる被検面を簡単に、しかも精度良
く測定することが可能な干渉測定方法を提供することを
目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an interference measuring method capable of easily and accurately measuring an aspherical surface to be inspected.

【0008】[0008]

【課題を解決するための手段および作用】上記目的を達
成するため本発明は、被検面が非球面の場合でも、参照
レンズを透過した光束の集光点を参照面の曲率中心から
ずらすことにより、測定可能な干渉縞として認識できる
領域が変化して、その領域が最大となることを確認した
ものであり、しかも、この干渉縞の解析結果としての仮
想の非点収差量およびコマ収差量が非球面の回転対称成
分以外の形状誤差量と相関関係があることを確認したも
のである。このような本発明の干渉測定方法は、フィゾ
ー型干渉計を用いて表面形状を評価するための干渉測定
方法において、観察される干渉縞の本数が最小となるよ
うに被検面に光束を入射させるために参照レンズを透過
した光束の集光点若しくは見かけ上の集光点と参照面の
曲率中心との光軸方向の距離を変化させると共に、被検
面を3次元的に移動させ、この時の干渉縞のデータから
前記表面形状または表面形状と相関のある値を求めるこ
とを特徴とするものである。
In order to achieve the above object, the present invention is to shift the condensing point of the light flux transmitted through the reference lens from the center of curvature of the reference surface even when the surface to be inspected is aspherical. It has been confirmed that the area that can be recognized as measurable interference fringes changes due to the above, and that area is maximized. Moreover, the amount of virtual astigmatism and coma as the analysis result of the interference fringes is confirmed. It is confirmed that is correlated with the amount of shape error other than the rotationally symmetric component of the aspherical surface. Such an interferometric method of the present invention is an interferometric method for evaluating a surface shape using a Fizeau interferometer, in which a light beam is incident on a surface to be inspected so that the number of observed interference fringes is minimized. In order to change the distance between the condensing point or the apparent condensing point of the light flux transmitted through the reference lens and the center of curvature of the reference surface in the optical axis direction, the surface to be inspected is moved three-dimensionally. The present invention is characterized in that the surface shape or a value having a correlation with the surface shape is obtained from data of interference fringes at that time.

【0009】[0009]

【実施例1】図1および図2は本発明の実施例1の測定
方法を示す。図1において、平行光波からなる光束1の
1部は複数の平レンズからなる参照レンズ2を透過する
が、測定光学系(図示省略)を調整して、この1部の光
束を参照面2aの曲率中心OR と異なった光軸L上の集
光点OC に集光させる。一方、光束1の他の1部は参照
面2aで反射して光束5となる。この反射光束5は集光
点OC と共役な共役点O′C から発するごとき光束とな
るため、その反射面である参照面2aにより球面収差が
発生する。このとき、参照面2aの光軸L上の中心Cか
ら集光点OC までの距離をX1 、参照面2aの曲率半径
をR、X1 をRで除した値をx(=X1/R)とする。
Example 1 FIGS. 1 and 2 show a measuring method according to Example 1 of the present invention. In FIG. 1, a part of the light beam 1 made of parallel light waves passes through the reference lens 2 made of a plurality of plano lenses, but the measurement optical system (not shown) is adjusted so that this part of the light beam of the reference surface 2a. The light is condensed at a light collecting point O C on the optical axis L different from the center of curvature O R. On the other hand, the other part of the light beam 1 is reflected by the reference surface 2a and becomes the light beam 5. Since the light beam such originating from the reflected light beam 5 converging point O C conjugate conjugate point O 'C, spherical aberration occurs by reference surface 2a which is the reflecting surface. At this time, the distance from the center C on the optical axis L of the reference surface 2a to the condensing point O C is X 1 , the radius of curvature of the reference surface 2a is R, and the value obtained by dividing X 1 by R is x (= X 1 / R).

【0010】図3はこのxの種々の値に対する開口数N
Aと、参照面2aの反射による球面収差率Δ/R(すな
わち球面収差Δと参照面2aの曲率半径Rとの比)との
関係を示す。図3から明らかなように、集光点OC の位
置を変化させることにより参照面2aからの反射光束5
の球面収差の大きさを自由に替えることが可能となって
いる。
FIG. 3 shows the numerical aperture N for various values of x.
The relationship between A and the spherical aberration rate Δ / R (that is, the ratio between the spherical aberration Δ and the radius of curvature R of the reference surface 2a) due to the reflection of the reference surface 2a is shown. As is clear from FIG. 3, by changing the position of the condensing point O C , the reflected light beam 5 from the reference surface 2a is changed.
It is possible to freely change the magnitude of spherical aberration of.

【0011】このような調整の後、図2に示すように、
非球面からなる被検面Sを光路内に配置する。このと
き、被検面Sを参照面2aの光軸と直交する2方向に微
動させて、被検面Sの光軸を参照面2aの光軸Lと一致
させる。この被検面Sは非球面であるため、被検面Sか
らの反射光束6は非球面波となる。この反射光束6と参
照面2aからの反射光束5とが干渉して干渉縞を形成す
るが、この干渉縞がヌルの状態になる条件は、参照面2
aからの反射によって発生する球面収差と、被検面Sか
らの反射によって発生する球面収差とが等しい場合に限
られる。なお、参照面2aを透過するときに発生する収
差はあるが、その影響は小さく、無視することができ
る。上述した参照面2aによる球面収差と被検面Sによ
る球面収差とを完全に一致させるためには、被検面Sが
特定の面形状に限定されるが、どのような非球面形状で
あっても、また参照面を透過する際に収差が発生して
も、集光点OC の光軸方向の移動と、被検面Sの光軸方
向の移動とにより、双方の球面収差率を最も近似させる
ことができる。以下にその調整を説明する。
After such adjustment, as shown in FIG.
The surface S to be inspected, which is an aspherical surface, is arranged in the optical path. At this time, the test surface S is finely moved in two directions orthogonal to the optical axis of the reference surface 2a so that the optical axis of the test surface S coincides with the optical axis L of the reference surface 2a. Since the surface S to be tested is an aspherical surface, the reflected light beam 6 from the surface S to be tested becomes an aspherical wave. The reflected light beam 6 and the reflected light beam 5 from the reference surface 2a interfere with each other to form an interference fringe. The condition for the interference fringe to be in a null state is that the reference surface 2
It is limited to the case where the spherical aberration generated by the reflection from a is equal to the spherical aberration generated by the reflection from the surface S to be measured. Although there is an aberration that occurs when the light passes through the reference surface 2a, its influence is small and can be ignored. In order to completely match the spherical aberration caused by the reference surface 2a and the spherical aberration caused by the surface S to be inspected, the surface S to be inspected is limited to a specific surface shape. Also, even if aberration occurs when transmitting through the reference surface, the spherical aberration rates of both are maximized due to the movement of the focal point O C in the optical axis direction and the movement of the surface S to be inspected in the optical axis direction. Can be approximated. The adjustment will be described below.

【0012】例えば、非球面である被検面Sの近軸曲率
中心に集光点OC が一致するように被検面に光束を入射
させることにより得られる被検面Sからの反射光束が図
4に示す球面収差率となる場合、まず、参照面2aの曲
率中心OR に集光点OC を一致させる。このとき、x=
1.0となる。この状態で被検面Sを光軸L上の任意の
位置に配置する。このときにおける被検面Sからの反射
光束の球面収差率は図5に示すように、開口数NA=0
において大きな値となるため、図6に示すように干渉縞
が観察されることがない。その後、被検面Sと光軸Lに
沿って移動させると、図7に示すように干渉縞ができ
る。この状態での開口数NA=0における球面収差率は
図8に示すとおりであり、図5に比べて零に近づいてい
る。さらに、この状態から干渉縞の本数が少なくなるよ
うに、被検面Sを光軸方向に移動させることにより、図
9に示すように、中心付近がヌルの状態の干渉縞とな
る。これにより、開口数NA=0における球面収差率が
零となった状態となる。
For example, a reflected light beam from the surface S to be inspected obtained by making the light beam incident on the surface to be inspected so that the converging point O C coincides with the paraxial curvature center of the surface S to be inspected which is an aspherical surface. When the spherical aberration ratio shown in FIG. 4 is obtained, first, the converging point O C is made to coincide with the center of curvature O R of the reference surface 2a. At this time, x =
It becomes 1.0. In this state, the surface S to be inspected is arranged at an arbitrary position on the optical axis L. At this time, the spherical aberration rate of the light beam reflected from the surface S to be inspected is, as shown in FIG.
, The interference fringes are not observed as shown in FIG. After that, when the surface S to be inspected and the optical axis L are moved, interference fringes are formed as shown in FIG. The spherical aberration rate at the numerical aperture NA = 0 in this state is as shown in FIG. 8, which is closer to zero as compared with FIG. Further, by moving the surface S to be inspected in the optical axis direction so that the number of interference fringes is reduced from this state, the interference fringes in the vicinity of the center are null as shown in FIG. As a result, the spherical aberration ratio at the numerical aperture NA = 0 becomes zero.

【0013】ところで、被検面Sは非球面であるところ
から、干渉縞は全体としてヌルとなることがなく、所定
の本数(図示例では3本)の干渉縞として観察される。
このため、参照面2aを光軸Lに沿って移動させる。す
なわち参照レンズ2におけるレンズ間の空気間隔dを変
化させる。この移動は干渉縞がさらに少なくなる方向に
対して行なうが、この移動に際して集光点OC は移動す
ることがないようになっている。この移動により例え
ば、x=1.2となるような位置に参照面2aが達する
と、干渉縞は図10に示すように、最小の本数(ずなわ
ち1本)となる。これは、図11に示すように、被検面
Sからの反射光束の球面収差率Aと、x=1.2におけ
る参照面2aからの反射光束の球面収差率Bとが近接す
るためである。
By the way, since the surface S to be inspected is an aspherical surface, the interference fringes do not become null as a whole, and are observed as a predetermined number (three in the illustrated example) of interference fringes.
Therefore, the reference surface 2a is moved along the optical axis L. That is, the air gap d between the lenses in the reference lens 2 is changed. This movement is performed in the direction in which the interference fringes are further reduced, but the focal point O C does not move during this movement. When the reference surface 2a reaches a position where x = 1.2, for example, due to this movement, the interference fringe becomes the minimum number (that is, one) as shown in FIG. This is because, as shown in FIG. 11, the spherical aberration rate A of the reflected light beam from the surface S to be inspected and the spherical aberration rate B of the reflected light beam from the reference surface 2a at x = 1.2 are close to each other. .

【0014】以上のようにして、被検面Sと参照面2a
との球面収差率とが近似した状態での干渉縞の認識可能
領域は、集光点OR に集光させる従来のフィゾー型干渉
計の領域よりもはるかに大きいものとなっている。
As described above, the surface S to be inspected and the reference surface 2a
The recognizable region of the interference fringes in a state where the spherical aberration rates of and are similar to each other is much larger than the region of the conventional Fizeau interferometer that focuses light at the light focusing point O R.

【0015】本実施例では、以上の方法で観察された干
渉縞のデータから公知の解析を行い、公知のシェルニケ
方式により、公知の方法で波面の非点収差量おびコマ収
差量を求め、この2つの値により被検面Sの表面形状を
評価するものである。すなわち、従来公知のように、非
点収差率を非球面の面対称成分の形状誤差量の評価値と
する一方、コマ収差量を非球面の線対称成分の形状誤差
量の評価値とすることにより、回転非対称成分の形状誤
差を評価することができる。
In this embodiment, a known analysis is performed from the data of the interference fringes observed by the above method, the astigmatism amount and the coma aberration amount of the wavefront are obtained by the known method by the known Schernike method, and The surface shape of the surface S to be inspected is evaluated by two values. That is, as is conventionally known, the astigmatism rate is used as the evaluation value of the shape error amount of the surface symmetry component of the aspheric surface, while the coma aberration amount is used as the evaluation value of the shape error amount of the line symmetry component of the aspheric surface. Thus, the shape error of the rotationally asymmetric component can be evaluated.

【0016】[0016]

【実施例2】実施例1と同様に被検面に光束を入射させ
るために、参照レンズを透過した光束の集光点もしく
は、見かけ上の集光点を参照面の曲率中心付近で光軸方
向に移動させると同時に、被検面を3次元的に移動する
ことにより、干渉縞の本数を最小とし、その時の干渉縞
のデータから公知の縞解析を行い、仮想の波面の波面収
差を求め、この波面収差に相当する被検面の形状を求め
る。次に、この干渉縞のデータと、前述のように求めた
被検面の形状と、集光点の曲率中心からのずれ量とを用
いて、シミュレーションにより参照面と被検面からの反
射波面の位相差を求め、この位相差から導き出される新
たな被検面の形状と前述の被検面の形状とを比較する。
この比較における差が許容レベルを超える場合は、再度
新たな被検面の形状を用いて同様のシミュレーションを
行なう。この演算処理を数回繰り返すことにより、徐々
に差が小さくなって、最終的には差が許容レベル以下と
なる。これにより測定値とシミュレーション値がほぼ一
致し、この時の測定値(シミュレーション値)が正確な
被検面の形状となる。このような本実施例では、実施例
1に比べて形状の絶対測定を高精度で行なうことができ
る。
Second Embodiment As in the first embodiment, in order to make the light beam incident on the surface to be inspected, the condensing point of the light beam transmitted through the reference lens or the apparent condensing point is set near the optical axis near the center of curvature of the reference surface. By moving the surface to be inspected three-dimensionally at the same time as moving in the direction, the number of interference fringes is minimized, and known fringe analysis is performed from the data of the interference fringes at that time to obtain the wavefront aberration of the virtual wavefront. , The shape of the test surface corresponding to this wavefront aberration is determined. Next, by using the data of the interference fringes, the shape of the surface to be inspected obtained as described above, and the amount of deviation from the center of curvature of the converging point, the reflection wavefront from the reference surface and the surface to be inspected by simulation. And the new shape of the surface to be inspected derived from this phase difference is compared with the shape of the surface to be inspected.
If the difference in this comparison exceeds the allowable level, the same simulation is performed again using the new shape of the surface to be inspected. By repeating this calculation process several times, the difference gradually becomes smaller, and finally the difference becomes equal to or lower than the allowable level. As a result, the measured value and the simulated value substantially coincide with each other, and the measured value (simulated value) at this time becomes an accurate shape of the surface to be inspected. In this embodiment as described above, absolute shape measurement can be performed with higher accuracy than in the first embodiment.

【0017】[0017]

【発明の効果】以上のとおり本発明は、干渉縞を最小数
とするように調整するため、被検面が非球面であって
も、その表面形状を高精度にしかも簡単に測定すること
ができる。
As described above, according to the present invention, since the interference fringes are adjusted to be the minimum number, even if the surface to be inspected is an aspherical surface, its surface shape can be measured with high accuracy and easily. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の調整を示す光路図である。FIG. 1 is an optical path diagram showing an adjustment according to a first embodiment of the present invention.

【図2】実施例1の測定を示す光路図である。2 is an optical path diagram showing the measurement of Example 1. FIG.

【図3】球面収差率と開口数との関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a relationship between a spherical aberration ratio and a numerical aperture.

【図4】測定例の特性図である。FIG. 4 is a characteristic diagram of a measurement example.

【図5】測定例の特性図である。FIG. 5 is a characteristic diagram of a measurement example.

【図6】図5で観察されるヌルの干渉縞を示す正面図で
ある。
6 is a front view showing null interference fringes observed in FIG. 5. FIG.

【図7】干渉縞の正面図である。FIG. 7 is a front view of interference fringes.

【図8】測定例の特性図である。FIG. 8 is a characteristic diagram of a measurement example.

【図9】図4で観察される干渉縞の正面図である。9 is a front view of interference fringes observed in FIG.

【図10】測定例の最終段階の特性図である。FIG. 10 is a characteristic diagram at the final stage of a measurement example.

【図11】図10における干渉縞の正面図である。11 is a front view of interference fringes in FIG.

【図12】フィゾー型干渉計の原理を示す光路図であ
る。
FIG. 12 is an optical path diagram showing the principle of a Fizeau interferometer.

【図13】干渉縞の正面図である。FIG. 13 is a front view of interference fringes.

【図14】干渉縞の正面図である。FIG. 14 is a front view of interference fringes.

【図15】干渉縞の正面図である。FIG. 15 is a front view of interference fringes.

【図16】干渉縞の正面図である。FIG. 16 is a front view of interference fringes.

【図17】干渉縞の正面図である。FIG. 17 is a front view of interference fringes.

【符号の説明】[Explanation of symbols]

2 参照レンズ 2a 参照面 L 光軸 OC 集光点 OR 曲率中心 S 被検面2 reference lens 2a reference plane L optical axis O C converging point O R center of curvature S test surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フィゾー型干渉計を用いて表面形状を評
価するための干渉測定方法において、観察される干渉縞
の本数が最小となるように被検面に光束を入射させるた
めに参照レンズを透過した光束の集光点若しくは見かけ
上の集光点と参照面の曲率中心との光軸方向の距離を変
化させると共に、被検面を3次元的に移動させ、この時
の干渉縞のデータから前記表面形状または表面形状と相
関のある値を求めることを特徴とする干渉測定方法。
1. In an interferometric method for evaluating a surface shape using a Fizeau interferometer, a reference lens is used to make a light beam incident on a surface to be inspected so that the number of observed interference fringes is minimized. Interference fringe data at this time while changing the distance in the optical axis direction between the condensing point of the transmitted light flux or the apparent condensing point and the center of curvature of the reference surface An interference measurement method, wherein the surface shape or a value having a correlation with the surface shape is obtained from the above.
JP25904392A 1992-09-02 1992-09-02 Interference measurement method Expired - Fee Related JP3199487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25904392A JP3199487B2 (en) 1992-09-02 1992-09-02 Interference measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25904392A JP3199487B2 (en) 1992-09-02 1992-09-02 Interference measurement method

Publications (2)

Publication Number Publication Date
JPH0682231A true JPH0682231A (en) 1994-03-22
JP3199487B2 JP3199487B2 (en) 2001-08-20

Family

ID=17328542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25904392A Expired - Fee Related JP3199487B2 (en) 1992-09-02 1992-09-02 Interference measurement method

Country Status (1)

Country Link
JP (1) JP3199487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145185A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145185A (en) * 2008-12-17 2010-07-01 Canon Inc Measuring method and measuring device

Also Published As

Publication number Publication date
JP3199487B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
JPH02170033A (en) Inspection method and apparatus for
JP2013186024A (en) Aspheric surface shape measurement method, aspheric surface shape measurement device, optical element processing device and optical element
JPH1163946A (en) Methods for measuring shape and manufacturing high-precision lens
JP3199487B2 (en) Interference measurement method
JP4768904B2 (en) Method for measuring physical quantity of optical element or optical system
JP3164444B2 (en) Interference measurement method
CN105067229A (en) Grating ruler three-probe focal length measurement device and measurement method based on combined lens method
CN204855140U (en) Three probe focus measuring device of grating chi based on compound lens method
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby
JP4127952B2 (en) Aberration measurement method and aberration evaluation apparatus
RU2240503C1 (en) Diffraction interferometer
RU2803879C1 (en) Method for measuring the shape of off-axis asspherical optical part
JP2733914B2 (en) Optical parts inspection equipment
JPH08233531A (en) Focal distance measuring apparatus
US6788423B2 (en) Conic constant measurement methods for refractive microlenses
JPH09113237A (en) Folded null interferometer
JPS60196612A (en) Surface shape measuring apparatus
JP2000097657A (en) Interferometer
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
SU920367A1 (en) Interferometer for for checking concave spherical surfaces
JP2890639B2 (en) Absolute sphericity measurement method and apparatus
JP3320877B2 (en) Method and apparatus for measuring surface shape of object to be measured
SU1755041A1 (en) Interferometer for testing surface shape

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees