JPH0681043A - Production of steel sheet excellent in deep drawability as well as in fatigue characteristic - Google Patents

Production of steel sheet excellent in deep drawability as well as in fatigue characteristic

Info

Publication number
JPH0681043A
JPH0681043A JP23227592A JP23227592A JPH0681043A JP H0681043 A JPH0681043 A JP H0681043A JP 23227592 A JP23227592 A JP 23227592A JP 23227592 A JP23227592 A JP 23227592A JP H0681043 A JPH0681043 A JP H0681043A
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23227592A
Other languages
Japanese (ja)
Other versions
JP2827739B2 (en
Inventor
Kenji Tawara
健司 田原
Junichi Inagaki
淳一 稲垣
Toyofumi Watanabe
豊文 渡辺
Akihide Yoshitake
明英 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23227592A priority Critical patent/JP2827739B2/en
Publication of JPH0681043A publication Critical patent/JPH0681043A/en
Application granted granted Critical
Publication of JP2827739B2 publication Critical patent/JP2827739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a steel sheet having superior deep drawability and fatigue characteristics by subjecting a slab of a dead-soft steel containing specific trace amounts of Ti, Nb, etc., to hot rolling and to cold rolling and then subjecting the resulting steel sheet to annealing under specific temp. conditions and, if necessary, to galvannealing. CONSTITUTION:A slab of a steel having a composition containing, by weight, <0.0050% C, <0.2% Si, 0.10-0.5% Mn, <0.03% P, <0.015% S, <0.10% Sol.Al, <0.0040% N, and further 0.005-0.10% Ti and/or 0.005-0.030% Nb is heated to 1200-1300 deg.C, hot-rolled, coiled at 450-600 deg.C, pickled to undergo the removal of surface scale, and then cold-rolled at 60-90% draft. Finally the resulting steel sheet is annealed at a temp. in the range between the recrystallization temp. and a temp. specified by [6(10Si+5Mn+100P+14)+710]. Further, if necessary, hot-dip galvanizing is applied and the resulting galvanized coating is subjected to alloying treatment, by which an Fe-Zn alloy containing >50% Fe can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた深絞り成形性と
疲労特性とを兼備えた鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet having both excellent deep drawability and fatigue characteristics.

【0002】[0002]

【従来の技術】従来から、薄鋼板に高い成形性を付与す
る手法としては、極低炭素鋼にTi,Nb等の炭・窒化
物形成元素を添加してC,Nを析出固定したIF(In
terstitial Free)鋼が知られている。
このようなIF鋼を前提とした成形性に優れた冷延鋼板
及び溶融亜鉛めっき鋼板に関する技術が、例えば特開平
2−34722号、特開平1−225727号に開示さ
れている。近年、自動車車体の形状が複雑化してきてい
るため、IF鋼のように非常に優れた加工性を有してい
る鋼板でなければ加工できない部品が急増しており、I
F鋼が自動車用鋼板の素材として広く用いられている。
2. Description of the Related Art Conventionally, as a method for imparting high formability to a thin steel sheet, an IF (carbon and nitride forming element such as Ti or Nb is added to an ultra-low carbon steel to precipitate and fix C and N). In
terstitial free steel is known.
Techniques relating to cold-rolled steel sheets and hot-dip galvanized steel sheets having excellent formability based on such IF steels are disclosed in, for example, JP-A-2-34722 and JP-A-1-225727. In recent years, the shape of automobile bodies has become complicated, and the number of parts such as IF steel that can only be processed by steel plates with extremely excellent workability is increasing rapidly.
F steel is widely used as a material for steel plates for automobiles.

【0003】一方、疲労強度が必要であり、かつ深絞り
成形を受けるような部品には、従来低炭素アルミキルド
鋼が使用されているが、この低炭素アルミキルド鋼板の
成形性はIF鋼のそれには及ばない。こうした背景か
ら、疲労特性、深絞り成形性ともに優れた鋼板が求めら
れている。
On the other hand, low carbon aluminum killed steel has been conventionally used for parts which require fatigue strength and undergo deep drawing, but the formability of this low carbon aluminum killed steel sheet is different from that of IF steel. It does not reach. From such a background, a steel sheet having excellent fatigue properties and deep drawability is required.

【0004】[0004]

【発明が解決しようとする課題】従来のIF鋼では、特
開平1−225727号や特開平2−34722号など
のように、高r値を達成するための手段としてC,Nを
十分析出固定するにたるTi,Nbを含有させること、
及びAc3 変態点を越えない範囲で高温焼鈍することを
行っている。確かに、これらの方法によれば、高r値を
得ることはできる。しかし、これらの技術では、疲労特
性の改善は全く意図されていないのである。
In the conventional IF steel, C and N are sufficiently precipitated as a means for achieving a high r value, as in JP-A-1-225727 and JP-A-2-34722. To contain Ti and Nb for fixing,
And high temperature annealing is performed within a range not exceeding the Ac 3 transformation point. Certainly, high r values can be obtained by these methods. However, these techniques are not intended to improve fatigue properties at all.

【0005】この発明はかかる事情に鑑みてなされたも
のであって、優れた深絞り成形性を有し、かつ低炭素ア
ルミキルド鋼板に匹敵する疲労特性を有する鋼板の製造
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing a steel sheet having excellent deep drawability and fatigue characteristics comparable to those of a low carbon aluminum killed steel sheet. And

【0006】[0006]

【課題を解決するための手段及び作用】本発明は、第1
に、重量%で、C:0.0050%以下、Si:0.2
%以下、Mn:0.10〜0.5%、P:0.03%以
下、S:0.015%以下、sol.Al:0.10%
以下、N:0.0040%以下を含有し、更に0.00
5〜0.10%のTi及び0.005〜0.030%の
Nbの1種又は2種を含有し、残部Fe及び不可避不純
物よりなる鋼材を1200℃以上1300℃以下の温度
で加熱した後熱間圧延し、450℃以上600℃以下の
温度でコイルに巻き取り、得られた熱延鋼帯を酸洗後圧
下率60%以上90%以下で冷間圧延し、再結晶温度以
上でかつ、6(10Si+0.5Mn+100P+1
4)+710で規定される温度以下で焼鈍することを特
徴とする疲労特性及び深絞り性に優れた鋼板の製造方法
を提供する。
Means and Action for Solving the Problems
%, C: 0.0050% or less, Si: 0.2
% Or less, Mn: 0.10 to 0.5%, P: 0.03% or less, S: 0.015% or less, sol. Al: 0.10%
Below, N: 0.0040% or less is contained, and further 0.00
After heating a steel material containing 5 to 0.10% of Ti and 0.005 to 0.030% of Nb, one kind or two kinds, and the balance Fe and unavoidable impurities at a temperature of 1200 ° C or higher and 1300 ° C or lower. It is hot rolled, wound around a coil at a temperature of 450 ° C or higher and 600 ° C or lower, and the obtained hot rolled steel strip is cold-rolled at a reduction rate of 60% or more and 90% or less after pickling, and at a recrystallization temperature or more and , 6 (10Si + 0.5Mn + 100P + 1
4) Provided is a method for manufacturing a steel sheet having excellent fatigue properties and deep drawability, which is characterized by annealing at a temperature of +710 or less.

【0007】第2に、重量%で、C:0.0050%以
下、Si:0.2%以下、Mn:0.10〜0.5%、
P:0.03%以下、S:0.015%以下、sol.
Al:0.10%以下、N:0.0040%以下、更に
Ti及びNbのうち1種又は2種を−1≦(12T
* )/(48C)+(12Nb)/(93C)≦2
(ただし、Ti* =Ti−48/14/N−48/32
S)を満足するように含有し、残部Feおよび不可避不
純物よりなる鋼材に対して熱間圧延を施し、これを酸洗
後圧下率60%以上90%以下で冷間圧延し、再結晶温
度以上でかつ、−11{(12Ti* )/(48C)+
(12Nb)/(93C)}+800で規定される温度
以下で焼鈍することを特徴とする疲労特性及び深絞り性
に優れた冷延鋼板の製造方法を提供する。
Secondly, in weight%, C: 0.0050% or less, Si: 0.2% or less, Mn: 0.10 to 0.5%,
P: 0.03% or less, S: 0.015% or less, sol.
Al: 0.10% or less, N: 0.0040% or less, and one or two of Ti and Nb are -1 ≦ (12T
i * ) / (48C) + (12Nb) / (93C) ≦ 2
(However, Ti * = Ti-48 / 14 / N-48 / 32
S) is contained so that the balance is Fe and the inevitable impurities are hot-rolled. After pickling, the steel is cold-rolled at a reduction rate of 60% or more and 90% or less, and recrystallization temperature or more. And -11 {(12Ti * ) / (48C) +
(12Nb) / (93C)} + 800 A method for manufacturing a cold-rolled steel sheet having excellent fatigue characteristics and deep drawability, which is characterized by annealing at a temperature not higher than a prescribed temperature.

【0008】本発明者らは、上記課題を解決するために
研究を進めた結果、軟質薄鋼板の疲労強度は材料の降伏
強度が高いほど高くなることを見出した。すなわち、深
絞り成形性に優れているIF鋼を用いて鋼板のr値を確
保した上で降伏強度を上昇させれば、優れた深絞り成形
性および疲労特性を兼ね備えた鋼板を製造することがで
きるのである。
As a result of research conducted to solve the above problems, the present inventors have found that the fatigue strength of a soft thin steel sheet increases as the yield strength of the material increases. That is, if the yield strength is increased after securing the r value of the steel sheet using the IF steel having excellent deep drawability, it is possible to produce a steel sheet having both excellent deep drawability and fatigue characteristics. You can do it.

【0009】そして、深絞り成形性を損なうことなく降
伏強度を上昇させるためには、焼鈍後の粒径を小さくす
ることが必要であり、そのためには、(1)高温加熱・
低温巻取を行い、かつSi,Mn,Pの強化元素量に基
づいて焼鈍温度の上限を規定すればよいこと、(2)焼
鈍温度の上限を残留固溶C量に基づいて、
In order to increase the yield strength without deteriorating the deep drawing formability, it is necessary to reduce the grain size after annealing. For that purpose, (1) high temperature heating and
Low-temperature winding is performed, and the upper limit of the annealing temperature may be defined based on the amounts of strengthening elements of Si, Mn, and P. (2) The upper limit of the annealing temperature is based on the amount of residual solid solution C,

【0010】−11{(12Ti* )/(48C)+
(12Nb)/(93C)}+800(ただし、Ti*
=Ti−48/14/N−48/32S)に規定すれば
よいことを新たに見出した。上記構成を有する本発明
は、本願発明者らのこのような知見に基づいて完成され
たものである。以下、この発明について詳細に説明す
る。
-11 {(12Ti * ) / (48C) +
(12Nb) / (93C)} + 800 (however, Ti *
= Ti-48 / 14 / N-48 / 32S) has been newly found. The present invention having the above-described configuration has been completed based on the findings of the present inventors. Hereinafter, the present invention will be described in detail.

【0011】上述したように、この発明の第1の態様に
おいては、特定の組成の鋼を、高温に加熱した後熱間圧
延し、低温で巻き取り、酸洗後特定温度冷間圧延を行
い、Si,Mn,Pの強化元素量に基づいてその上限が
規定される温度範囲にて焼鈍し、優れた深絞り成形性お
よび疲労特性を兼ね備えた鋼板を製造する。
As described above, in the first aspect of the present invention, steel having a specific composition is heated to a high temperature, hot-rolled, wound at a low temperature, pickled and then cold-rolled to a specific temperature. , Si, Mn, P are annealed in a temperature range in which the upper limits thereof are defined based on the amounts of strengthening elements, and a steel sheet having excellent deep drawing formability and fatigue properties is manufactured.

【0012】また、第2の態様においては、特定の組成
の鋼を熱間圧延し、酸洗後特定温度で冷間圧延を行い、
残留固溶C量に基づいてその上限が規定される温度範囲
にて焼鈍し、優れた深絞り成形性および疲労特性を兼ね
備えた鋼板を製造する。
In the second embodiment, steel having a specific composition is hot-rolled, pickled and then cold-rolled at a specific temperature.
Annealing is performed in a temperature range whose upper limit is defined based on the amount of residual solid solution C, and a steel sheet having excellent deep drawability and fatigue properties is manufactured.

【0013】そして、いずれの態様においても、冷延鋼
板のまま使用してもよいし、その上に溶融亜鉛めっきを
施してもよい。また、溶融亜鉛めっきに合金化処理を施
してもよく、さらに合金化処理しためっき皮膜の上にF
e含有量が50%以上のFe−Zn合金めっきを施して
もよい。第1の態様における鋼成分の限定理由は以下の
通りである。 C: Cは高r値を達成するためには低い方がよいが、
実用上本発明の効果を損なわない範囲として、その上限
を0.0050重量%に規定する。
In any of the embodiments, the cold-rolled steel sheet may be used as it is or may be hot dip galvanized. Further, hot dip galvanizing may be subjected to alloying treatment, and F may be applied on the alloyed plating film.
Fe-Zn alloy plating with an e content of 50% or more may be applied. The reasons for limiting the steel composition in the first aspect are as follows. C: C is preferably low in order to achieve a high r value,
The upper limit is set to 0.0050% by weight so that the effect of the present invention is not impaired in practical use.

【0014】Si: Siは強化元素として、鋼板の降
伏強度および引張強度の上昇に寄与して、疲労強度の向
上に有効な元素であるが、0.2重量%を越えて含有す
ると、鋼板のr値を劣化させるばかりか、溶融亜鉛めっ
きを施す場合にその密着性を著しく悪化させる。従っ
て、その上限を0.2重量%に規定する。
Si: Si is a strengthening element that contributes to the increase in the yield strength and tensile strength of the steel sheet and is effective in improving the fatigue strength. Not only does it deteriorate the r-value, but it also significantly deteriorates the adhesion when hot-dip galvanizing is performed. Therefore, the upper limit is set to 0.2% by weight.

【0015】Mn: MnもSiと同様に、鋼板の強度
上昇に対して寄与するが、0.10重量%未満ではその
効果がほとんどなく、逆に0.50重量%を越えて添加
すると、鋼板のAc3 変態点を低下させ、最適焼鈍温度
範囲が狭くなるばかりか、鋼板のr値を劣化させる。従
ってMn含有量を0.10〜0.5重量%の範囲に規定
する。
Mn: Mn, like Si, contributes to an increase in the strength of the steel sheet, but if it is less than 0.10% by weight, it has little effect, and if it is added in excess of 0.50% by weight, the steel sheet is Not only lowers the Ac 3 transformation point, narrows the optimum annealing temperature range, but also deteriorates the r value of the steel sheet. Therefore, the Mn content is specified in the range of 0.10 to 0.5% by weight.

【0016】P: Pは、最も安価に鋼を強化させるこ
とができるが、0.03重量%を越えて含有すると、溶
融亜鉛めっきの合金化反応を極端に遅らせ、合金化むら
等の欠陥の原因となるばかりか、鋼板のr値を劣化させ
る。従ってその上限を0.03重量%に規定する。
P: P can strengthen steel at the lowest cost, but if it exceeds 0.03% by weight, the alloying reaction of hot dip galvanization is extremely delayed, resulting in defects such as uneven alloying. Not only is it a cause, but it also deteriorates the r value of the steel sheet. Therefore, the upper limit is set to 0.03% by weight.

【0017】S: Sは鋼板の延性を劣化させるため、
できる限り低減したほうが望ましい。しかし、極端に減
少させることは現実的ではなく、実用上本発明の効果を
損なわない範囲である0.015重量%を上限とする。 sol.Al: Alは脱酸のために必要であるが、あ
まり多量に添加するとコストの上昇を招くため、その上
限を0.10重量%に規定する。 N: Nは高r値を得るためには少ないほうが望まし
く、その含有量を高r値が得られる0.0040重量%
以下に規定した。
S: Since S deteriorates the ductility of the steel sheet,
It is desirable to reduce it as much as possible. However, it is not realistic to reduce the amount extremely, and the upper limit is 0.015% by weight, which is a range that does not impair the effects of the present invention in practice. sol. Al: Al is necessary for deoxidation, but if added in a too large amount, cost rises, so the upper limit is set to 0.10% by weight. N: N is preferably small in order to obtain a high r value, and its content is 0.0040% by weight so that a high r value can be obtained.
Defined below.

【0018】Ti,Nb: Ti,Nbは鋼中の固溶
C,Nを析出物として固定し、高r値を得るために添加
される。しかし、Tiの含有量が0.005重量%未満
ではその効果がなく、0.10重量%を越えて含有して
もその効果が飽和し、コスト上昇を招くのみである。ま
た、Nbの含有量が0.005重量%未満ではその効果
がなく、0.03重量%を越えて含有すると鋼の延性を
著しく低下させる。このため、Ti,Nbを夫々0.0
05〜0.10重量%、0.005〜0.03重量%の
範囲に規定する。そして、これらは同様の作用をするた
め、これらの少なくとも1種が含まれていればよい。次
に、第1の態様の製造条件の限定理由について説明す
る。
Ti, Nb: Ti, Nb is added to fix the solid solution C, N in steel as a precipitate and obtain a high r value. However, if the content of Ti is less than 0.005% by weight, the effect is not exerted, and if it exceeds 0.10% by weight, the effect is saturated and only the cost is increased. Further, if the content of Nb is less than 0.005% by weight, there is no effect, and if it exceeds 0.03% by weight, the ductility of the steel is remarkably reduced. Therefore, Ti and Nb are 0.0
It is specified in the range of 05 to 0.10% by weight and 0.005 to 0.03% by weight. And since these have the same action, it is sufficient that at least one of them is contained. Next, the reasons for limiting the manufacturing conditions of the first aspect will be described.

【0019】熱間圧延工程においては、まずスラブを1
200℃以上1300℃以下の温度で加熱する。120
0℃以上の温度で加熱を行うことにより、スラブの段階
で粗大に析出したTiN等の析出物を加熱時に再溶解さ
せることができ、これらが熱延終了時に微細析出して焼
鈍時の粒成長を抑制し、降伏強度の上昇に寄与する。し
かし、加熱温度が1300℃を越えると、スラブ表面に
生成するスケールが厚くなり、熱延時のスケール剥離性
が劣化する。従って、熱間圧延の際の加熱温度を120
0〜1300℃に規定する。
In the hot rolling process, first, the slab 1
Heating is performed at a temperature of 200 ° C. or higher and 1300 ° C. or lower. 120
By heating at a temperature of 0 ° C. or higher, coarse precipitates such as TiN in the slab stage can be redissolved during heating, and these precipitate finely at the end of hot rolling and grain growth during annealing. And contributes to an increase in yield strength. However, if the heating temperature exceeds 1300 ° C., the scale formed on the slab surface becomes thick and the scale releasability during hot rolling deteriorates. Therefore, the heating temperature during hot rolling is 120
It is specified at 0 to 1300 ° C.

【0020】この温度に加熱後、熱間圧延を行う。この
際の熱間圧延は常法に従ってAr3変態点以上の温度で
終了することが好ましい。Ar3 点未満の温度では、焼
鈍後のr値が劣化するためである。ただし、熱間潤滑が
十分になされるような条件下においては、フェライト域
熱延を行ってもよい。
After heating to this temperature, hot rolling is performed. The hot rolling at this time is preferably completed at a temperature not lower than the Ar 3 transformation point according to a conventional method. This is because the r value after annealing deteriorates at a temperature below the Ar 3 point. However, hot rolling may be performed in the ferrite region under the condition that hot lubrication is sufficiently performed.

【0021】熱延後の巻取温度は450℃以上600℃
以下に規定する。600℃以下に規定したのは、熱延時
に微細析出したTiC等の析出物の粗大化を抑制し、粒
成長を抑制するためである。降伏強度を上昇させるため
には、巻取温度は低ければ低いほど良いが、450℃未
満では焼鈍後のr値が劣化するため、その下限を450
℃に規定する。
The coiling temperature after hot rolling is 450 ° C. or higher and 600 ° C.
It is specified below. The reason why the temperature is specified to be 600 ° C. or lower is to suppress coarsening of precipitates such as TiC finely precipitated during hot rolling and to suppress grain growth. In order to increase the yield strength, the lower the coiling temperature is, the better. However, if the temperature is less than 450 ° C, the r value after annealing deteriorates.
Specify in ° C.

【0022】このようにして得られた熱延鋼帯を常法に
て酸洗した後、圧下率60%以上90%以下で冷間圧延
する。この際の圧下率が60%未満では高r値が得られ
ず、また、圧下率90%以上で圧延しても、r値の上昇
に対して効果がなくなるばかりか、圧延時の圧延機に対
する負荷が大きくなるため、その下限を60%、上限を
90%に規定する。
The hot-rolled steel strip thus obtained is pickled by a conventional method and then cold-rolled at a rolling reduction of 60% or more and 90% or less. At this time, if the rolling reduction is less than 60%, a high r value cannot be obtained, and even if rolling is performed at a rolling reduction of 90% or more, not only is there no effect on the increase of the r value, Since the load increases, the lower limit is set to 60% and the upper limit is set to 90%.

【0023】その後の焼鈍工程は、再結晶温度以上でか
つ、6(10Si+0.5Mn+100P+14)+7
10で規定される温度以下で行う。本発明者らは、この
範囲に焼鈍温度を限定することで、成形性に優れ、かつ
疲労特性にも優れた薄鋼板を製造できることを新たに知
見した。このような知見は、本発明者らの以下のような
実験を通して得られたものである。
In the subsequent annealing step, the recrystallization temperature or higher and 6 (10Si + 0.5Mn + 100P + 14) +7
It is performed at a temperature not higher than 10 The present inventors have newly found that by limiting the annealing temperature to this range, it is possible to produce a thin steel sheet having excellent formability and fatigue characteristics. Such knowledge is obtained through the following experiments by the present inventors.

【0024】まず、C:0.0020%,Si:tr〜
0.3%,Mn:0.1%〜0.8%,P:0.003
〜0.03%,S:0.010%,sol.Al:0.
055%,N:0.0025%,Ti:0.005〜
0.10%,Nb:0.005〜0.035%の成分の
鋼を溶解し、得られたスラブを1250℃で加熱した
後、熱間圧延して板厚を4.0mmとし、580℃でコ
イルに巻き取った。酸洗後、0.8mmまで冷間圧延
し、700℃〜900℃の範囲で連続焼鈍を行った。焼
鈍板に0.5%の調圧を施した後、機械試験および軸引
張疲労試験を行った。疲労試験は、部分片振り条件で行
い、繰り返し速度は20Hzで行った。なお、以降の引
張疲労試験は全てこのような条件で行ったものである。
図1に降伏強度と疲労限の関係を示す。図1に示すよう
に、疲労限は降伏強度で整理でき、降伏強度の高い材料
ほど疲労限は高くなることが確認された。この結果よ
り、疲労特性に優れ、しかも成形性の高い材料を得るた
めには、成形性の許される範囲で、できる限り降伏強度
の高い材料を製造しなければならないことがわかる。
First, C: 0.0020%, Si: tr
0.3%, Mn: 0.1% to 0.8%, P: 0.003
~ 0.03%, S: 0.010%, sol. Al: 0.
055%, N: 0.0025%, Ti: 0.005-
0.10%, Nb: 0.005 to 0.035% of steel is melted, the obtained slab is heated at 1250 ° C., and then hot rolled to a plate thickness of 4.0 mm, 580 ° C. I wound it up in a coil. After pickling, cold rolling was performed to 0.8 mm, and continuous annealing was performed in the range of 700 ° C to 900 ° C. After adjusting the pressure of 0.5% on the annealed plate, a mechanical test and an axial tensile fatigue test were performed. The fatigue test was performed under partial swaying conditions, and the repetition rate was 20 Hz. All the subsequent tensile fatigue tests were conducted under such conditions.
Figure 1 shows the relationship between yield strength and fatigue limit. As shown in FIG. 1, the fatigue limit can be arranged by the yield strength, and it was confirmed that the higher the yield strength of the material, the higher the fatigue limit. From this result, it is understood that in order to obtain a material having excellent fatigue properties and high formability, it is necessary to manufacture a material having as high a yield strength as possible within the range where the formability is allowed.

【0025】次に、焼鈍温度と降伏強度及びr値との関
係の例を図2に示す。ここでr値としては、圧延方向に
対して0°、45°、90°から採取した試験片で求め
た値、r0 、r45、r90を用いて以下の式で示される平
均r値を採用した。
Next, an example of the relationship between the annealing temperature and the yield strength and r value is shown in FIG. Here, as the r value, a value obtained from a test piece taken from 0 °, 45 °, 90 ° with respect to the rolling direction, an average r value represented by the following formula using r 0 , r 45 , and r 90 It was adopted.

【0026】[0026]

【数1】 なお、図2に示した鋼板の化学成分を表1に示す。[Equation 1] Table 1 shows the chemical composition of the steel sheet shown in FIG.

【0027】[0027]

【表1】 [Table 1]

【0028】図2から明らかなように、焼鈍温度の上昇
とともにr値は大きくなるが、その反面降伏強度が低下
する。従って、疲労特性の良好な範囲の降伏強度を保持
しながらr値も高くするためには、焼鈍温度に上限値が
存在する。その上限値を種々の化学成分の鋼のSi,M
n,Pの添加量によって重回帰分析を行った結果、図3
に示すような関係が得られたのである。すなわち、焼鈍
温度の上限値は6(10Si+0.5Mn+100P+
14)+710で与えられることが判明したのである。
As is clear from FIG. 2, the r value increases with the increase of the annealing temperature, but the yield strength decreases. Therefore, in order to increase the r value while maintaining the yield strength in the range where the fatigue characteristics are good, the annealing temperature has an upper limit value. The upper limit values are Si, M of steels with various chemical compositions.
As a result of multiple regression analysis based on the addition amounts of n and P, FIG.
The relationship shown in is obtained. That is, the upper limit of the annealing temperature is 6 (10Si + 0.5Mn + 100P +
14) +710 was found to be given.

【0029】なお、上記の焼鈍工程を溶融亜鉛めっきラ
インで行い、溶融亜鉛めっきを施しても本発明の効果を
損なうことなく、製品に防錆性が要求される場合はこの
ような溶融亜鉛めっきを施すことが好ましい。また、溶
接性などの特性が要求される場合は、450〜550℃
程度の温度で溶融亜鉛めっきの合金化処理を行う。ま
た、プレス成形性がとくに要求される場合には、めっき
皮膜上層にFe含有率が50%以上のFe−Zn合金め
っきを施すことで摩擦係数が低下し、成形性が大きく向
上する。得られた鋼板には、必要に応じて0.5〜1.
5%程度の調質圧延を行い、製品とする。また、冷延鋼
板表面にZn系めっきを電気めっきにより施しても本発
明の効果を何ら損なうものではない。次に、第2の態様
について説明する。
If the above-mentioned annealing process is carried out in a hot dip galvanizing line and hot dip galvanizing is performed without impairing the effect of the present invention, and the product is required to have rust-preventing properties, such hot dip galvanizing is performed. Is preferably applied. When properties such as weldability are required, 450 to 550 ° C
Alloying treatment of hot dip galvanizing is performed at about the temperature. Further, when press formability is particularly required, the friction coefficient is lowered and the formability is greatly improved by applying the Fe—Zn alloy plating with the Fe content of 50% or more to the upper layer of the plating film. The obtained steel sheet has 0.5 to 1.
A temper rolling of about 5% is performed to obtain a product. Further, even if Zn-based plating is applied to the surface of the cold-rolled steel sheet by electroplating, the effect of the present invention is not impaired. Next, the second aspect will be described.

【0030】この態様における鋼組成は、Ti,Nb量
以外は基本的に第1の態様と同様である。Ti,Nbは
上述したように鋼中のC,Nを固定し、r値を向上させ
るために添加されるものであり、r値を上昇させるため
には、Ti,Nbは多い程よいが、大量に添加されると
鋼中のC,Nは全て固定されてしまい、TiC,NbC
等の析出物が粗大化して粒成長性が増大し、強度低下を
招く。この態様ではこの点に着目し、(12Ti* )/
(48C)+(12Nb)/(93C)(ただし、Ti
* =Ti−48/14/N−48/32S)で表される
値によりTi及びNb量を規定した。すなわち、この値
が2を越えるとTiC,NbC等の析出物が粗大化して
粒成長性が増大し強度低下を招くので、その上限を2に
規定した。また、逆にあまりTi,Nbの添加量が少な
いとC,Nが多量に残留し、高r値が得られないばかり
か、常温非時効性が保てなくなるため、その下限を−1
とした。次に、第2の態様の製造条件の限定理由につい
て説明する。
The steel composition in this embodiment is basically the same as that in the first embodiment except the amounts of Ti and Nb. As described above, Ti and Nb are added to fix C and N in steel and improve the r value. To increase the r value, the more Ti and Nb, the better. When added to Ti, C and N in the steel are all fixed and TiC and NbC
Precipitates, etc., become coarse and the grain growth property increases, leading to a decrease in strength. In this aspect, focusing on this point, (12Ti * ) /
(48C) + (12Nb) / (93C) (however, Ti
* = Ti-48 / 14 / N-48 / 32S), and the amounts of Ti and Nb are defined. That is, if this value exceeds 2, the precipitates of TiC, NbC, etc. become coarse and the grain growth property increases, leading to a decrease in strength. Therefore, the upper limit was defined as 2. On the other hand, when the addition amount of Ti and Nb is too small, a large amount of C and N remains, a high r value cannot be obtained, and the room temperature non-aging property cannot be maintained.
And Next, the reason for limiting the manufacturing conditions of the second aspect will be described.

【0031】この態様における熱間圧延の条件は特に限
定されるものではなく、常法にて行えばよい。すなわ
ち、連続鋳造によって得られたスラブを加熱処理を施し
た後熱間圧延を行う方法でも、高温鋳片のまま圧延機に
直送されたスラブをそのまま熱間圧延する方法でもよ
い。得られた熱延鋼帯を常法にて酸洗した後、第1の態
様と同様、圧下率60%以上90%以下で冷間圧延す
る。この限定理由も第1の態様と同様である。
The conditions for hot rolling in this embodiment are not particularly limited and may be carried out by a conventional method. That is, a method in which a slab obtained by continuous casting is subjected to a heat treatment and then hot rolling may be performed, or a method in which a slab directly sent to a rolling mill as a high temperature slab is directly hot rolled may be used. The obtained hot-rolled steel strip is pickled by a conventional method, and then cold-rolled at a rolling reduction of 60% or more and 90% or less, as in the first embodiment. The reason for this limitation is the same as in the first mode.

【0032】その後の焼鈍工程は、再結晶温度以上でか
つ、−11{(12Ti* )/(48C)+(12N
b)/(93C)}+810で規定される温度以下で行
う。本発明者らは、この範囲に焼鈍温度を限定すること
で、成形性に優れ、かつ疲労特性にも優れた薄鋼板を製
造できることを新たに知見した。このような知見は、本
発明者らの以下のような実験を通して得られたものであ
る。
In the subsequent annealing step, the recrystallization temperature or higher and -11 {(12Ti * ) / (48C) + (12N
b) / (93C)} + 810 or less. The present inventors have newly found that by limiting the annealing temperature to this range, it is possible to produce a thin steel sheet having excellent formability and fatigue characteristics. Such knowledge is obtained through the following experiments by the present inventors.

【0033】まず、C:0.0020%,Si:0.0
2%,Mn:0.2%,P:0.010%,S:0.0
10%,sol.Al:0.055%,N:0.002
5%,Ti:tr〜0.050%,Nb:tr〜0.0
30%の成分の鋼を溶解し、得られたスラブを1250
℃で加熱した後、熱間圧延して板厚を4.0mmとし、
580℃でコイルに巻き取った。酸洗後、0.8mmま
で冷間圧延し、600℃〜880℃の範囲で連続焼鈍を
行った。焼鈍板に0.5%の調圧を施した後、機械試験
および軸引張疲労試験を行った。その際の降伏強度と疲
労限の関係は、第1の態様の図1と同様に、降伏強度の
高い材料ほど疲労限は高くなることが確認され、やは
り、第1の態様と同様、疲労特性に優れ、しかも成形性
の高い材料を得るためには、成形性の許される範囲で、
できる限り降伏強度の高い材料を製造しなければならな
いことが確認された。次に、焼鈍温度と降伏強度及びr
値との関係の例を図4に示す。なお、図4に示した鋼の
化学成分を表2に示す。
First, C: 0.0020%, Si: 0.0
2%, Mn: 0.2%, P: 0.010%, S: 0.0
10%, sol. Al: 0.055%, N: 0.002
5%, Ti: tr to 0.050%, Nb: tr to 0.0
1250 of the slab obtained by melting 30% of the steel composition
After heating at ℃, hot rolling to a plate thickness of 4.0 mm,
It was wound into a coil at 580 ° C. After pickling, cold rolling was performed to 0.8 mm, and continuous annealing was performed in the range of 600 ° C to 880 ° C. After adjusting the pressure of 0.5% on the annealed plate, a mechanical test and an axial tensile fatigue test were performed. As for the relationship between the yield strength and the fatigue limit at that time, it was confirmed that the higher the yield strength of the material, the higher the fatigue limit, as in FIG. 1 of the first mode. In order to obtain a material that is excellent in moldability and has high moldability,
It was confirmed that a material with high yield strength should be manufactured as much as possible. Next, the annealing temperature and yield strength and r
An example of the relationship with the value is shown in FIG. The chemical composition of the steel shown in FIG. 4 is shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】図4から明らかなように、図2と同様、焼
鈍温度の上昇とともにr値は大きくなるが、その反面降
伏強度が低下するため、疲労特性の良好な範囲の降伏強
度を保持しながら、r値も高くするためには、焼鈍温度
に上限値が存在する。その上限値を種々の化学成分のT
i,Nbの添加量によって重回帰分析を行った結果、図
5に示すような関係が得られたのである。すなわち、焼
鈍温度の上限値は−11{(12Ti* )/(48C)
+(12Nb)/(93C)}+810で与えられるこ
とが判明したのである。
As is apparent from FIG. 4, as in FIG. 2, the r-value increases with the increase of the annealing temperature, but the yield strength decreases, but the yield strength in a good fatigue property range is maintained. In order to increase the r value, the annealing temperature has an upper limit value. The upper limit is T of various chemical components
As a result of performing the multiple regression analysis by the addition amounts of i and Nb, the relationship shown in FIG. 5 was obtained. That is, the upper limit of the annealing temperature is -11 {(12Ti * ) / (48C)
It was found to be given by + (12Nb) / (93C)} + 810.

【0036】なお、第1の態様と同様、上記の焼鈍工程
を溶融亜鉛めっきラインで行い、溶融亜鉛めっきを施し
ても本発明の効果を何ら損なうことはなく、製品に防錆
性が要求される場合はこのような溶融亜鉛めっきを施す
ことが好ましい。また、溶接性などの特性が要求される
場合は、450〜550℃程度の温度で合金化処理を行
う。また、プレス成形性がとくに要求される場合には、
めっき皮膜上層にFe含有率が50%以上のFe−Zn
合金めっきを施すことで摩擦係数が低下し、成形性が大
きく向上する。得られた鋼板には、必要に応じて0.5
〜1.5%程度の調質圧延を行い、製品とする。また、
第1の態様と同様、冷延鋼板表面にZn系めっきを電気
めっきにより施しても本発明の効果を何ら損なうもので
はない。
As in the case of the first embodiment, even if the above-mentioned annealing process is performed in a hot dip galvanizing line and hot dip galvanizing is performed, the effect of the present invention is not impaired and the product is required to have rust preventive properties. In such a case, it is preferable to apply such hot dip galvanizing. When properties such as weldability are required, alloying treatment is performed at a temperature of about 450 to 550 ° C. Also, when press formability is particularly required,
Fe-Zn with an Fe content of 50% or more in the upper layer of the plating film
By applying alloy plating, the coefficient of friction is lowered and the formability is greatly improved. The obtained steel plate has 0.5 if necessary.
Approximately 1.5% is temper rolled to obtain a product. Also,
Similar to the first aspect, the Zn-based plating on the surface of the cold-rolled steel sheet by electroplating does not impair the effects of the present invention.

【0037】かくして、本発明により、成形性に優れか
つ疲労特性にも優れた冷延鋼板および溶融亜鉛めっき鋼
板を安価に、しかも安定して製造することが初めて可能
になったのである。
Thus, the present invention makes it possible for the first time to inexpensively and stably manufacture cold-rolled steel sheets and hot-dip galvanized steel sheets having excellent formability and fatigue characteristics.

【0038】[0038]

【実施例】以下、本発明の実施例について説明する。な
お、以下の実施例1〜3は第1の態様に対応するもの、
実施例4,5は第2の態様に対応するものである。 (実施例1)
EXAMPLES Examples of the present invention will be described below. The following Examples 1 to 3 correspond to the first aspect,
Examples 4 and 5 correspond to the second mode. (Example 1)

【0039】表3に示す成分の鋼を溶製し、1100℃
〜1300℃で加熱後熱間圧延して、板厚を4.0mm
とし、580℃でコイルに巻き取った。酸洗後、0.8
mmまで冷間圧延し、760℃で連続焼鈍した後、溶融
亜鉛めっきを施した。その後、500℃で合金化処理を
行った後、0.5%の調圧を行い、製品とした。得られ
た鋼板より、引張試験片及び疲労試験片を採取して、引
張試験及び疲労試験に供した。その結果を図6に示す。
図6は、横軸にスラブ加熱温度をとり、縦軸に引張強度
及び疲労限をとって、これらの関係を示す図である。こ
の図から明らかなように、スラブ加熱温度を1200℃
以上にすることにより降伏強度及び疲労限が高い値とな
ることが確認された。
Steels having the components shown in Table 3 were melted at 1100 ° C.
After heating at ~ 1300 ° C, hot-rolling to a plate thickness of 4.0 mm
And was wound on a coil at 580 ° C. 0.8 after pickling
After cold rolling to mm and continuous annealing at 760 ° C., hot dip galvanizing was performed. Then, after alloying at 500 ° C., 0.5% pressure adjustment was performed to obtain a product. Tensile test pieces and fatigue test pieces were sampled from the obtained steel sheet and subjected to a tensile test and a fatigue test. The result is shown in FIG.
FIG. 6 is a diagram showing the relationship between the slab heating temperature on the horizontal axis and the tensile strength and fatigue limit on the vertical axis. As is clear from this figure, the slab heating temperature is 1200 ° C.
It was confirmed that the yield strength and fatigue limit were high values by the above.

【0040】[0040]

【表3】 (実施例2)[Table 3] (Example 2)

【0041】表4に示す成分の鋼を溶製し、1250℃
で加熱した後、熱間圧延して板厚を4.0mmとし、4
00℃〜700℃の範囲でコイルに巻き取った。酸洗
後、0.7mmまで冷間圧延し、770℃で連続焼鈍し
た後、0.5%の調圧を行い、製品とした。得られた鋼
板より、引張試験片および疲労試験片を採取して、試験
に供した。結果を図7に示す。図7は、横軸に巻取温度
をとり、縦軸に降伏強度、疲労限及び平均r値をとっ
て、これらの関係を示す図である。この図から明らかな
ように、巻取温度が600℃を越えると高r値は得られ
るが降伏強度が低下するとともに疲労限も低下し、ま
た、450℃未満の温度範囲では降伏強度及び疲労限は
高い値が得られるがr値が低下することが確認された。
すなわち、巻取温度としては450〜600℃が適当な
ことが確認された。
Steels having the components shown in Table 4 were melted, and the temperature was 1250 ° C.
After that, it is hot-rolled to a plate thickness of 4.0 mm, 4
The coil was wound in the range of 00 ° C to 700 ° C. After pickling, cold rolling was performed to 0.7 mm, continuous annealing was performed at 770 ° C., and then 0.5% pressure adjustment was performed to obtain a product. Tensile test pieces and fatigue test pieces were sampled from the obtained steel sheet and subjected to the test. The results are shown in Fig. 7. FIG. 7 is a diagram showing the relationship between the winding temperature on the horizontal axis and the yield strength, the fatigue limit, and the average r value on the vertical axis. As is clear from this figure, when the winding temperature exceeds 600 ° C, a high r value is obtained, but the yield strength decreases and the fatigue limit decreases, and in the temperature range below 450 ° C, the yield strength and fatigue limit decrease. It was confirmed that a high value was obtained but the r value decreased.
That is, it was confirmed that 450 to 600 ° C. is suitable as the winding temperature.

【0042】[0042]

【表4】 (実施例3)[Table 4] (Example 3)

【0043】表5、表6に示す成分の鋼を溶製し、11
00℃から1300℃の温度で加熱した後、熱間圧延し
て板厚を4.0mmとし、400℃〜650℃の温度範
囲でコイルに巻き取った。酸洗後、0.8mmまで冷間
圧延し、650℃〜900℃の範囲で連続焼鈍を行っ
た。その後、これらの鋼材の一部は調圧を施して製品と
し、他は焼鈍後に溶融亜鉛めっきを施し、その後に45
0〜550℃の温度で合金化処理を施した。そして、合
金化処理を施したものの一部には、さらに亜鉛めっき皮
膜の上層にFe−Zn合金めっきを施した。なお、鋼番
号1〜30は本発明鋼であり、鋼番号31〜42は比較
鋼である。
Steels having the components shown in Tables 5 and 6 were melted and
After heating at a temperature of 00 ° C. to 1300 ° C., it was hot-rolled to a plate thickness of 4.0 mm and wound on a coil in a temperature range of 400 ° C. to 650 ° C. After pickling, cold rolling was performed to 0.8 mm, and continuous annealing was performed in the range of 650 ° C to 900 ° C. After that, a part of these steel materials is subjected to pressure regulation to obtain a product, and the other is annealed and then hot-dip galvanized, and then 45
The alloying treatment was performed at a temperature of 0 to 550 ° C. Then, a part of the alloyed material was further subjected to Fe—Zn alloy plating on the upper layer of the zinc plating film. Steel numbers 1 to 30 are steels of the present invention, and steel numbers 31 to 42 are comparative steels.

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】これらの鋼材について機械試験及び軸引張
疲労試験を行った。なお、溶融亜鉛めっきの付着量は6
0/60g/m2 とした。また、上層めっき付着量は3
g/m2 とした。さらに、溶融亜鉛めっきを施した物に
ついては、耐パウダリング性を調べるため、ドロービー
ド試験を行った。この際に、片面当たりの剥離量5g/
2 以上を不良とした。これらの結果を表7及び表8に
示す。
Mechanical tests and axial tensile fatigue tests were performed on these steel materials. The amount of hot-dip galvanized is 6
0/60 g / m 2 And In addition, the coating weight of the upper layer is 3
g / m 2 And Furthermore, the hot-dip galvanized product was subjected to a draw bead test in order to check the powdering resistance. At this time, the peeling amount per one side is 5 g /
m 2 The above was considered defective. The results are shown in Tables 7 and 8.

【0047】[0047]

【表7】 [Table 7]

【0048】[0048]

【表8】 [Table 8]

【0049】これらの表から明らかなように、本発明鋼
はいずれも疲労限が高く、しかも高r値が得られること
が確認された。これに対して、比較鋼31では加熱温度
が低いため疲労限が低く、比較鋼32,33ではそれぞ
れ巻取温度、焼鈍温度が高いため疲労限が低くなった。
また、比較鋼41では巻取温度が低いためr値の劣化が
著しく、比較鋼42では焼鈍温度が再結晶温度以下のた
めr値が低くなっている。また、比較鋼34,40では
それぞれC,Nが多いためr値が低く、比較鋼34,3
7ではそれぞれSi,Pが多いため溶融亜鉛めっきの密
着性が悪く、比較鋼36ではMnが多いためr値が低い
値となった。さらに、比較鋼39はTi,Nbが添加さ
れていないためr値が極端に低く、比較鋼38ではNb
が多いためやはりr値が低い値となった。 (実施例4)
As is clear from these tables, it was confirmed that all of the steels of the present invention have a high fatigue limit and a high r value. On the other hand, the comparative steel 31 had a low fatigue limit because the heating temperature was low, and the comparative steels 32 and 33 had a low fatigue limit because the coiling temperature and the annealing temperature were high.
Further, in the comparative steel 41, the r-value is remarkably deteriorated because the coiling temperature is low, and in the comparative steel 42, the r-value is low because the annealing temperature is lower than the recrystallization temperature. Further, in the comparative steels 34 and 40, since the C and N contents are large, the r value is low.
In No. 7, since the amounts of Si and P were large, the adhesion of the hot dip galvanizing was poor, and in Comparative Steel 36, the amount of Mn was large and the r value was low. Further, Comparative Steel 39 has an extremely low r value because Ti and Nb are not added, and Comparative Steel 38 has Nb.
As a result, the r value was low. (Example 4)

【0050】表9に示す成分の鋼を溶製し、1250℃
で加熱後熱間圧延して、板厚を4.0mmとし、600
℃でコイルに巻き取った。酸洗後、0.8mmまで冷間
圧延し、770℃で連続焼鈍した後、溶融亜鉛めっきを
施した。その後、500℃で合金化処理を行った後、
0.5%の調圧を行い、製品とした。得られた鋼板よ
り、引張試験片および疲労試験片を採取して、試験に供
した。結果を図8に示す。図8は、横軸に(12T
* )/(48C)+(12Nb)/(93C)の値を
とり、縦軸に降伏強度及び平均r値をとって、これらの
関係を示す図である。この図から明らかなように、(1
2Ti* )/(48C)+(12Nb)/(93C)の
値が−1未満の範囲では高い降伏強度は得られるがr値
が著しく低下し、また、その値が2を越える範囲ではr
値は高いが降伏強度が低下し十分な疲労強度が得られな
いことが確認された。すなわち、(12Ti* )/(4
8C)+(12Nb)/(93C)の値は−1以上2以
下が適当であることが確認された。
Steels having the components shown in Table 9 were melted at 1250 ° C.
And then hot-rolling to a plate thickness of 4.0 mm, 600
It was wound into a coil at ° C. After pickling, it was cold-rolled to 0.8 mm, continuously annealed at 770 ° C., and then hot-dip galvanized. Then, after alloying at 500 ° C,
The pressure was adjusted to 0.5% to obtain a product. Tensile test pieces and fatigue test pieces were sampled from the obtained steel sheet and subjected to the test. The results are shown in Fig. 8. In Fig. 8, the horizontal axis is (12T
i * ) / (48C) + (12Nb) / (93C), and the yield strength and the average r value are plotted on the vertical axis to show these relationships. As is clear from this figure, (1
2Ti * ) / (48C) + (12Nb) / (93C) value is less than -1, a high yield strength can be obtained, but the r value is remarkably reduced, and when the value exceeds 2, r
Although the value was high, it was confirmed that the yield strength decreased and sufficient fatigue strength could not be obtained. That is, (12Ti * ) / (4
It was confirmed that the value of 8C) + (12Nb) / (93C) is -1 or more and 2 or less.

【0051】[0051]

【表9】 (実施例5)[Table 9] (Example 5)

【0052】表10、11に示す成分の鋼を溶製し、1
150℃から1250℃の温度で加熱した後、熱間圧延
して板厚を4.0mmとし、500℃〜600℃の温度
範囲でコイルに巻き取った。酸洗後、0.8mmまで冷
間圧延し、650℃〜880℃の範囲で連続焼鈍を行っ
た。その後、これらの鋼材の一部は調圧を施して製品と
し、他は焼鈍後に溶融亜鉛めっきを施し、その後に45
0〜550℃の温度で合金化処理を施した。そして、合
金化処理を施したものの一部には、さらに亜鉛めっき皮
膜の上層にFe−Zn合金めっきを施した。なお、鋼番
号51〜80は本発明鋼であり、鋼番号81〜91は比
較鋼である。
Steels having the components shown in Tables 10 and 11 were melted and
After heating at a temperature of 150 ° C. to 1250 ° C., it was hot-rolled to a plate thickness of 4.0 mm and wound on a coil in a temperature range of 500 ° C. to 600 ° C. After pickling, cold rolling was performed to 0.8 mm, and continuous annealing was performed in the range of 650 ° C to 880 ° C. After that, a part of these steel materials is subjected to pressure regulation to obtain a product, and the other is annealed and then hot-dip galvanized, and then 45
The alloying treatment was performed at a temperature of 0 to 550 ° C. Then, a part of the alloyed material was further subjected to Fe—Zn alloy plating on the upper layer of the zinc plating film. Steel numbers 51 to 80 are steels of the present invention, and steel numbers 81 to 91 are comparative steels.

【0053】[0053]

【表10】 [Table 10]

【0054】[0054]

【表11】 [Table 11]

【0055】これらの鋼材について機械試験および軸引
張疲労試験を行った。なお、溶融亜鉛めっきの付着量は
60/60g/m2 とした。また、上層の付着量は3g
/m2 とした。さらに、溶融亜鉛めっきを施した物につ
いては、耐パウダリング性を調べるため、ドロービード
試験を行った。この際に、片面当たりの剥離量5g/m
2 以上を不良とした。これらの結果を表12及び表13
に示す。
Mechanical tests and axial tensile fatigue tests were performed on these steel materials. The amount of hot dip galvanized is 60/60 g / m 2 And In addition, the amount of adhesion of the upper layer is 3g
/ M 2 And Furthermore, the hot-dip galvanized product was subjected to a draw bead test in order to check the powdering resistance. At this time, peeling amount per side 5 g / m
2 The above was considered defective. These results are shown in Table 12 and Table 13.
Shown in.

【0056】[0056]

【表12】 [Table 12]

【0057】[0057]

【表13】 [Table 13]

【0058】これらの表から明らかなように、本発明鋼
はいずれも疲労限が高く、しかも高r値が得られること
が確認された。これに対して、比較鋼81はTi,Nb
量が少ないためr値が低く、比較鋼82,83はTi,
Nb量が多すぎるため疲労限が低くなった。また、比較
鋼84,85,86はそれぞれC,Si,Mnが多いた
めr値が低く、比較鋼87はPが多いためr値が低いば
かりか、めっき密着性にも劣っている。また、比較鋼8
8はTi,Nbがまったく添加されていないためr値が
低く、比較鋼89はNが多いためr値が劣化している。
また、比較鋼90では焼鈍温度が高いため高r値は得ら
れるが、疲労限が低く、比較鋼91では焼鈍温度が再結
晶温度以下のためr値が極端に低い値となった。
As is clear from these tables, it was confirmed that each of the steels of the present invention had a high fatigue limit and a high r value. On the other hand, the comparative steel 81 is Ti, Nb.
Since the amount is small, the r value is low.
The fatigue limit was lowered because the amount of Nb was too large. Further, the comparative steels 84, 85, and 86 each have a large r, so that the r value is low, and the comparative steel 87 has a large r, so that the r value is low and the plating adhesion is poor. Also, comparative steel 8
No. 8 has a low r-value because Ti and Nb are not added at all, and Comparative Steel 89 has a large r-value due to a large amount of N.
Further, although Comparative Steel 90 has a high annealing temperature and thus a high r value, the fatigue limit is low, and Comparative Steel 91 has an extremely low r value because the annealing temperature is below the recrystallization temperature.

【0059】[0059]

【発明の効果】本発明によれば、高い成形性を有し、か
つ疲労特性にも優れた鋼板の製造方法が提供される。こ
の発明の方法により、このような優れた特性を有する冷
延鋼板および溶融亜鉛めっき鋼板が初めて製造可能とな
るもので、その工業的価値は極めて大きい。
According to the present invention, there is provided a method for manufacturing a steel sheet having high formability and excellent fatigue characteristics. By the method of the present invention, a cold-rolled steel sheet and a hot-dip galvanized steel sheet having such excellent properties can be manufactured for the first time, and their industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】降伏強度と疲労限との関係を示す図。FIG. 1 is a diagram showing the relationship between yield strength and fatigue limit.

【図2】焼鈍温度と降伏強度及びr値との関係の一例を
示す図。
FIG. 2 is a diagram showing an example of a relationship between an annealing temperature, a yield strength, and an r value.

【図3】10Si+0.5Mn+100P+14と焼鈍
温度の上限値との関係を示す図。
FIG. 3 is a diagram showing the relationship between 10Si + 0.5Mn + 100P + 14 and the upper limit of annealing temperature.

【図4】焼鈍温度と降伏強度及びr値との関係の他の例
を示す図。
FIG. 4 is a diagram showing another example of the relationship between the annealing temperature and the yield strength and r value.

【図5】(12Ti* )/(48C)+(12Nb)/
(93C)と焼鈍温度の上限値との関係を示す図。
FIG. 5 (12Ti * ) / (48C) + (12Nb) /
The figure which shows the relationship between (93C) and the upper limit of annealing temperature.

【図6】第1の態様における引張強度及び疲労限のスラ
ブの焼入れ加熱温度による変化を示す図。
FIG. 6 is a diagram showing changes in tensile strength and fatigue limit in the first embodiment depending on the quenching heating temperature of the slab.

【図7】第1の態様における降伏強度、疲労限及び平均
r値の巻取温度による変化を示す図。
FIG. 7 is a diagram showing changes in yield strength, fatigue limit, and average r value depending on the winding temperature in the first mode.

【図8】第2の態様における(12Ti* )/(48
C)+(12Nb)/(93C)の値と降伏強度及び平
均r値との関係を示す図。
FIG. 8 shows (12Ti * in the second embodiment . ) / (48
The figure which shows the relationship of the value of (C) + (12Nb) / (93C), a yield strength, and an average r value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉武 明英 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akihide Yoshitake 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.0050%以下、S
i:0.2%以下、Mn:0.10〜0.5%、P:
0.03%以下、S:0.015%以下、sol.A
l:0.10%以下、N:0.0040%以下を含有
し、更に0.005〜0.10%のTi及び0.005
〜0.030%のNbのうち1種又は2種を含有し、残
部Fe及び不可避不純物よりなる鋼材を1200℃以上
1300℃以下の温度で加熱した後熱間圧延し、450
℃以上600℃以下の温度でコイルに巻き取り、得られ
た熱延鋼帯を酸洗後圧下率60%以上90%以下で冷間
圧延し、再結晶温度以上でかつ、6(10Si+0.5
Mn+100P+14)+710で規定される温度以下
で焼鈍することを特徴とする疲労特性及び深絞り性に優
れた鋼板の製造方法。
1. C, 0.0050% or less by weight%, S
i: 0.2% or less, Mn: 0.10 to 0.5%, P:
0.03% or less, S: 0.015% or less, sol. A
L: 0.10% or less, N: 0.0040% or less, and 0.005 to 0.10% Ti and 0.005.
To 0.030% of Nb, one or two of which is contained, and the balance Fe and unavoidable impurities are heated to a temperature of 1200 ° C. or higher and 1300 ° C. or lower, and then hot-rolled.
The hot-rolled steel strip was wound around a coil at a temperature of ℃ or more and 600 ° C or less, and cold-rolled at a rolling reduction of 60% or more and 90% or less after pickling, and at a recrystallization temperature or more and 6 (10Si + 0.5
Mn + 100P + 14) +710, The manufacturing method of the steel plate excellent in the fatigue characteristics and deep drawability characterized by annealing at the temperature below.
【請求項2】 重量%で、C:0.0050%以下、S
i:0.2%以下、Mn:0.10〜0.5%、P:
0.03%以下、S:0.015%以下、sol.A
l:0.10%以下、N:0.0040%以下、更にT
i及びNbのうち1種又は2種を−1≦(12Ti*
/(48C)+(12Nb)/(93C)≦2(ただ
し、Ti* =Ti−48/14/N−48/32S)を
満足するように含有し、残部Feおよび不可避不純物よ
りなる鋼材に対して熱間圧延を施し、これを酸洗後圧下
率60%以上90%以下で冷間圧延し、再結晶温度以上
でかつ、 −11{(12Ti* )/(48C)+(1
2Nb)/(93C)}+800で規定される温度以下
で焼鈍することを特徴とする疲労特性及び深絞り性に優
れた冷延鋼板の製造方法。
2. C: 0.0050% or less by weight%, S
i: 0.2% or less, Mn: 0.10 to 0.5%, P:
0.03% or less, S: 0.015% or less, sol. A
1: 0.10% or less, N: 0.0040% or less, and T
One or two of i and Nb are −1 ≦ (12Ti * )
/ (48C) + (12Nb) / (93C) ≦ 2 (however, Ti * = Ti-48 / 14 / N-48 / 32S), hot rolling is performed on a steel material containing the balance Fe and unavoidable impurities, and the steel sheet is pickled, and the rolling reduction is 60% or more and 90% or more. Cold-rolled below, above the recrystallization temperature, and −11 {(12Ti * ) / (48C) + (1
2Nb) / (93C)} + 800, and a method for producing a cold-rolled steel sheet having excellent fatigue properties and deep drawability, characterized by annealing at a temperature not higher than that specified.
【請求項3】 さらに溶融亜鉛めっきを施すことを特徴
とする請求項1又は2に記載の疲労特性及び深絞り性に
優れた鋼板の製造方法。
3. The method for producing a steel sheet having excellent fatigue properties and deep drawability according to claim 1 or 2, further comprising hot dip galvanizing.
【請求項4】 さらに合金化処理を施し、合金化溶融亜
鉛めっきを形成することを特徴とする請求項3に記載の
疲労特性及び深絞り性に優れた鋼板の製造方法。
4. The method for producing a steel sheet having excellent fatigue properties and deep drawability according to claim 3, further comprising an alloying treatment to form a galvannealed alloy.
【請求項5】 さらにめっき皮膜の上層にFe含有量が
50%以上のFe−Zn合金めっきを施すことを特徴と
する請求項4に記載の疲労特性及び深絞り性に優れた鋼
板の製造方法。
5. The method for producing a steel sheet excellent in fatigue properties and deep drawability according to claim 4, further comprising: applying Fe—Zn alloy plating having an Fe content of 50% or more to the upper layer of the plating film. .
JP23227592A 1992-08-31 1992-08-31 Method for producing steel sheet with excellent fatigue characteristics and deep drawability Expired - Fee Related JP2827739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23227592A JP2827739B2 (en) 1992-08-31 1992-08-31 Method for producing steel sheet with excellent fatigue characteristics and deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23227592A JP2827739B2 (en) 1992-08-31 1992-08-31 Method for producing steel sheet with excellent fatigue characteristics and deep drawability

Publications (2)

Publication Number Publication Date
JPH0681043A true JPH0681043A (en) 1994-03-22
JP2827739B2 JP2827739B2 (en) 1998-11-25

Family

ID=16936688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227592A Expired - Fee Related JP2827739B2 (en) 1992-08-31 1992-08-31 Method for producing steel sheet with excellent fatigue characteristics and deep drawability

Country Status (1)

Country Link
JP (1) JP2827739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855696A (en) * 1995-03-27 1999-01-05 Nippon Steel Corporation Ultra low carbon, cold rolled steel sheet and galvanized steel sheet having improved fatigue properties and processes for producing the same
JP2022089152A (en) * 2020-12-03 2022-06-15 攀▲鋼▼集▲団▼研究院有限公司 HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET FOR SUPER DEEP DRAWING AND METHOD FOR MANUFACTURING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855696A (en) * 1995-03-27 1999-01-05 Nippon Steel Corporation Ultra low carbon, cold rolled steel sheet and galvanized steel sheet having improved fatigue properties and processes for producing the same
JP2022089152A (en) * 2020-12-03 2022-06-15 攀▲鋼▼集▲団▼研究院有限公司 HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET FOR SUPER DEEP DRAWING AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP2827739B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0620288B1 (en) Cold-rolled sheet and hot-galvanized cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
TW200532032A (en) High strength cold rolled steel sheet and method for manufacturing the same
EP0572666B1 (en) Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof
JP3698049B2 (en) Alloy hot-dip galvanized steel sheet
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JPH06122940A (en) Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof
JPH0578784A (en) High strength cold rolled steel sheet having satisfactory formability
JP2812770B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JPH0681043A (en) Production of steel sheet excellent in deep drawability as well as in fatigue characteristic
JP2827740B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP2848148B2 (en) Steel plate with excellent fatigue properties and deep drawability
JPH0232326B2 (en) TOSOYAKITSUKEKOKASEIOJUSURUTOSOKOHANNOSEIZOHOHO
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JPH04301060A (en) High strength alloyed galvanized steel sheet having seizing hardenability and excellent in powdering resistance and its production
JP2689684B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing having bake hardenability
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JPH05230543A (en) Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JPH01123058A (en) Alloying hot dip galvanized steel sheet for superdrawing excellent in resistance to secondary working brittleness and its production
JPH0578783A (en) High strength cold rolled steel sheet having satisfactory formability
JPH05255807A (en) High strength cold rolled steel sheet and calvanized high strength cold rolled steel sheet excellent in formability and their manufacture
JPS62260046A (en) High-strength alloyed hot dip zinc coated steel sheet having excellent deep drawability and its production
JPH0756056B2 (en) Method for producing high strength galvanized steel sheet having high r value
JPH05263189A (en) High strength cold rolled steel sheet and galvanized high strength cold rolled steel sheet good in formability, and their manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees