JPH0680612B2 - Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing - Google Patents

Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing

Info

Publication number
JPH0680612B2
JPH0680612B2 JP2571088A JP2571088A JPH0680612B2 JP H0680612 B2 JPH0680612 B2 JP H0680612B2 JP 2571088 A JP2571088 A JP 2571088A JP 2571088 A JP2571088 A JP 2571088A JP H0680612 B2 JPH0680612 B2 JP H0680612B2
Authority
JP
Japan
Prior art keywords
steel sheet
base
grain
oriented silicon
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2571088A
Other languages
Japanese (ja)
Other versions
JPS63232302A (en
Inventor
道郎 小松原
征夫 井口
氏裕 西池
庸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2571088A priority Critical patent/JPH0680612B2/en
Publication of JPS63232302A publication Critical patent/JPS63232302A/en
Publication of JPH0680612B2 publication Critical patent/JPH0680612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 鉄損の低い方向性けい素鋼板に関して、この明細書に述
べる技術内容な、とくに鋼板表面の被膜を含む地鉄表層
部に不均一性を付与して該表面に異張力の働く領域ない
しは透磁率が不連続となる領域を区画形成することによ
り、鉄損を向上させることに関連している。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) Regarding a grain-oriented silicon steel sheet having a low iron loss, the technical contents described in this specification, especially non-uniformity in the surface layer portion of the base steel including the coating on the surface of the steel sheet This is related to improving iron loss by partitioning and forming a region where different tension acts on the surface or a region where magnetic permeability is discontinuous when applied.

方向性けい素鋼板は主として変圧器その他の電気機器の
鉄心として利用され、その磁化特性が優れていること、
とくに鉄損(W17/50で代表される)が低いことが要求さ
れている。
The grain-oriented silicon steel sheet is mainly used as an iron core for transformers and other electric devices, and has excellent magnetization characteristics.
Especially, low iron loss (represented by W 17/50 ) is required.

このためには、第一に鋼板中の2次再結晶粒の〈001〉
粒方位を圧延方向に高度に揃えることが必要であり、第
二には、最終製品の鋼中に存在する不純物や析出物をで
きるだけ減少させる必要がある。かかる配慮の下に製造
される方向性けい素鋼板は、今日まで多くの改善努力に
よって、その鉄損値も年を追って改善され、最近では板
厚0.30mmの製品でW17/50の値が1.05W/kgの低鉄損のもの
が得られている。
To this end, firstly, the secondary recrystallized grains in the steel sheet <001>
It is necessary to highly align the grain orientation with the rolling direction, and secondly, it is necessary to reduce impurities and precipitates existing in the final product steel as much as possible. Iron loss value of grain- oriented silicon steel sheet manufactured under such consideration has been improved year by year through many improvement efforts, and recently, the value of W 17/50 is 0.30 mm in product and the value of W 17/50 is improved. A low iron loss of 1.05 W / kg is obtained.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器を求める傾向が一段と強まり、そ
れらの鉄芯材料として、さらに鉄損の低い方向性けい素
鋼板が要請されるようになっている。
However, since the energy crisis of several years ago, the tendency to seek electrical equipment with less power loss has become stronger, and as a core material for them, grain-oriented silicon steel sheets with even lower iron loss are required. Has become.

(従来の技術) ところで、方向性けい素鋼板の鉄損を下げる手法として
は、Si含有量を高める、製品板厚を薄くする、2次再結
晶粒を細かくする、不純物含有量を低減する、そして
(110)〔001〕方位の2次再結晶をより高度に揃えるな
ど、主に冶金学的方法が一般に知られているが、これら
の手法は、現行の生産手段の上からはもはや限界に達し
ていて、これ以上の改善は極めて難しく、たとえ多少の
改善が認められたとしても、その努力の割りには鉄損改
善の実効は僅かとなるに至っていた。
(Prior Art) By the way, as a method of reducing the iron loss of a grain-oriented silicon steel sheet, the Si content is increased, the product sheet thickness is reduced, the secondary recrystallized grains are fined, the impurity content is reduced, And metallurgical methods are generally known, such as making secondary recrystallization of (110) [001] orientation more advanced, but these methods are no longer available from the present production means. It has been reached, and further improvement is extremely difficult, and even if some improvement is recognized, the effect of iron loss improvement is small in spite of the efforts.

これらの方法とは別に、特公昭54-23647号公報に開示さ
れているように、鋼板表面に2次再結晶阻止領域を形成
させることにより、2次再結晶粒を細粒化させる方法が
提案されている。しかしながらこの方法は、2次再結晶
粒径の制御が安定していないため、実用的とは云いがた
い。
In addition to these methods, as disclosed in Japanese Patent Publication No. 54-23647, a method is proposed in which secondary recrystallized grains are formed into fine particles by forming a secondary recrystallization inhibiting region on the surface of a steel sheet. Has been done. However, this method is not practical because the control of the secondary recrystallized grain size is not stable.

その他特公昭58-5968号公報には、2次再結晶後の鋼板
の表面にボールペン状小球により、微小歪を鋼板表層に
導入することにより、磁区の幅を微細化し、鉄損を低減
する技術が、また、特公昭57-2252号公報には、最終製
品板表面に、圧延方向にほぼ直角にレーザービームを数
mm間隔に照射し、鋼板表層に高転位密度領域を導入する
ことにより、磁区の幅を微細化し、鉄損を低減する技術
が提案されている。
In addition, in Japanese Patent Publication No. 58-5968, by introducing a minute strain into the surface layer of the steel sheet by a ball-point pen-shaped small ball on the surface of the steel sheet after secondary recrystallization, the width of the magnetic domain is made fine and the iron loss is reduced. According to the technology, in Japanese Patent Publication No. 57-2252, a laser beam is applied to the surface of the final product plate at a substantially right angle to the rolling direction.
A technique has been proposed in which the width of the magnetic domain is miniaturized and the core loss is reduced by irradiating the steel sheet with a high dislocation density region on the surface of the steel sheet.

さらに、特開昭57-188810号には、放電加工により鋼板
表層に微小歪を導入し、磁区幅を微細化し、鉄損を低減
する同様の技術が提案されている。
Further, Japanese Patent Application Laid-Open No. 57-188810 proposes a similar technique in which a minute strain is introduced into the surface layer of a steel sheet by electric discharge machining to make the magnetic domain width finer and reduce the iron loss.

(発明が解決しようとする課題) これら3種類の方法は、いずれも2次再結晶後の鋼板の
地鉄表層に微小な塑性歪を導入することにより磁区幅を
微細化し鉄損の低減を図るものであって、均しく実用的
であり、かつ鉄損低減効果も優れているが、鋼板の打抜
き加工、せん断加工、巻き加工などの後の歪取り焼鈍
や、コーティングの焼付け処理の如き熱処理によって、
塑性歪導入による効果が減殺される欠点を伴う。なおコ
ーティング処理後に微小な塑性歪の導入を行う場合は、
絶縁性を維持するために絶縁コーティングの再塗布を行
わねばならず、歪付与工程、再塗布工程と、工程の大幅
増加になり、コストアップをもたらす。
(Problems to be Solved by the Invention) In all of these three types of methods, a small plastic strain is introduced into the surface layer of the base metal of the steel sheet after secondary recrystallization to reduce the magnetic domain width and reduce iron loss. It is even, practical, and has an excellent iron loss reduction effect, but it can be processed by stress relief annealing after punching, shearing, winding, etc. of steel sheets and heat treatment such as baking treatment of coatings. ,
This is accompanied by the drawback that the effect of introducing plastic strain is diminished. If a small amount of plastic strain is introduced after the coating process,
Insulation coating must be re-applied in order to maintain the insulating property, resulting in a large number of steps such as a strain imparting step and a re-applying step, resulting in a cost increase.

この発明は、上記した先行技術とは発想を異にした磁区
幅の細分化手段をもって、高温における歪取り焼鈍の後
においても特性劣化を伴わずに、製品の磁区細分化の実
効を確保し得るようにした方向性けい素鋼板を与えるこ
とを目的とする。
This invention can secure the effect of the magnetic domain subdivision of the product without the characteristic deterioration even after the strain relief annealing at a high temperature by the magnetic domain width subdividing means having a different idea from the above-mentioned prior art. The purpose is to provide a grain-oriented silicon steel sheet.

(課題を解決するための手段) この発明は、フォルステライト被膜を被成した方向性け
い素鋼板の地鉄表層部に、局所的に、地鉄とは組成の異
なる異物を存在させることが、製品の磁区幅の細分化に
極めて有利に寄与すること、そしてかような異物の存在
下にフォルステライト被膜に重ねて張力付与型の絶縁コ
ーティング被膜を被成すると、両者の複合作用によっ
て、所期した効果が一層助長されることの新規知見に立
脚する。
(Means for Solving the Problem) The present invention is that the foreign matter having a composition different from that of the ground iron locally exists in the ground iron surface layer portion of the grain-oriented silicon steel sheet coated with the forsterite coating, It contributes extremely advantageously to the subdivision of the magnetic domain width of the product, and when a tension-type insulating coating film is laminated on the forsterite film in the presence of such a foreign substance, the combined action of the two causes the desired effect. Based on the new finding that the effect achieved is further promoted.

方向性けい素鋼板の製造工程において、最終板厚に冷間
圧延された鋼板は有害な炭素を取除くため通常脱炭焼鈍
が施される。かかる焼鈍によって鋼板は、内部に微細な
分散第2相からなる抑制剤を含有した1次再結晶集合組
織となるが、同時に鋼板表面層は微細なSiO2粒子が地鉄
内に分散したサブスケール構造となる。この脱炭・1次
再結晶板には、その表面にMgOを主成分とする焼鈍分離
剤を塗布したのち、2次再結晶焼鈍ついでそれに引き続
き1200℃前後での高温純化焼鈍が施される。この2次再
結晶焼鈍によって鋼板の結晶粒は、(110)[001]方位
の粗大な粒になる。また高温純化焼鈍によって鋼板内部
に存在していた抑制剤の1部であるSやSeやNなどは鋼
板地鉄外に除去される。
In the manufacturing process of grain-oriented silicon steel sheet, the steel sheet cold-rolled to the final thickness is usually subjected to decarburization annealing to remove harmful carbon. By such annealing, the steel sheet becomes a primary recrystallization texture containing a finely dispersed second phase inhibitor inside, but at the same time, the steel sheet surface layer is a subscale in which fine SiO 2 particles are dispersed in the base steel. It becomes a structure. This decarburized / primary recrystallized plate is subjected to a secondary recrystallization annealing, followed by high temperature purification annealing at about 1200 ° C., after applying an annealing separator containing MgO as a main component on the surface thereof. By this secondary recrystallization annealing, the crystal grains of the steel sheet become coarse grains of (110) [001] orientation. Further, S, Se, N, etc., which are a part of the inhibitor existing inside the steel sheet, are removed to the outside of the steel sheet base metal by the high temperature purification annealing.

さらに、この純化焼鈍において、鉄板表層のサブスケー
ル中のSiO2と表面に塗布された焼鈍分離剤中のMgOと
が、次式、 2MgO+SiO2→Mg2SiO4 のように反応して鋼板表面に、フォルステライト(Mg2S
iO4)の多結晶からなる被膜を形成する。このとき、余
剰のMgOは未反応物として、鋼板と鋼板との融着を防止
する役割を果たす。そして高温純化焼鈍を終えた鋼板は
未反応の焼鈍分離剤を取除き、必要に応じて絶縁コーテ
ィングの上塗りやコイルセットを取除くための処理を施
して製品となすわけである。
Furthermore, in this purification annealing, SiO 2 in the subscale of the steel plate surface layer and MgO in the annealing separator applied to the surface react as in the following formula, 2MgO + SiO 2 → Mg 2 SiO 4 , Forsterite (Mg 2 S
A film made of polycrystalline iO 4 ) is formed. At this time, the surplus MgO plays a role of preventing fusion between the steel plates as an unreacted material. The steel sheet that has undergone high-temperature purification annealing is then processed into a product by removing the unreacted annealing separating agent and, if necessary, performing the treatment of removing the overcoat of the insulating coating and the coil set.

ところで発明者らはフォルステライト被膜の役割を再調
査した結果、この被膜が張力付与型コーティングと同
様、鋼板に張力を付加し、磁区を細分化していること、
しかも鋼板の磁区幅の細分化効果は場所により微妙に異
っていることを見出した。そこでさらに鋼板の磁区幅の
細分化傾向につき綿密な検討を加えた結果、フォルステ
ライト被膜を含む地鉄表層部に地鉄とは組成の異った異
物を存在させることにより一層効果的に磁区の細分化が
達成されることを突止めたのである。
By the way, as a result of re-examination of the role of the forsterite coating, the inventors have found that this coating applies tension to the steel sheet to subdivide the magnetic domains, like the tension-imparting coating.
Moreover, it was found that the subdivision effect of the magnetic domain width of the steel sheet differs slightly depending on the location. Therefore, as a result of further detailed examination of the subdivision tendency of the magnetic domain width of the steel sheet, the presence of foreign matter having a composition different from that of the ground iron in the surface layer of the ground iron containing the forsterite coating makes the magnetic domain more effective. He found that subdivision was achieved.

この発明は、上記の知見に由来するものである。The present invention is derived from the above findings.

すなわちこの発明は、地鉄表層部に塑性歪域がみられな
いフォルステライト被膜付きの方向性けい素鋼板であっ
て、該鋼板の地鉄表層部に、局所的に、 (i)地鉄と同じ相ではあるが、他元素の固溶量が極め
て高い組成になる鉄合金相、 (ii)地鉄とは異なる金属、半金属または合金相、 (iii)酸化物、 のうちから選ばれるいずれか一種又は二種の、地鉄とは
組成の異なる異物を配置したことからなる、歪取り焼鈍
によっても特性が劣化しない低鉄損の方向性けい素鋼板
である。
That is, the present invention is a grain-oriented silicon steel sheet with a forsterite coating in which a plastic strain region is not seen in the surface layer portion of the base steel, and in the surface layer portion of the base steel of the steel sheet, (i) Any one selected from the following: an iron alloy phase having the same phase but having a very high solid solution amount of another element, (ii) a metal different from base iron, a metalloid or an alloy phase, and (iii) an oxide. It is a low iron loss grain-oriented silicon steel sheet that does not deteriorate in properties even by strain relief annealing, which is formed by arranging one or two kinds of foreign matter having a composition different from that of the base steel.

またこの発明は、地鉄表層部に塑性歪域がみられないフ
ォルステライト被膜付きの方向性けい素鋼板であって、
該鋼板の地鉄表層部に、局所的に、上記したような地鉄
とは組成の異なる異物を配置すると共に、フォルステラ
イト該被膜上に9.8×10-61/℃以下の熱膨張係数を呈す
る張力付与型の絶縁コーティング被膜をそなえることか
らなる、歪取り焼鈍によっても特性が劣化しない低鉄損
の方向性けい素鋼板である。
Further, the present invention is a grain-oriented silicon steel sheet with a forsterite coating in which no plastic strain region is found in the surface layer of the base metal,
A foreign material having a composition different from that of the above-described base iron is locally arranged on the surface layer of the base steel of the steel sheet, and a thermal expansion coefficient of 9.8 × 10 −6 1 / ° C. or less is applied to the forsterite coating. It is a low iron loss grain-oriented silicon steel sheet which does not deteriorate in properties even by strain relief annealing, which is provided with a tension imparting type insulating coating film.

ここで、地鉄とは組成の異なる異物について、いま少し
具体的に説明すると、該異物とは、 (i)地鉄と同じ相ではあるが、他元素の固溶量が極め
て高い組成になる鉄合金相(たとえばV,Nb,Cr,Mo,Mn,C
o,Ni,Cu,Zn,SiおよびAsなどの置換型固溶体元素の拡散
相)、 (ii)地鉄とは異なった相であり、静電塗装、めっき、
印刷などの付着法によって形成した地鉄とは異種の金
属、半金属および合金相(たとえば、Ni,Cr,Sb,Al,Sn,G
e,Si,Ni-W,Cr-Mo,Fe-W,Sn-Ni,Sn-Co及びNi-Co等)、 (iii)酸化物(たとえばFe,Si,Al,Ti,ZrおよびSbなど
の酸化物)の相、 等のことである。
Here, a foreign substance having a composition different from that of the base iron will be described in more detail. The foreign substance has a composition in which (i) the same phase as the base iron but a solid solution amount of another element is extremely high. Iron alloy phase (eg V, Nb, Cr, Mo, Mn, C
(diffusion phase of substitutional solid solution elements such as o, Ni, Cu, Zn, Si and As), (ii) a phase different from that of base iron, electrostatic coating, plating,
Metals, semi-metals and alloy phases different from the base metal formed by deposition methods such as printing (eg Ni, Cr, Sb, Al, Sn, G
e, Si, Ni-W, Cr-Mo, Fe-W, Sn-Ni, Sn-Co and Ni-Co), (iii) oxides (such as Fe, Si, Al, Ti, Zr and Sb) Oxide) phase, and so on.

また鋼板の地鉄表層部への異物の配置とは、第1図にa,
b,cおよびdで示すように、単に地鉄中に異物を完全に
埋込んだ場合だけを指すものではなく、地鉄とフォルス
テライト被膜との両者にまたがる場合およびフォルステ
ライト被膜中のみに存在する場合を含むものである。
In addition, the arrangement of foreign matter on the surface layer of the steel plate of the steel sheet is as shown in Fig. 1
As indicated by b, c, and d, it does not refer only to the case where a foreign substance is completely embedded in the ground iron, but exists only when it extends over both the ground iron and the forsterite coating and only in the forsterite coating. It includes the case of doing.

さらにこの発明において、素材鋼板をその内部に塑性歪
域がみられないものに限定したのは、後述するように、
塑性歪の導入による磁区の細分化方式では、歪取り焼鈍
によって特性の著しい劣化を招くからである。
Further, in the present invention, the material steel plate is limited to those in which the plastic strain region is not seen, as described later,
This is because in the method of subdividing the magnetic domain by introducing plastic strain, the characteristics are remarkably deteriorated by the strain relief annealing.

以下この発明について具体的に説明する。The present invention will be specifically described below.

さて、発明者らは実験室的に、方向性けい素鋼板の冷間
圧延途中の鋼板表面に異物としてNi粉末を局所的に付着
させ、ついで圧延を続行、完了させる方法によって鋼板
表層部に、Ni粉末を異物として埋込んで冷延鋼板を作成
した。
Now, the inventors, in a laboratory, locally adhere Ni powder as a foreign matter on the steel plate surface during the cold rolling of the grain-oriented silicon steel plate, then continue the rolling, the steel plate surface layer portion by a method of completing, A cold rolled steel sheet was prepared by embedding Ni powder as foreign matter.

この冷延鋼板に、脱炭を兼ねる1次再結晶焼鈍を施し、
ついで焼鈍分離を鋼板表面に塗布したのち、2次再結晶
とそれに続く1200℃、5時間の鈍化焼鈍(両者を合わせ
て、最終仕上焼鈍と呼称する)を施した。
The cold-rolled steel sheet is subjected to primary recrystallization annealing that also serves as decarburization,
Then, after annealing separation was applied to the surface of the steel sheet, secondary recrystallization and subsequent annealing at 1200 ° C. for 5 hours (both are collectively referred to as final finish annealing) were performed.

その結果、Ni粉末を鋼板表層部に埋込んだ場所におい
て、Niを埋込んだ点を中心として、鋼板断面が第1図
(イ)(ロ)(ハ)に示されるような形状の地鉄と組成
の異なる部分が認められ、この場所において、鋼板の磁
区幅が細分化されていることが判明した。
As a result, in the place where Ni powder was embedded in the surface layer of the steel plate, the steel plate cross-section centered around the point where Ni was embedded has a shape as shown in Fig. 1 (a) (b) (c). It was found that the magnetic domain width of the steel sheet was subdivided at this location.

第1図(イ),(ロ),(ハ)に示されるような異物質
の存在形態の制御を人為的に行なうことは、上記したよ
うな圧延途中に異物を埋込む方法では困難であるが、そ
の効果はいずれも、磁区幅の細分化効果に対しては同等
であった。すなわち最終的な製品において、第1図
(イ),(ロ),(ハ)に示される異組成の異物相が形
成されていれば、他のいかような手法でも磁区の細分化
が達成されるものである。
It is difficult to artificially control the existence form of foreign substances as shown in FIGS. 1 (a), 1 (b) and 1 (c) by the method of embedding a foreign substance during rolling as described above. However, all the effects were the same as the subdivision effect of the magnetic domain width. That is, if the foreign matter phase of different composition shown in FIGS. 1 (a), 1 (b) and 1 (c) is formed in the final product, the magnetic domain can be subdivided by any other method. It is something.

次に、発明者らは、地鉄表層部のかかる異物の配置形態
につき、その形状および方位などが磁区の細分化に及ぼ
す影響につき、種々の検討を加え、鉄損との関係につい
て調査した。
Next, the inventors conducted various studies on the arrangement form of such foreign matter on the surface layer of the base metal, the influence of its shape and orientation on the subdivision of magnetic domains, and investigated the relationship with iron loss.

その結果、地鉄表層部における異物の配置形態として
は、第2図(イ)に示したような連続したまたは非連続
の線状形態がとくに鉄損低減効果において有効であるこ
とが認められた。但し非連続の線状形態においては、点
と点との間隔が0.5mm以上離れると効果は低減した。こ
の点、破線のように線の一部が少しづつ抜けいていも鉄
損低減効果は線状の場合とほぼ同様であった。
As a result, it was confirmed that the continuous or discontinuous linear form as shown in Fig. 2 (a) is particularly effective for the iron loss reduction effect as the disposition form of the foreign matter in the surface layer of the ground iron. . However, in the discontinuous linear form, the effect decreased when the distance between the dots was 0.5 mm or more. In this respect, the iron loss reduction effect was almost the same as in the case of the linear shape even if a part of the line was gradually pulled out like the broken line.

次に、地鉄表層部における異物の線状形態の方向につい
ては第2図(ロ)ならびに第3図に示したように、圧延
の方向に対し60〜90°の角度とした場合がとくに有効で
あった。また連続または非連続の線状形態の幅について
は、第4図に示したように0.05〜2.0mmとくに0.8〜1.5m
mの範囲で優れた効果が得られた。
Next, regarding the direction of the linear morphology of foreign matter in the surface layer of the base metal, as shown in Fig. 2 (b) and Fig. 3, it is particularly effective when the angle is 60 to 90 ° with respect to the rolling direction. Met. The width of the continuous or discontinuous linear form is, as shown in Fig. 4, 0.05 to 2.0 mm, especially 0.8 to 1.5 m.
An excellent effect was obtained in the range of m.

なお、かかる異物の配置形態は、圧延方向を横切る向き
に繰返し形成することが、鋼板全体の鉄損を下げるため
に有効で、たとえば第1図(ハ)に示したような領域間
の間隔は、第5図に示したように1mm〜30mmの範囲とす
ることが望ましい。
In addition, it is effective to reduce the iron loss of the entire steel sheet that the foreign matter is repeatedly arranged in a direction transverse to the rolling direction. For example, the interval between regions as shown in FIG. As shown in FIG. 5, it is desirable that the range is 1 mm to 30 mm.

またかかる異物の配置面は、鋼板の両面であっても、片
面にのみであっても、その効果にはほとんど変わりはな
かった。
Moreover, the effect of the foreign matter was almost the same whether the foreign matter was placed on both sides of the steel plate or only on one side.

次に、地鉄表層部に上記したような異物を配置したフォ
ルステライト被膜付き鋼板に、被膜形成後に5×10-61
/℃の熱膨張係数を呈するコーティング処理液を塗布、
焼付けて張力付与型の絶縁コーティング被膜を被成した
のち、その鉄損を測定したところ、第6図に示したよう
に、単に、地鉄表層部に異物を配置した場合に比べて、
より一層の鉄損改善効果が達成されることが判明した。
Next, on the forsterite-coated steel sheet in which the above-mentioned foreign matter is arranged on the surface layer of the base metal, after forming the coating, 5 × 10 -6 1
Apply a coating liquid that exhibits a thermal expansion coefficient of / ° C,
After baking to form a tension-imparting insulating coating film, the iron loss was measured, and as shown in FIG. 6, as compared with the case where the foreign matter is simply arranged on the surface layer of the ground iron,
It was found that a further iron loss improving effect was achieved.

そこで熱膨張係数の異なる各種のコーティングについて
も、上述の実験に準じて、地鉄表層部に異物を配置した
フォルステライト被膜付き方向性けい素鋼板に使用して
みたところ、熱膨張係数が9.8×10-61/℃以下であれ
ば、満足のいく鉄損低減効果が得られることがわかっ
た。
Therefore, for various coatings with different thermal expansion coefficients, according to the above-mentioned experiment, I tried to use it on the forsterite coated grain-oriented silicon steel sheet with foreign matter arranged on the surface layer of the base metal, and the thermal expansion coefficient was 9.8 × It was found that a satisfactory iron loss reduction effect can be obtained at 10 -6 1 / ° C or less.

次に、3.0%Siを含有し、板厚0.28mmのフォルステライ
ト被膜付方向性けい素鋼板につき、その地鉄表層部に局
所的に異物を配置したこの発明に従う鋼板Aと、均質な
地鉄表層部と均一、均質なフォルステライト被膜とを有
する従来鋼板Bとを用意した。
Next, for a forsterite-coated grain-oriented silicon steel sheet containing 3.0% Si and having a plate thickness of 0.28 mm, a steel sheet A according to the present invention in which foreign matter is locally arranged on the surface layer of the ground iron, and a homogeneous base steel A conventional steel plate B having a surface layer and a uniform and homogeneous forsterite coating was prepared.

この時、各鋼板の鉄損は、鋼板AについてはW17/50=1.
01W/kg、同BについてはW17/50=1.05W/kgであった。
At this time, the iron loss of each steel plate is W 17/50 = 1 for steel plate A.
For 01 W / kg and B, W 17/50 = 1.05 W / kg.

ついでこれらの鋼板A,Bの表面にそれぞれ被膜形成後5.6
×10-61/℃の熱膨張係数を呈する張力付与型の上塗コ
ーティング被膜を被成して鋼板A′,B′としたところ、
各鋼板の鉄損は、鋼板A′についてはW17/50=0.96W/k
g、同B′についてはW17/50=1.04W/kgとなり、この発
明の張力付与型コーティング被膜による複合作用が確認
された。
Then, after forming a coating on the surface of each of these steel sheets A and B, 5.6
When a steel sheet A ', B'was formed by applying a tension-imparting top coat coating having a coefficient of thermal expansion of × 10 -6 1 / ° C,
The iron loss of each steel plate is W 17/50 = 0.96W / k for steel plate A '.
For g and B ', W 17/50 = 1.04 W / kg, confirming the composite action of the tension-imparting coating film of the present invention.

さらに、鋼板B′については、従来より公知の鉄損改善
手法であるパルス状の高パワーレーザー光の照射を利用
してコーティングとフォルステライトを共に発揮させる
ことにより点の列状(点と点の間隔0.4mm)の領域を形
成させ、鋼板B″とした。この結果、B″の鋼板の鉄損
は0.98W/kgとなった。
Further, with respect to the steel plate B ′, the coating and the forsterite are exhibited together by utilizing the irradiation of the pulsed high power laser beam, which is a conventionally known iron loss improving method, so that the row of dots (dots of dots) can be obtained. A region of 0.4 mm) was formed to form a steel plate B ″. As a result, the iron loss of the steel plate B ″ was 0.98 W / kg.

しかしながら、A′,B″の鋼板について、さらに800
℃、3時間の歪取り焼鈍を施したあとの鉄損値について
調べたところ、鋼板A′の鉄損はW17/50=0.96W/kgと変
化がなかったのに対し、鋼板B″の鉄損はW17/50=1.05
W/kgと大幅に劣化し、レーザー光を照射する前の水準に
なった。
However, for A ′, B ″ steel plates, an additional 800
When the iron loss value after being subjected to strain relief annealing at 3 ° C. for 3 hours was examined, the iron loss of the steel sheet A ′ did not change as W 17/50 = 0.96 W / kg, whereas that of the steel sheet B ″ did not change. Iron loss is W 17/50 = 1.05
It was significantly deteriorated to W / kg and reached the level before laser irradiation.

この原因を調査した結果、鋼板B″については、歪取り
焼鈍前において、フォルステライト除去部分の直下の地
鉄表層部に塑性歪領域が形成され、この塑性歪領域の存
在ゆえに磁区の細分化が達成されていたわけであるが、
この塑性歪が歪取り焼鈍によって開放され、消滅してい
ることが突き止められた。従って、歪取り焼鈍によって
特性を劣化せないためには、鋼板地鉄表層部に塑性歪を
導入させないようにすることが肝要なわけである。
As a result of investigating the cause of this, in the steel plate B ″, before the strain relief annealing, a plastic strain region was formed in the surface layer portion of the ground iron immediately below the forsterite removed portion, and due to the existence of this plastic strain region, the magnetic domain was fragmented. It was achieved,
It was found that this plastic strain was released by strain relief annealing and disappeared. Therefore, in order to prevent deterioration of the characteristics by the strain relief annealing, it is essential to prevent the introduction of plastic strain into the surface layer of the steel sheet base metal.

次にこの発明に係る方向性けい素鋼板の製造方法につい
て説明する。
Next, a method for manufacturing the grain-oriented silicon steel sheet according to the present invention will be described.

この発明の素材は、公知の製鋼方法、例えば転炉、電気
炉などによって製鋼し、さらに造塊−分塊法または連続
鋳造法などによってスラブ(鋼片)としたのち、熱間圧
延によって得られる熱延コイルを用いる。
The material of the present invention is obtained by a known steelmaking method, for example, a steelmaking method using a converter, an electric furnace, etc., and further a slab (steel piece) by an ingot-segmentation method or a continuous casting method, followed by hot rolling. A hot rolled coil is used.

この熱延板は、Siを2.0〜4.0%程度含有する組成が好適
である。というのは、Siが2.0%未満では鉄損の劣化が
大きく、また、4.0%を超えると、冷間加工性が劣化す
るからである。その他の成分については方向性けい素鋼
板の素材成分であれば、いずれも適用可能である。
This hot-rolled sheet preferably has a composition containing Si of about 2.0 to 4.0%. This is because if the Si content is less than 2.0%, the iron loss deteriorates significantly, and if it exceeds 4.0%, the cold workability deteriorates. As for the other components, any of the component components of the grain-oriented silicon steel sheet can be applied.

次に冷間圧延により、最終目標厚とされるが、冷間圧延
は、1回もしくは中間焼鈍を挟む2回の冷間圧延により
行なわれる。このとき必要に応じて熱延板の均一化焼鈍
や、冷間圧延に替わる温間圧延を施すこともできる。
Next, although the final target thickness is obtained by cold rolling, the cold rolling is performed once or twice by sandwiching the intermediate annealing. At this time, the hot-rolled sheet may be subjected to uniform annealing or warm rolling instead of cold rolling, if necessary.

さて、鋼板表面層部に局所的に地鉄とは組成の異なる異
物を配置する方法の一つとして、上記した冷間圧延の途
中において、各種酸化物またはアルカリ金属とアルカリ
土類金属とを除く他の金属や半金属の粉末を局所的に、
鋼板表面に付着させた後、圧延を続行、完了させること
によって、これらの物質を鋼板表面に埋込む方法があ
る。
Now, as one of the methods of locally disposing foreign matter having a composition different from that of the base steel locally on the steel sheet surface layer part, during the cold rolling described above, various oxides or alkali metals and alkaline earth metals are removed. Other metal or metalloid powder locally,
There is a method of embedding these substances on the surface of the steel sheet by adhering to the surface of the steel sheet and then continuing and completing rolling.

ここに、埋込まれる物質は、上記した酸化物または金
属、半金属粉末のいずれを単独で、また複合して用いて
も同等の効果が得られるが、金属粉末のうちアルカリ金
属やアルカリ土類金属については、その量が若干でも冷
延時に局所的以外の他の領域に転写して拡がってしま
い、冷延、脱炭焼鈍後に行われる2次再結晶焼鈍時にお
けるフォルステライト被膜の形成を阻害するので除外す
ることとした。
As the material to be embedded, the same effect can be obtained by using any of the above-mentioned oxides or metals and metalloid powders alone or in combination, but among the metal powders, alkali metal or alkaline earth Regarding metals, even if the amount is a little, they are transferred to other regions other than local areas during cold rolling and spread, which hinders the formation of forsterite film during secondary recrystallization annealing performed after cold rolling and decarburizing annealing. I decided to exclude it.

次に最終板厚とされた冷延板は、脱炭可能な程度の酸化
性雰囲気もしくはサブスケール形成可能な程度の弱酸化
性雰囲気中で1次再結晶焼鈍が施される。
Next, the cold rolled sheet having the final thickness is subjected to primary recrystallization annealing in an oxidizing atmosphere capable of decarburizing or a weak oxidizing atmosphere capable of forming subscale.

ついで、鋼板表面にMgOを主成分とする焼鈍分離剤を塗
布してから、2次再結晶焼鈍ついで高温での純化焼鈍を
施してフォルステライト被膜付き方向性けい素鋼板とす
る。
Then, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, followed by secondary recrystallization annealing and then purification annealing at high temperature to obtain a forsterite-coated grain-oriented silicon steel sheet.

なおかような高温純化焼鈍によって、鋼中から不要の元
素が除去されるわけであるが、インヒビター元素によっ
てはかような高温純化焼鈍によっても鋼中から十分には
除去されないものもある。しかしながらかような元素
は、たとえ残存したとしてもその量は少ないので不純物
として取り扱うことができる。
While such high-temperature purification annealing removes unnecessary elements from the steel, some inhibitor elements may not be sufficiently removed from the steel even by such high-temperature purification annealing. However, even if such an element remains, the amount thereof is small, so that it can be treated as an impurity.

ところで上述した焼鈍分離剤の塗布に先立って、焼鈍板
の表面に上記した如き地鉄とは組成の異なる金属、半金
属および酸化物などの異物質を、静電塗装、めっき、印
刷などの方法で付着させることによっても、鋼板表層部
やフォルステライト被膜中に異物を配置することができ
る。
By the way, prior to the application of the above-mentioned annealing separator, a metal such as a metal having a different composition from the above-mentioned base iron, a different substance such as a semimetal and an oxide, is applied to the surface of the annealed plate by a method such as electrostatic coating, plating or printing. Foreign matter can also be placed in the surface layer of the steel sheet or in the forsterite coating by attaching the foreign matter.

すなわち上記したような異物質を付着させてから、焼鈍
分離剤を塗布したのち、2次再結晶焼鈍ついで高温純化
焼鈍と続く最終仕上げ焼鈍を施すことによって、フォル
ステライト被膜が形成されるわけであるが、かかる最終
仕上げ焼鈍時に異物質は地鉄中に拡散したり、また地鉄
と反応して、鋼板表層部に異物を形成し、とくにかよう
な拡散や反応が生じなければ異物は主としてフォルステ
ライト被膜中にのみ存在することになる。
That is, a forsterite coating is formed by applying the above-mentioned foreign substance, applying the annealing separator, then performing the secondary recrystallization annealing, followed by the high-temperature purification annealing and the subsequent final finishing annealing. However, during such final finishing annealing, foreign substances diffuse into the ground iron, and react with the ground iron to form foreign substances on the surface layer of the steel sheet. It will only be present in the stellite coating.

この時、上記したような異物質を配置処理した地鉄表層
部においては、配置地点を中心として、鋼板断面が前掲
第1図(イ),(ロ),(ハ)に示したような形態の異
物の存在が認められる。
At this time, in the surface layer portion of the ground iron on which the dissimilar substances are arranged as described above, the steel plate cross-section with the arrangement point as the center is as shown in Fig. 1 (a), (b) and (c) above. Presence of foreign matter is recognized.

この個所は、配置された物質の種類や量に応じて、 (i)地鉄と同じ相ではあるが、他元素の固溶量が極め
て高い組成になる鉄合金相、 (ii)地鉄とは異なる金属、半金属または合金相、 (iii)酸化物、 のいずれかとなり、地鉄の組成とは明瞭に区別される。
ここにかかる地鉄とは異なる相や、配置された物質の高
固溶量の領域の検出は、異物を配置処理した鋼板表層部
において、断面部を、各元素について、EPMA(電子線プ
ローブマイクロアナライザー)で走査することにより、
可能である。
Depending on the type and amount of the placed material, this point is (i) an iron alloy phase that has the same phase as that of the base iron but has a very high solid solution amount of other elements, and (ii) the base iron Are different metals, semi-metals or alloy phases, and (iii) oxides, which are clearly distinguished from the composition of base iron.
The phase different from that of the base iron and the region of the high solid solution amount of the placed substance are detected in the steel plate surface layer portion where the foreign matter is placed and processed, and the cross-sectional portion of each element is EPMA (electron probe micro By scanning with an analyzer)
It is possible.

なお、このうち(i)や(ii)のものの方が鉄損低減効
果は(iii)よりも幾分優れている。
Among them, the iron loss reduction effect of (i) and (ii) is somewhat superior to that of (iii).

さらにこの発明では上記のように、地鉄表層部に局所的
に異物を配置したフォルステライト被膜付き方向性けい
素鋼板にさらに、被膜形成後に9.8×10-61/℃以下の熱
膨張係数を呈する張力付与型絶縁コーティング被膜を被
成することによって、地鉄表層部に異物を配置した効果
とコーティング被膜による張力付与効果とが相乗した極
めて低い鉄損値の方向性けい素鋼板を製造することがで
きる。
Further, according to the present invention, as described above, the grain-forged grain oriented silicon steel sheet with foreign matter locally arranged on the surface layer of the base metal further has a thermal expansion coefficient of 9.8 × 10 −6 1 / ° C. or less after the coating is formed. To produce a grain-oriented silicon steel sheet with an extremely low iron loss value, which is synergistic between the effect of disposing foreign matter on the surface layer of the base iron and the effect of applying tension by the coating film, by forming a tension-giving type insulating coating film. You can

コーティングの種類としては、鋼板とコーティング被膜
との熱膨張係数の差によって表面張力を付与するもので
あるから、ある程度該係数に差があるものでなければな
らないが、この点9.8×10-61/℃以下の熱膨張係数を有
するものであれば、地鉄表層部に異物の存在領域を形成
させた効果とコーティング被膜による表面張力付与効果
との相乗効果により満足のいく低鉄損値が得られること
が確められている。
As the type of coating, since the surface tension is given by the difference in the thermal expansion coefficient between the steel plate and the coating film, there must be some difference in the coefficient, but this point is 9.8 × 10 -6 1 If the material has a coefficient of thermal expansion of / ° C or less, a satisfactory low iron loss value can be obtained due to the synergistic effect of the effect of forming a foreign substance existing area on the surface layer of the base metal and the effect of applying surface tension by the coating film. It is confirmed that it will be done.

ところで地鉄表層部における異物の配置形態としては、
連続的な線状をなすものがとりわけ有効であるが、その
他非連続すなわち点の列で置き替えることもできる。し
かしながらかかる非連続の線状の場合は、点と点との間
隔が0.5mm以上離れていると効果が小さくなる。またか
ような線状の異物配置幅としては、0.05〜2.0mm程度が
特に効果が大きい。
By the way, as the arrangement form of foreign matter in the surface layer of the ground iron,
A continuous linear shape is particularly effective, but other non-continuous or row of points can be replaced. However, in the case of such a discontinuous linear shape, the effect becomes small if the distance between the points is 0.5 mm or more. In addition, such a linear foreign matter arrangement width of about 0.05 to 2.0 mm is particularly effective.

さらに線状の異物配置の向きは圧延方向に対して60〜90
°の角度範囲がとくに好ましい。圧延方向に並行な方向
の場合は効果がなく、圧延方向と直角方向で最大の効果
が得られる。こうした鋼板圧延方向に対する角度はとく
に重要で、異物の存在領域の幅が広すぎる場合や、孤立
した点の場合に鉄損低減効果が弱まるのは、その方向性
が不明瞭になるためと思われる。
Furthermore, the orientation of the linear foreign matter placement is 60 to 90 with respect to the rolling direction.
An angle range of ° is especially preferred. There is no effect in the direction parallel to the rolling direction, and the maximum effect is obtained in the direction perpendicular to the rolling direction. The angle with respect to the rolling direction of the steel sheet is particularly important, and the iron loss reduction effect is weakened when the width of the foreign substance existing region is too wide or when it is an isolated point because the directionality becomes unclear. .

こうした連続または非連続の線状該領域は圧延方向に対
して異なる形状、幅、角度のものも含めて繰返し存在す
ることが好ましく、この時の領域と領域との間隔は1.0
〜30mmの範囲がとりわけ有効である。
Such continuous or discontinuous linear regions are preferably repeatedly present, including those having different shapes, widths, and angles with respect to the rolling direction, and the interval between the regions at this time is 1.0.
A range of ~ 30 mm is especially effective.

また、地鉄表層部の異物の存在領域は鋼板の両面に存在
しても片面のみに存在していてもその効果にほとんど変
りはなかった。
The effect of the foreign matter on the surface layer of the base metal was almost the same whether it existed on both sides of the steel sheet or on only one side.

以上述べたようにして、地鉄表層部に地鉄とは組成の異
なる異物を局所的に形成させた方向性けい素鋼板は、通
常の方向性けい素鋼板と同様にそのまま製品として使用
される場合、またさらに張力付与型の上塗り絶縁コーテ
ィングを施して製品として使用される場合のいずれにお
いても、実際の機器に使用された場合良好な特性を示
す。
As described above, the grain-oriented silicon steel sheet in which foreign matter having a composition different from that of the ground-iron is locally formed on the surface layer portion of the ground-iron is used as a product as it is like a normal grain-oriented silicon steel sheet. In each case, and when it is used as a product by further applying a tension-applying top coat insulating coating, it shows good characteristics when used in an actual device.

ここにこの発明に従い地鉄表層部に、地鉄とは組成の異
なる異物を配置することによって鉄損特性が、改善され
る理由は、地鉄表層部にかかる異物を配置したことによ
り、鋼板表面には異張力領域が生じるが、この異張力に
よって鋼板に弾性歪が導入され、その結果、磁区幅が有
効に細分化されるためであろうと考えられる。
Here, according to the present invention, the iron core surface layer portion, the iron loss characteristics by arranging foreign matter having a composition different from that of the ground iron, the reason is improved, by arranging the foreign matter on the base iron surface layer portion, the steel plate surface It is thought that this is because elastic strain is introduced into the steel sheet by this different tension, and as a result, the magnetic domain width is effectively subdivided.

さらに、異物の配置形態として、(i)地鉄に特定元素
を固溶させたもの、(ii)地鉄と異なる金属、半金属ま
たは合金相からなるものについては、(iii)酸化物の
場合とは異なり、金属部分が鋼板表層部に連続してお
り、磁性体であるので磁気抵抗が小さく、磁束は通過す
るが、透磁率の不連続性によって磁区がさらに細分化さ
れる効果が加算されたため、鉄損低減効果が大きかった
ものと思われる。
Further, regarding the disposition form of the foreign matter, (i) a solid solution of a specific element in the base iron, (ii) a metal, semimetal or alloy phase different from the base iron, and (iii) an oxide Unlike, the metal part is continuous with the surface layer of the steel plate, and because it is a magnetic material, it has a small magnetic resistance and allows magnetic flux to pass through, but the effect of further subdividing the magnetic domain due to the discontinuity of magnetic permeability is added. Therefore, it is considered that the iron loss reduction effect was great.

以上の説明をまとめると、この発明において異物領域が
満たすべき基本的な要件は、異物が配置されたことによ
り、異張力によって弾性歪が導入されるか、あるいは透
磁率が不連続となる領域が形成されることであり、配置
形態としては、地鉄に特定元素が固溶した相、また地鉄
とは異なる金属、半金属および合金相、さらには酸化物
相からなる異物が第1図に示したような配置形態を最終
仕上げ焼鈍後の製品板においてとることにより、達成さ
れるものである。
To summarize the above description, the basic requirement to be satisfied by the foreign matter region in the present invention is that the foreign matter is arranged so that elastic strain is introduced by different tension or the area where the magnetic permeability is discontinuous. As shown in FIG. 1, the arrangement form is a phase in which a specific element is solid-dissolved in the base iron, and a foreign substance composed of a metal, a semimetal and an alloy phase different from the base iron, and an oxide phase. This is achieved by taking the arrangement form as shown in the product sheet after the final finish annealing.

このような異張力弾性歪が附加した方向性けい素鋼板に
おいては、鋼板の地鉄表層部に塑性歪領域やレーザー照
射痕のような高転位密度領域を存在させる従来法の場合
と異なり、人為的な塑性歪領域の導入がみられないの
で、通常800℃前後で1分間から数時間にわたって施さ
れる歪取り焼鈍を施しても鉄損の劣化がほとんどないと
いう特筆すべき利点がある。前者の場合は、地鉄表層部
の塑性歪が高温によって消滅されていくので鉄損の劣化
た生じるという致命的な欠点を有するが、この発明の場
合は歪取り焼鈍の有無にかかわらず良好な鉄損を示す。
In a grain-oriented silicon steel sheet to which such different tension elastic strain is added, unlike the case of the conventional method in which a high dislocation density region such as a plastic strain region or a laser irradiation mark exists in the surface layer of the base steel of the steel plate, artificial Since the introduction of a typical plastic strain region is not observed, there is a remarkable advantage that there is almost no deterioration of iron loss even if strain relief annealing is usually performed at about 800 ° C. for 1 minute to several hours. In the former case, the plastic strain of the base metal surface layer part has a fatal defect that the iron loss deteriorates because it disappears at high temperature, but in the case of the present invention, it is good regardless of the presence or absence of strain relief annealing. Indicates iron loss.

さらに、この発明の鋼板においては、形状変化部が少な
いため、占積率を低下させることはほとんどない。
Further, in the steel sheet of the present invention, since the shape change portion is small, the space factor hardly decreases.

(実施例) 実施例1 C:0.04%,Si:3.3%,Mn:0.065%,Se:0.02%,S:0.01%お
よびSb:0.014%を含有し、残部は実質的にFeの組成にな
るけい素鋼素材を、常法に従って厚み0.28mmの冷延鋼板
とするに際し、最終冷間圧延の途中において、鋼板を2
分割し、一方はそのまま、0.28mmの厚みの冷延板に仕上
げ脱炭・1次再結晶焼鈍したのち、MgOを主成分とする
焼鈍分離剤を塗布し、ついで2次再結晶焼鈍と1200℃、
5時間の鈍化焼鈍とからなる最終仕上げ焼鈍を施して比
較例とした。
(Example) Example 1 C: 0.04%, Si: 3.3%, Mn: 0.065%, Se: 0.02%, S: 0.01% and Sb: 0.014% are contained, and the balance becomes composition of Fe substantially. When the silicon steel material is made into a cold-rolled steel sheet having a thickness of 0.28 mm according to a conventional method, the steel sheet is
After splitting, one side as it is, 0.28 mm thick cold-rolled sheet is finished decarburizing and primary recrystallization annealing, and then an annealing separator containing MgO as a main component is applied, followed by secondary recrystallization annealing and 1200 ° C. ,
A final finish annealing consisting of 5 hours of annealing was given as a comparative example.

一方、他の鋼板は、鋼板表面にCe50%,La25%他はNdな
どを含有する希土類金属粉末を付着幅:1mm、圧延方向と
なす角度:90°、圧延方向における繰返し間隔:2mmの条
件下に付着させた後、最終冷間圧延を続行し、0.28mmの
厚みの冷延板に仕上げた。ついでこの鋼板も上記と同様
に、脱炭・1次再結晶焼鈍したのち、MgOを主成分とす
る焼鈍分離剤を塗布してから最終仕上げ焼鈍を施して製
品とした。この結果、前者は、鋼板地鉄表層は均質な組
成であったが、後者においては、希土類金属を埋め込ん
だ領域についてはEPMAで調査の結果、地鉄表層部に、希
土類金属を75〜95%(Fe:5〜25%)と高く含有する希土
類合金からなる第2相が形成されていた。
On the other hand, for other steel sheets, a rare earth metal powder containing Ce50%, La25%, etc., such as Nd on the surface of the steel sheet is attached width: 1 mm, angle formed with the rolling direction: 90 °, repeat interval in the rolling direction: 2 mm Then, the final cold rolling was continued to finish the cold rolled sheet with a thickness of 0.28 mm. Then, similarly to the above, this steel sheet was also subjected to decarburization / primary recrystallization annealing, then an annealing separator having MgO as a main component was applied thereto, and then final finish annealing was performed to obtain a product. As a result, in the former, the surface layer of steel plate base metal had a homogeneous composition, but in the latter, the area where the rare earth metal was embedded was investigated by EPMA, and as a result, 75 to 95% of the rare earth metal was contained in the surface layer of the base metal. The second phase composed of a rare earth alloy with a high content of (Fe: 5 to 25%) was formed.

これらの製品の鉄損値は下記のとおりであった。The iron loss values of these products were as follows.

比較例 W17/50=1.05W/kg 実施例 W17/50=1.00W/kg 次にかような鋼板の上に第1表に示されるI〜VIIのコ
ーティング処理液をそれぞれ塗布ついで焼付けることに
より、上塗り絶縁被膜を形成した。
Comparative Example W 17/50 = 1.05 W / kg Example W 17/50 = 1.00 W / kg Next, the coating treatment liquids I to VII shown in Table 1 are applied and baked onto such steel sheets. As a result, a top coat insulating film was formed.

得られた製品の鉄損値は第2表に示したとおりでった。The iron loss value of the obtained product was as shown in Table 2.

ついでさらに800℃、2時間の歪取り焼鈍を施した後の
鉄損値について調べ、その結果を第2表に併記した。
Then, the iron loss value after further performing stress relief annealing at 800 ° C. for 2 hours was examined, and the results are also shown in Table 2.

第2表より、地鉄表層部に異物を配置したものは熱膨張
件数が9.8×10-61/℃より小さいコーティング被膜の存
在によて鉄損の著しい改善が達成されていることがわか
る。
From Table 2, it can be seen that in the case where foreign matter is arranged on the surface layer of the base steel, the core loss is significantly improved due to the presence of the coating film having a thermal expansion number of less than 9.8 × 10 -6 1 / ° C. .

実施例2 C:0.032%,Si:3.0%,Mn:0.07%,Se:0.024%,S:0.01%お
よびSb:0.012%を含有し、残部は実質的にFeの組成にな
るけい素鋼素材を、常法に従って厚み0.30mmの冷延鋼板
とするに際し、最終冷間圧延の途中において鋼板を、C,
DおよびEに3分割し、鋼板Cについては、そのまま0.3
0mmの厚みの冷延板に仕上げついで脱炭・1次再結晶焼
鈍したのち、MgOを主成分とする焼鈍分離剤を塗布して
から、2次再結晶焼鈍と1200℃、3時間の純化焼鈍とか
らなる最終仕上げ焼鈍を施して比較例とした。
Example 2 Silicon steel material containing C: 0.032%, Si: 3.0%, Mn: 0.07%, Se: 0.024%, S: 0.01% and Sb: 0.012%, the balance being substantially Fe composition When making a cold-rolled steel sheet having a thickness of 0.30 mm in accordance with the ordinary method, during the final cold rolling, the steel sheet was
Divide into 3 parts into D and E, and for steel plate C, 0.3
A cold rolled sheet with a thickness of 0 mm is finished, followed by decarburization and primary recrystallization annealing, and then an annealing separator containing MgO as a main component is applied, followed by secondary recrystallization annealing and 1200 ° C. purification annealing for 3 hours. Final finishing annealing consisting of and was performed as a comparative example.

一方、鋼板Dについては、鋼板表面にAl2O3粉末を、ま
た鋼板Eについては、鋼板表面にNi粉末を、それぞれ付
着幅:1mm、圧延方向となす角度:90℃、圧延方向におけ
る繰返し間隔:3mmの条件下に付着させたのち、最終冷間
圧延を続行し、0.30mmの厚みの冷延板に仕上げた。つい
でにこれらの鋼板D,Eについても、鋼板と同様、脱炭・
1次再結晶焼鈍したのち、MgOを主成分とする焼鈍分離
剤を塗布してから最終仕上げ焼鈍を施した。
On the other hand, for steel plate D, Al 2 O 3 powder was applied to the steel plate surface, and for steel plate E, Ni powder was applied to the steel plate surface, respectively, adhesion width: 1 mm, angle formed with rolling direction: 90 ° C., repeating interval in rolling direction After adhering under the condition of: 3 mm, final cold rolling was continued to finish a cold rolled sheet with a thickness of 0.30 mm. Then, for these steel sheets D and E, decarburization and
After the primary recrystallization annealing, an annealing separator containing MgO as a main component was applied, and then a final finish annealing was performed.

この結果、EPMAで各鋼板について調査すると、鋼板Cに
ついては鋼板地鉄表層は均質な組成であったが、鋼板D,
EについてはそれぞれAl2O3粉末とNi粉末とを埋込んだ地
鉄表層の位置において、鋼板DではAl2O3からなる酸化
物の相が、また鋼板Eでは3%けい素鋼の相ではある
が、固溶Niを3〜7%と高く含有する領域がそれぞれ得
られていた。なお、鋼板DにおけるAl2O3の領域の幅は
1.5mmで圧延方向における繰返し間隔は4.5mmであり、ま
た鋼板EにおけるNiの高含有領域の幅は1.1mmで圧延方
向における繰返し間隔はやはり4.5mmであった。
As a result, when each steel plate was investigated by EPMA, the steel plate C had a homogeneous composition on the surface layer of the steel plate, but the steel plate D,
Regarding E, at the position of the base metal surface layer in which the Al 2 O 3 powder and the Ni powder were embedded, respectively, in the steel plate D, the oxide phase consisting of Al 2 O 3 and in the steel plate E, the phase of 3% silicon steel was used. However, the regions each containing solid solution Ni as high as 3 to 7% were obtained. In addition, the width of the region of Al 2 O 3 in the steel plate D is
At 1.5 mm, the repeating distance in the rolling direction was 4.5 mm, and in the steel sheet E, the width of the high Ni content region was 1.1 mm, and the repeating distance in the rolling direction was also 4.5 mm.

これらの鋼板C,DおよびEの鉄損値は下記のとおりであ
った。
The iron loss values of these steel sheets C, D and E were as follows.

鋼板C(比較例)W17/50=1.08W/kg 鋼板D(実施例)W17/50=1.04W/kg 鋼板E(実施例)W17/50=1.02W/kg 次にかような鋼板C,DおよびEの上に第1表のIVに示さ
れる張力付与型コーティングを施して得た鋼板C′,D′
およびE′の鉄損について調べたところ、それぞれ下記
のとおりであった。
Steel plate C (Comparative example) W 17/50 = 1.08 W / kg Steel plate D (Example) W 17/50 = 1.04 W / kg Steel plate E (Example) W 17/50 = 1.02 W / kg Steel plates C ', D'obtained by applying a tensioning type coating shown in IV of Table 1 on steel plates C, D and E
When the iron loss of E and E ′ was investigated, they were as follows.

鋼板C′W17/50=1.07W/kg 鋼板D′W17/50=1.00W/kg 鋼板E′W17/50=0.98W/kg さらに、これらの試料に800℃、5時間の歪取り焼鈍を
施した場合の鉄損値について調べてみたが、変化はなか
った。
Steel C'W 17/50 = 1.07W / kg steel D'W 17/50 = 1.00W / kg steel E'W 17/50 = 0.98W / kg Further, 800 ° C. These samples, straightening of 5 hours The iron loss value when annealed was examined, but there was no change.

実施例3 C:0.033%,Si:3.25%,Mn:0.07%,Se:0.02%,S:0.01%お
よびSb:0.014%を含有し、残部は実質的にFeの組成にな
るけい素鋼素材を、常法に従って厚み0.30mmの冷延鋼板
とするに際し、最終冷間圧延途中において鋼板をF,G,H,
IおよびJに5分割し、Fについてはそのまま0.30mmの
厚みの冷延鋼板に仕上げ,ついで脱炭・1次再結晶焼鈍
を施したのち、MgOを主成分とする焼鈍分離剤を塗布し
てから、2次再結晶焼鈍と1200℃、3時間の純化焼鈍と
からなる最終仕上げ焼鈍を施して、比較例とした。
Example 3 Silicon steel material containing C: 0.033%, Si: 3.25%, Mn: 0.07%, Se: 0.02%, S: 0.01% and Sb: 0.014%, the balance being substantially Fe composition When making a cold-rolled steel sheet having a thickness of 0.30 mm in accordance with the conventional method, the steel sheet was subjected to F, G, H, and H during the final cold rolling.
I and J are divided into 5 parts, F is finished as it is to a cold rolled steel sheet with a thickness of 0.30 mm, then decarburization and primary recrystallization annealing are applied, and then an annealing separator containing MgO as a main component is applied. Then, a final finishing annealing consisting of secondary recrystallization annealing and 1200 ° C. for 3 hours of refining annealing was performed to make a comparative example.

一方鋼板GについてはG1,G2,G3に3分割し、G1にはNi-P
を、G2にはCu-Niを、G3にはNi-Coをそれぞれ、付着幅:
0.3mm、圧延方向となす角度:90°、圧延方向繰返し間
隔:3mmの条件下に線状にめっきした。また鋼板Hについ
ては同様にH1,H2に2分割し、H1にはNiを、H2にはCrを
それぞれ上記Gと同じ付着条件下で線状にめっきした。
さらに鋼板Iは5分割し、I1にはCr-Mo,I2にはSi3N4,I3
にはBN,I4にはSiC,I5にはTiCをそれぞれ、領域幅:1mm、
圧延方向となる角度:90°、圧延方向における繰返し間
隔:3mmの条件下に付着させたのち、最終冷間圧延を続行
し、0.30mm厚の冷延板に仕上げた。ついでこれらの鋼板
G1,G2,G3,H1,H2,I1〜I5についても鋼板Fと同様にして
脱炭・1次再結晶焼鈍以降の処理を施した。
On the other hand, steel plate G is divided into three parts G1, G2, G3, and Ni-P is used for G1.
, Cu-Ni for G2 and Ni-Co for G3, respectively.
It was linearly plated under the conditions of 0.3 mm, the angle formed with the rolling direction: 90 °, and the repeating interval in the rolling direction: 3 mm. Similarly, the steel plate H was similarly divided into two parts H1 and H2, and Ni was plated on H1 and Cr was plated on H2 linearly under the same deposition conditions as in the above G.
Further steel I is divided into five parts, Si 3 N 4, the Cr-Mo, I2 to I1 I3
For BN, SiC for I4, TiC for I5, area width: 1 mm,
After being attached under the conditions of an angle of 90 ° in the rolling direction and a repeating interval in the rolling direction: 3 mm, the final cold rolling was continued to finish a cold rolled sheet with a thickness of 0.30 mm. Then these steel plates
Similarly to steel plate F, G1, G2, G3, H1, H2, and I1 to I5 were subjected to decarburization / treatment after primary recrystallization annealing.

またさらに鋼板Jについては、そのまま0.30mm厚の冷延
鋼板を仕上げたのち、6分割し、J1にはNiを、J2にはNi
-Pを、J3にはCu-Niを、J4にはNi-Coを、J5にはFe-O(鉄
酸化物)を、J6にはSi-O(シリケイト)をそれぞれ、上
記Gと同じ形成条件で線状にめっきし、ついで脱炭・1
次再結晶焼鈍を施したのち、MgOを主成分とする焼鈍分
離剤を塗布してから、2次再結晶焼鈍と1200℃、3時間
の純化焼鈍からなる最終仕上げ焼鈍を施した。
For steel sheet J, a cold-rolled steel sheet with a thickness of 0.30 mm is finished as it is, then divided into 6 parts, Ni for J1 and Ni for J2.
-P, Cu-Ni for J3, Ni-Co for J4, Fe-O (iron oxide) for J5, Si-O (silicate) for J6, the same formation as G above Plating linearly under the conditions, followed by decarburization-1
After performing the secondary recrystallization annealing, an annealing separator containing MgO as a main component was applied, and then a final finishing annealing consisting of secondary recrystallization annealing and 1200 ° C. for 3 hours of purification annealing was performed.

かくして得られた鋼板の鉄損特性について調べた結果
を、第3表に示す。
The results of examining the iron loss characteristics of the steel sheet thus obtained are shown in Table 3.

またかかる最終仕上げ焼鈍後の鋼板において、異物形成
部をEPMAで調査した結果、G1にはNiを26%,Pを0.1%固
溶するFe3Niの相が、G2にはCuの相とNiを約5%固溶す
るけい素鋼の相が、G3にはNiを約5%とCoを約2%固溶
するけい素鋼の相がそれぞれ形成され、またH1にはFeNi
合金相が、H2にはCuを12%固溶するけい素鋼の相が形成
され、さらにI1にはCrを約8%とMoを約5%固溶する相
が、I2にはSiを約7%固溶するけい素鋼の相が、I3には
FeBの合金相が、I4にはSiを約10%固溶するけい素鋼の
相が、I5にはTiFe2の相がそれぞれ形成され、またさら
にJ1にはFe3Niの合金相が、J2にはPを含有するFe3Ni合
金相が、J3にはCuの相及びNiを12%含有するけい素鋼の
相が、J4にはNiを約6%とCoを約20%固溶するけい素鋼
の相が、J5とJ6にはMg2SiO4(フォルステライト)の酸
化物相が、それぞれ形成されていた。
Further, in the steel sheet after such final finish annealing, the foreign matter forming portion was examined by EPMA, and as a result, it was found that G1 was a Fe 3 Ni phase in which Ni is 26% and P is 0.1% in solid solution, and G2 is a Cu phase and Ni A phase of silicon steel that forms a solid solution of about 5% is formed, a phase of silicon steel that forms a solid solution of about 5% of Ni and about 2% of Co is formed on G3, and FeNi is formed on H1.
An alloy phase is formed of a silicon steel phase in which H2 contains 12% Cu as a solid solution, and a phase in which I2 contains about 8% Cr and about 5% Mo and I2 contains about Si. 7% solid solution phase of silicon steel is
Alloy phase FeB is, the phase of silicon steel a solid solution of about 10% of Si in the I4 is the I5 phases formed of TiFe 2 respectively, or even an alloy phase of Fe 3 Ni in J1 is, J2 Fe 3 Ni alloy phase containing P, J 3 containing Cu phase and 12% Ni containing silicon steel phase, J 4 containing about 6% Ni and 20% Co. A phase of silicon steel and an oxide phase of Mg 2 SiO 4 (forsterite) were formed in J5 and J6, respectively.

なおこれらの試料にさらに800℃、5時間の歪取り焼鈍
を施した場合の鉄損についても調査したところ、鉄損値
に変化はなかった。
When the samples were further subjected to stress relief annealing at 800 ° C. for 5 hours, the iron loss was also examined, and the iron loss value did not change.

(発明の効果) かくしてこの発明によば、歪取り焼鈍を施した場合であ
っても特性が劣化しない低鉄損の方向性けい素鋼板を得
ることができ、有利である。
(Effects of the Invention) Thus, according to the present invention, it is possible to obtain a grain-oriented silicon steel sheet with low iron loss, the characteristics of which are not deteriorated even when subjected to strain relief annealing, which is advantageous.

【図面の簡単な説明】[Brief description of drawings]

第1図(イ)(ロ)および(ハ)はそれぞれ、地鉄表層
部における地鉄とは異なる組成の異物を含む鋼板の断面
図、 第2図(イ)(ロ)および(ハ)はそれぞれ、鋼板表層
に区画形成した異物存在領域の形状、圧延方向に対する
傾き具合および間隔の測定要領を示した図、 第3図は、線状異物存在領域が圧延方向となす角度が、
鉄損特性に及ぼす影響を示したグラフ、 第4図は、該領域の幅と鉄損値との関係を示したグラ
フ、 第5図は、該領域の間隔と鉄損値との関係について示し
たグラフ、 第6図は、張力付与型コーティング被膜を被成した場合
と被成しない場合とにおける、異物存在領域の幅と鉄損
値との関係をそれぞれ比較して示したグラフである。
1 (a), (b), and (c) are cross-sectional views of a steel sheet containing foreign matter having a composition different from that of the base iron in the surface layer of the base iron, and FIGS. 2 (a), (b), and (c) are FIG. 3 is a diagram showing the shape of the foreign substance existing region partitioned and formed in the surface layer of the steel sheet, the inclination of the rolling direction and the measuring procedure of the interval, respectively. FIG. 3 shows that the angle formed by the linear foreign substance existing region with the rolling direction is
A graph showing the influence on the iron loss characteristics, Fig. 4 is a graph showing the relationship between the width of the region and the iron loss value, and Fig. 5 is a graph showing the relationship between the interval of the region and the iron loss value. FIG. 6 is a graph showing the relationship between the width of the foreign substance existing region and the iron loss value when the tension imparting coating film is applied and when it is not applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 庸 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yo Ito 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】地鉄表層部に塑性歪域がみられないフォル
ステライト被膜付きの方向性けい素鋼板であって、該鋼
板の地鉄表層部に、局所的に、 (i)地鉄と同じ相ではあるが、他元素の固溶量が極め
て高い組成になる鉄合金相、 (ii)地鉄とは異なる金属、半金属または合金相、 (iii)酸化物相、 のうちから選ばれるいずれか一種又は二種の、地鉄とは
組成の異なる異物を配置したことを特徴とする、歪取り
焼鈍によって特性が劣化しない低鉄損の方向性けい素鋼
板。
1. A grain-oriented silicon steel sheet with a forsterite coating in which no plastic strain region is observed in the surface layer of the base steel, wherein (i) the base steel is locally added to the surface layer of the base steel of the steel plate. It is selected from among the iron alloy phase that has the same phase but has a very high solid solution amount of other elements, (ii) a metal different from base iron, a metalloid or an alloy phase, and (iii) an oxide phase. A low iron loss grain-oriented silicon steel sheet which does not deteriorate in properties due to stress relief annealing, characterized in that one or two kinds of foreign matter having a composition different from that of the base iron are arranged.
【請求項2】地鉄とは組成の異なる異物の配置形態が、
連続または非連続の線状形態をなすものである特許請求
の範囲第1項記載の方向性けい素鋼板。
2. The arrangement of foreign matter having a composition different from that of base steel
The grain-oriented silicon steel sheet according to claim 1, which has a continuous or discontinuous linear form.
【請求項3】連続または非連続の線状形態が、鋼板の圧
延方向に対し60°〜90°の角度をなすものである特許請
求の範囲第1または2項記載の方向性けい素鋼板。
3. The grain-oriented silicon steel sheet according to claim 1 or 2, wherein the continuous or discontinuous linear form forms an angle of 60 ° to 90 ° with respect to the rolling direction of the steel sheet.
【請求項4】地鉄表層部に塑性歪域がみられないフォル
ステライト被膜付き方向性けい素鋼板であって、該鋼板
の地鉄表層部に、局所的に、 (i)地鉄と同じ相ではあるが、他元素の固溶量が極め
て高い組成になる鉄合金相、 (ii)地鉄とは異なる金属、半金属または合金相、 (iii)酸化物相、 のうちから選ばれるいずれか一種又は二種の、地鉄とは
組成の異なる異物を配置すると共に、フォルステライト
被膜上に9.8×10-61/℃以下の熱膨張係数を呈する張力
付与型の絶縁コーティング被膜をそなえることを特徴と
する、歪取り焼鈍によって特性が劣化しない低鉄損の方
向性けい素鋼板。
4. A forsterite-coated grain-oriented silicon steel sheet having no plastic strain zone in the surface layer of the base steel, which is locally (i) the same as the base steel in the surface layer of the base steel. Any one selected from the group consisting of an iron alloy phase that is a phase but has a very high solid solution amount of another element, (ii) a metal different from base iron, a metalloid or an alloy phase, and (iii) an oxide phase. One or two kinds of foreign matter having a composition different from that of the base metal should be arranged, and a tension-giving insulating coating film exhibiting a thermal expansion coefficient of 9.8 × 10 -6 1 / ° C or less should be provided on the forsterite film. A low-iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by strain relief annealing.
【請求項5】地鉄とは組成の異なる異物の配置形態が、
連続または非連続の線状形態である特許請求の範囲第4
項記載の方向性けい素鋼板。
5. The arrangement form of foreign matter having a composition different from that of the base metal,
Claim 4 which is a continuous or discontinuous linear form.
A grain-oriented silicon steel sheet as described in the item.
【請求項6】連続または非連続の線状形態が、鋼板の圧
延方向に対し60°〜90°の角度をなすものである特許請
求の範囲第4または5項記載の方向性けい素鋼板。
6. The grain-oriented silicon steel sheet according to claim 4, wherein the continuous or discontinuous linear form makes an angle of 60 ° to 90 ° with respect to the rolling direction of the steel sheet.
JP2571088A 1988-02-08 1988-02-08 Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing Expired - Lifetime JPH0680612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2571088A JPH0680612B2 (en) 1988-02-08 1988-02-08 Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2571088A JPH0680612B2 (en) 1988-02-08 1988-02-08 Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20922883A Division JPS60103124A (en) 1983-11-09 1983-11-09 Grain oriented silicon steel sheet which obviates deterioration of characteristic by stress relief annealing and production thereof

Publications (2)

Publication Number Publication Date
JPS63232302A JPS63232302A (en) 1988-09-28
JPH0680612B2 true JPH0680612B2 (en) 1994-10-12

Family

ID=12173347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2571088A Expired - Lifetime JPH0680612B2 (en) 1988-02-08 1988-02-08 Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing

Country Status (1)

Country Link
JP (1) JPH0680612B2 (en)

Also Published As

Publication number Publication date
JPS63232302A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
EP0775752B1 (en) Grain-oriented electrical steel sheet and method of manufacturing the same
EP2039792B1 (en) Unidirectionally grain oriented electromagnetic steel sheet having excellent iron loss properties
WO1986004929A1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JP6880814B2 (en) Electrical steel sheet and its manufacturing method
KR20130045938A (en) Oriented electromagnetic steel plate
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
WO2019013351A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP6769587B1 (en) Electrical steel sheet and its manufacturing method
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
EP2243865B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP2953978B2 (en) Thick grain-oriented electrical steel sheet having no glass coating with excellent insulating coating properties and method for producing the same
JPH0680612B2 (en) Low iron loss grain-oriented silicon steel sheet whose properties do not deteriorate due to stress relief annealing
JPS6331527B2 (en)
JPH0663038B2 (en) Manufacturing method of grain-oriented silicon steel sheet with low iron loss, whose characteristics are not deteriorated by strain relief
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
EP3913086A1 (en) Grain-oriented electromagnetic steel sheet having no forsterite film and exhibiting excellent insulating film adhesion
EP3822385A1 (en) Grain-oriented electromagnetic steel sheet and manufacturing method for same
EP4365319A1 (en) Grain-oriented electrical steel strip and method for its production
EP3947755B1 (en) Iron-silicon material suitable for medium frequency applications
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
WO2022215709A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
WO2023195518A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
JPH042645B2 (en)