JPH0680281B2 - Steam turbine blade connecting structure - Google Patents

Steam turbine blade connecting structure

Info

Publication number
JPH0680281B2
JPH0680281B2 JP59217289A JP21728984A JPH0680281B2 JP H0680281 B2 JPH0680281 B2 JP H0680281B2 JP 59217289 A JP59217289 A JP 59217289A JP 21728984 A JP21728984 A JP 21728984A JP H0680281 B2 JPH0680281 B2 JP H0680281B2
Authority
JP
Japan
Prior art keywords
blade
shroud plate
blades
stress
tenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59217289A
Other languages
Japanese (ja)
Other versions
JPS6196104A (en
Inventor
和雄 池内
哲男 笹田
了市 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59217289A priority Critical patent/JPH0680281B2/en
Publication of JPS6196104A publication Critical patent/JPS6196104A/en
Publication of JPH0680281B2 publication Critical patent/JPH0680281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービン動翼の連結構造に係り、特に低
圧段長翼の外周で複数枚の動翼を綴つて1つの群翼を構
成する連結構造に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting structure for steam turbine moving blades, and more particularly to a connecting structure in which a plurality of moving blades are bound on the outer periphery of a low pressure stage long blade to form one group blade. Regarding

〔発明の背景〕[Background of the Invention]

一般に、蒸気タービン動翼は連結構造を持たない単独翼
のままでは、蒸気力、複雑な蒸気励振に対する強度が十
分でなく、かつ性能的にも翼先端部のシユラウド板など
の連結部材で連結する連結構造が必要不可欠である。
In general, steam turbine blades are not sufficient in strength against steam force and complex steam excitation if they remain as single blades without a connecting structure, and in terms of performance, they are connected by a connecting member such as a shroud plate at the blade tip. Connection structure is essential.

従来、蒸気タービン動翼の連結構造には、次のようなも
のがある。
Conventionally, there are the following structures for connecting steam turbine blades.

(1)最も典型的な例として、機械工学便覧(社団法人
日本機械学会 昭和52年7月15日発行)第13編 13−
97 第235図に示されているシユラウド板かしめ構造の
もの、 (2)低圧段長翼のように高遠心力下で使用される連結
構造として、特公昭53−30844号公報に示されているタ
ービン動翼カバーを、突起部と、嵌合穴との嵌合を介し
て回動自在に結合したもの、 (3)動翼先端部で周方向に棚を突き出し、その棚同士
を溶接することにより、複数枚の動翼を綴る溶接カバー
方式のもの、 等が知られている。
(1) As the most typical example, Mechanical Engineering Handbook (The Japan Society of Mechanical Engineers, published on July 15, 1977) 13th edition 13-
97 With a shroud plate caulking structure shown in Fig. 235, (2) Turbine rotor blade shown in Japanese Patent Publication No. 53-30844 as a connecting structure used under high centrifugal force like a low pressure stage long blade A cover, which is rotatably coupled through fitting of a protrusion and a fitting hole, (3) A plurality of shelves are protruded in the circumferential direction at the tip of a moving blade, and the shelves are welded to each other. A welding cover type, which spells a plurality of blades, is known.

これらの従来技術において、前記(1)のシユラウド板
かしめ構造のものに比べて、前記(2)のタービン動翼
カバーを回動自在に結合したもの、および前記(3)の
溶接カバー方式のものは、構造が複雑で作業工数が増大
する問題がある。また、前記(3)の溶接カバー方式の
ものは、溶接に適合する材料を使用しなければならず、
材料の制約が加わる問題もある。
In these conventional techniques, as compared with the shroud plate caulking structure of (1), the turbine blade cover of (2) is rotatably coupled, and the welding cover system of (3). Has a problem that the structure is complicated and the number of work steps increases. Further, in the welding cover system of (3) above, a material compatible with welding must be used,
There is also a problem that material restrictions are added.

ついで、第5図および第6図は高圧段に使用される短翼
から、低圧段に使用される長翼に至るまで、広く適用さ
れている従来技術としてのシユラウド板を用いた連結構
造の綴り状態を示す。
Next, FIG. 5 and FIG. 6 show the splicing of a connecting structure using a shroud plate as a prior art widely applied from short blades used in the high pressure stage to long blades used in the low pressure stage. Indicates the status.

これらの図に示す連結構造では、各動翼1の外周側端部
に突起部(以下、テノンという)2を設け、このテノン
2に嵌合する嵌合穴を有するシユラウド板3を前記テノ
ン2と嵌合穴との嵌合を介して組み付け、シユラウド板
3の外周側でテノン2をかしめ、シユラウド板3により
5枚の動翼1を綴り、一体化することにより1つの群翼
構造としている。
In the connecting structure shown in these drawings, a protrusion (hereinafter referred to as a "tenon") 2 is provided on the outer peripheral side end of each rotor blade 1, and a shroud plate 3 having a fitting hole for fitting the tenon 2 is provided. The shroud plate 3 is caulked on the outer peripheral side of the shroud plate 3, and the shroud plate 3 splices the five moving blades 1 into one to form a group blade structure. .

ところで、複数枚の動翼を綴つて群翼構造とする理由に
は幾つか挙げられるが、大きな理由として2つある。そ
の1つは、翼振動の励振振動数(ロータの回転に起因す
る励振、蒸気流の上流側ノズルからの偏流に起因する励
振など)からの離調と振動減衰効果があり、他の1つは
動翼先端部における蒸気漏洩防止および性能低下につな
がる偏流防止である。
By the way, there are several reasons for binding a plurality of blades to form a group wing structure, but there are two major reasons. One of them is the detuning from the vibration frequency of the blade vibration (excitation caused by the rotation of the rotor, the excitation caused by the drift of the steam flow from the upstream nozzle, etc.) and the vibration damping effect. Is to prevent steam leakage at the tip of the moving blade and to prevent uneven flow that leads to performance degradation.

以上のような理由により、動翼先端部に、シユラウド板
やタービン動翼カバー等の動翼連結部材を取り付けるこ
とは必要であるが、翼長が増大するとともに、第7図お
よび第8図に示すようなシユラウド板構造の場合、遠心
力による応力が増大し、事実上、50Hzおよび60Hz機では
翼の有効長600mm、25Hzおよび30Hz機では有効長750mm程
度が限界となつている。これを越える翼長のものに対し
ては、特公昭55−48164号公報に示す構造や前記(3)
の溶接カバー方式を採用するか、あるいはその必要性に
目をつぶつて動翼連結部材による連結を断念し、翼中間
部を連結するタイワイヤのみで耐力を保持するかの、い
ずれかの手段を採ることになる。
For the reasons described above, it is necessary to attach a blade connecting member such as a shroud plate or a turbine blade cover to the blade tip, but as the blade length increases, the blade length is increased as shown in FIG. 7 and FIG. In the case of the shroud plate structure as shown, the stress due to the centrifugal force increases, and in fact, the effective length of the blade is 600 mm for the 50 Hz and 60 Hz machines and about 750 mm for the 25 Hz and 30 Hz machines. For blade lengths exceeding this, the structure shown in JP-B-55-48164 and the above (3)
Either adopt the welding cover method of No. 1 or abandon the connection by the moving blade connecting member by narrowing down the necessity and keep the proof strength only with the tie wire connecting the blade middle part. It will be.

ところで、前述のシユラウド板による連結構造は、最も
簡単で、かつ製作工数も少なく、しかも性能的にも優れ
ているが、長翼に採用した場合に、テノン回りの強度的
な問題がある。
By the way, the connection structure using the shroud plate described above is the simplest, has a small number of manufacturing steps, and is excellent in performance, but when it is used for a long blade, there is a strength problem around the tenon.

前記第5および第6図に示す連結構造では、シユラウド
板3の幅および肉厚が一定に作られている。このタイプ
のシユラウド板3の作用応力の分布状況およびその構造
の問題点を以下、第7図〜第9図により説明する。
In the connection structure shown in FIGS. 5 and 6, the shroud plate 3 has a constant width and a constant wall thickness. The distribution of operating stress of the shroud plate 3 of this type and the problems of its structure will be described below with reference to FIGS. 7 to 9.

第7図および第8図は第6図中IX−IX線およびX−X線
から見たシユラウド板に作用する応力分布を示すもので
あつて、は表面引つ張り応力を表し、は圧縮応力を
表している。また、第9図はかしめられたテノン回りに
発生する遠心力による剪断応力分布を示す。そして、第
7図中はシユラウド板の翼間最大応力を示し、第8図
中はシユラウド板のテノン回りの最大応力を示し、第
9図中はテノンのかしめ部の最大剪断応力を示す。
7 and 8 show the stress distribution acting on the shroud plate as seen from the line IX-IX and the line XX in FIG. 6, where is the surface tensile stress, and is the compressive stress. Is represented. Further, FIG. 9 shows a shear stress distribution due to a centrifugal force generated around the crimped tenon. 7 shows the maximum stress between blades of the shroud plate, FIG. 8 shows the maximum stress around the tenon of the shroud plate, and FIG. 9 shows the maximum shear stress of the caulked part of the tenon.

これらの図において、シユラウド板3の応力分布は第7
図および第8図に示すように、通常テノン2の回りで最
大となり、ついでテノン2,2間のほぼ中央部で大きくな
る。一方、テノン2のかしめ部の剪断応力は第9図に示
すごとく、蒸気入口側または蒸気出口側のコーナ部分で
大きくなり、シユラウド板3の応力はほぼ同一レベルと
なることが多い。さらに、テノン2の回りは応力集中が
起きやすい構造でもあり、またかしめ加工に伴う過大応
力が発生しやすい個所のため、僅かな振動等により破損
することがある。
In these figures, the stress distribution of the shroud plate 3 is
As shown in FIG. 8 and FIG. 8, it usually becomes maximum around the tenon 2 and then becomes large at almost the central portion between the tenons 2 and 2. On the other hand, as shown in FIG. 9, the shear stress of the caulked portion of the tenon 2 becomes large at the corner portion on the steam inlet side or the steam outlet side, and the stress of the shroud plate 3 often becomes almost the same level. Further, the tenon 2 has a structure in which stress concentration is likely to occur, and since it is a portion where excessive stress is likely to be generated due to caulking, it may be damaged by slight vibration or the like.

前記破損事故を防ぐためには、全体的に作用応力レベル
を低く抑える必要がある。
In order to prevent the damage accident, it is necessary to keep the working stress level low.

〔発明の目的〕[Object of the Invention]

本発明の目的は、低圧段に使用される長大翼の複数枚の
連結に適用してもテノンの破損事故を防止でき、かつ性
能低下の問題を引き起こさない蒸気タービン動翼の連結
構造を提供するにある。
An object of the present invention is to provide a connecting structure for steam turbine moving blades that can prevent a Tenon damage accident even when applied to connecting a plurality of long blades used in a low-pressure stage, and does not cause a problem of performance degradation. It is in.

〔発明の概要〕[Outline of Invention]

本発明は、動翼の外周側端部にかしめ結合用の突起部を
設け、この突起部に嵌合穴を介して動翼連結部材を組み
付け、前記突起部をかしめ、複数枚の動翼を結合して群
翼を構成する連結構造において、前記動翼連結部材の肉
厚を一定とし、この動翼連結部材の幅を、蒸気入口側お
よび蒸気出口側とも、円周方向に隣り合う動翼から翼間
の中央部に向かって漸減すると共に、そのへこみ寸法比
を最大幅の約0.6に設定したことを特徴とし、この構成
により、前記目的を確実に達成することができる。
The present invention provides a caulking coupling projection on the outer peripheral side end of a moving blade, and installs a blade connecting member in the projection through a fitting hole, crimps the projection, and a plurality of moving blades are attached. In a connection structure in which the blades are joined to each other to form a group blade, the blade connecting member has a constant wall thickness, and the width of the blade connecting member is set so that the steam inlet side and the steam outlet side are adjacent to each other in the circumferential direction. From the center to the center between the blades, and the dent size ratio is set to a maximum width of about 0.6. With this configuration, the above object can be reliably achieved.

〔発明の実施例〕Example of Invention

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図(a),(b)は、本発明の第1の
実施例でを示すもので、外周側端部にテノン2を設けた
複数枚の動翼1の外周面に、前記テノン2に嵌合する嵌
合穴を有する動翼連結部材としてのシユラウド板4が、
前記テノン2に嵌合穴を嵌合させて組み付けられ、かつ
シユラウド板4の外周面から突出したテノン2の端部を
かしめた結合構造を介して、シユラウド板4にこの実施
例では5枚の動翼1が綴られ、群翼が構成されている。
FIGS. 1 and 2 (a) and (b) show the first embodiment of the present invention, in which the outer peripheral surface of a plurality of moving blades 1 provided with a tenon 2 at the outer peripheral side end portion. , A shroud plate 4 as a rotor blade connecting member having a fitting hole that fits into the tenon 2,
The tenon 2 is assembled by fitting the fitting holes into the tenon 2, and the tenon 2 protruding from the outer peripheral surface of the shroud plate 4 is caulked to the shroud plate 4 through the connecting structure. The moving blade 1 is spelled to form a group blade.

前記シユラウド板4は、肉厚が一定に形成され、かつ幅
が蒸気入口側および蒸気出口側とも円周方向に隣り合う
動翼1,1から翼間の中央部4aに向かつて円弧形に漸減さ
れている。すなわち、シユラウド板4は動翼1の外周側
端部に重ねられた部分4bで最大幅Bとされ、翼間の中央
部4aに向かつて漸減され、この中央部4aにおいて蒸気入
口側でへこみ量δ1、蒸気出口側でへこみ量δ2、短縮さ
れていて、前記翼間の中央部4aで最小幅Aとされてい
る。その結果、シユラウド板4の幅方向の断面積が、円
周方向に隣り合う動翼1,1から中央部4aに向かつて漸減
されている。
The shroud plate 4 is formed in a uniform thickness, and has a circular arc shape from the moving blades 1 and 1 that are circumferentially adjacent to each other on the steam inlet side and the steam outlet side toward the central portion 4a between the blades. Has been gradually reduced. That is, the shroud plate 4 has a maximum width B at the portion 4b overlapped with the outer peripheral side end of the moving blade 1, and is gradually reduced toward the central portion 4a between the blades, and the amount of depression at the steam inlet side at this central portion 4a. δ 1 , the dent amount δ 2 on the steam outlet side is shortened, and the minimum width A is set at the central portion 4a between the blades. As a result, the cross-sectional area of the shroud plate 4 in the width direction is gradually reduced from the rotor blades 1, 1 adjacent in the circumferential direction toward the central portion 4a.

次に、第3図はシユラウド板を第1図および第2図
(a),(b)に示す形状とした時の、シユラウド板4
およびテノン2に発生する応力の変化状態を示す。この
第3図は、有効長約600mmの長翼について実験の結果を
示すもので、シユラウド板4のへこみ量を蒸気入口側で
δ1、蒸気出口側でδ2とし、シユラウド板4の最大幅B
とした時、シユラウド板4のへこみ寸法比(δ1+δ2
/Bを横軸に、応力σを縦軸にとつて表している。
Next, FIG. 3 shows a shroud plate 4 when the shroud plate has the shape shown in FIGS. 1 and 2 (a) and (b).
And the change state of the stress generated in the tenon 2 is shown. This Fig. 3 shows the result of an experiment on a long blade with an effective length of about 600 mm. The dent amount of the shroud plate 4 is δ 1 on the steam inlet side and δ 2 on the steam outlet side, and the maximum width of the shroud plate 4 is shown. B
And the dent size ratio of the shroud plate 4 (δ 1 + δ 2 )
/ B is plotted on the horizontal axis and the stress σ is plotted on the vertical axis.

この第3図中、曲線はシユラウド板のテノン回りの最
大応力を示し、曲線はシユラウド板の翼間最大応力を
示し、曲線はテノンのかしめ部の最大剪断応力を示
し、は応力との関係から判断したシユラウド板のへこ
み量の最適点を示す。
In Fig. 3, the curve shows the maximum stress around the tenon of the shroud plate, the curve shows the maximum inter-blade stress of the shroud plate, the curve shows the maximum shear stress of the caulked part of the tenon, and is the relation with the stress. The optimum point of the dent amount of the shroud board judged is shown.

この第3図から、シユラウド板のへこみ量(δ1+δ2
が増大するに伴い、主にシユラウド板自体の遠心力が低
減し、これによりシユラウド板のテノン回りの最大応力
と、テノンのかしめ部の最大剪断応力が減少するこ
とが分かる。また、同第3図から、シユラウド板の幅が
減少するにつれ、シユラウド板の翼間最大応力が増大
することが分かる。これら3つの応力より総合的に判断
してシユラウド板のへこみ量の最適点を選ぶと、へこ
み寸法比(δ1+δ2)/Bが約0.6の点となる。シユラウ
ド板のへこみ量を前記最適点に設定すると、シユラウ
ド板の作用応力も、従来の幅を一定としたシユラウド板
の作用応力の約0.6倍となる。
From this Fig. 3, the dent amount of the shroud plate (δ 1 + δ 2 )
It is found that the centrifugal force of the shroud plate itself is mainly decreased with the increase of, and thus the maximum stress around the tenon of the shroud plate and the maximum shear stress of the caulked part of the tenon are decreased. Further, it can be seen from FIG. 3 that the maximum inter-blade stress of the shroud plate increases as the width of the shroud plate decreases. When the optimum point of the dent amount of the shroud plate is selected by comprehensively judging from these three stresses, the dent size ratio (δ 1 + δ 2 ) / B is about 0.6. When the depression amount of the shroud plate is set to the optimum point, the working stress of the shroud plate becomes about 0.6 times the working stress of the conventional shroud plate having a constant width.

これらの値は、対象とする動翼のサイズ、テノン形状、
シユラウド板の厚さおよび材質等により異なるが、作用
応力とシユラウド板のへこみ量との関係は、第3図に示
す傾向となる。
These values are the size of the target blade, the tenon shape,
Although it depends on the thickness and material of the shroud plate, the relationship between the acting stress and the amount of depression of the shroud plate has a tendency shown in FIG.

ついで、第4図は動翼先端部における蒸気の偏流状況を
示すもので、これに関連して前記第1図および第2図
(a),(b)に示す実施例の性能面を考察する。
Next, FIG. 4 shows the flow of steam at the tip of the moving blade, and the performance of the embodiment shown in FIG. 1 and FIGS. 2 (a) and 2 (b) will be considered in connection with this. .

この第4図に示すように、蒸気の主流5は動翼1の形状
に沿つて流れるが、翼の腹側7の圧力は背側8の圧力よ
り高いため、シユラウド板4がない場合には流線6のよ
うに、動翼先端部を回り込むような2次流れが発生し、
蒸気漏洩量が増加するばかりでなく、主流5の流れを乱
すことによる性能低下をきたし、深刻な問題となる。し
かし、この2次流れは翼形の近くで起こるため、シユラ
ウド板で翼幅全体を覆う必要はなく、シユラウド板は翼
形近くを蒸気が回り込む流れを防ぐ防止板としての機能
を有する形状であればよい。
As shown in FIG. 4, the main stream 5 of steam flows along the shape of the moving blade 1, but since the pressure on the ventral side 7 of the blade is higher than the pressure on the back side 8, when the shroud plate 4 is not provided, A secondary flow is generated that flows around the tip of the moving blade, as shown by streamline 6,
Not only the amount of steam leakage increases, but also the performance of the mainstream 5 is disturbed, causing performance degradation, which is a serious problem. However, since this secondary flow occurs near the airfoil, it is not necessary to cover the entire span with the shroud plate, and the shroud plate should have a shape that functions as a preventive plate that prevents the flow of steam around the airfoil. Good.

したがつて、第1図および第2図(a),(b)に示す
ように、シユラウド板4は翼形近くでは翼幅全体を覆う
形状とし、翼間の中央部に向かつて幅を漸減した形状と
しても、性能面ではほとんで悪影響を与えず、問題がな
い。
Therefore, as shown in FIGS. 1 and 2 (a) and (b), the shroud plate 4 has a shape that covers the entire span near the airfoil, and gradually reduces the width toward the center between the blades. Even when the shape is changed, there is no problem in terms of performance and there is no problem.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、肉厚一定の動翼
連結部材の幅を、蒸気入口側および蒸気出口側とも、円
周方向に隣り合う動翼から翼間の中央部に向って漸減す
ると共に、そのへこみ寸法比を最大幅の約0.6に設定し
たので、動翼連結部材に作用する遠心力を低減すると共
に、動翼連結部材の作用応力を減少させて、テノンの破
損事故を防止し得る効果がある。
As described above, according to the present invention, the width of the moving blade connecting member having a constant wall thickness is set from the moving blades circumferentially adjacent to the central portion between the blades on both the steam inlet side and the steam outlet side. Since the dent size ratio was gradually reduced and the maximum width was set to about 0.6, the centrifugal force acting on the rotor blade connecting member was reduced and the stress acting on the rotor blade connecting member was reduced to prevent the Tenon damage accident. It has a preventable effect.

さらに、本発明によれば、翼形近くは動翼連結部材で十
分に覆うことができ、翼形近くの蒸気が回り込む流れを
防止できる結果、性能低下の問題を未然に解消し得る効
果がある。
Further, according to the present invention, the vicinity of the airfoil can be sufficiently covered with the rotor blade connecting member, and the flow of steam around the airfoil can be prevented. As a result, the problem of performance degradation can be solved in advance. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示すもので、動翼連結
部材としてのシユラウド板の外周側から見た斜視図、第
2図(a),(b)はそれぞれ第1図のIIa−IIa線およ
びIIb−IIb線切断拡大断面図、第3図は本発明の第1の
実施例におけるシユラウド板の幅方向のへこみ寸法比と
作用応力との関係を示す図、第4図は本発明の第1実施
例の性能説明図、第5図は従来のシユラウド板による動
翼の連結構造を正面側から見た斜視図、第6図は同シユ
ラウド板の外周側から見た斜視図、第7図および第8図
は第6図のIX−IX線およびX−X線方向から見たシユラ
ウド板の作用応力説明図、第9図はテノン回りの作用応
力説明図である。 1……動翼、2……動翼外周側端部に設けられたテノ
ン、4……動翼連結部材としてのシユラウド板、4a……
シユラウド板における翼間の中央部、4b……同シユラウ
ド板の動翼外周側端部に重ねられた部分、δ1,δ2……
シユラウド板の幅方向のへこみ量、A……シユラウド板
の最小幅、B……シユラウド板の最大幅。
FIG. 1 shows a first embodiment of the present invention, and is a perspective view seen from the outer peripheral side of a shroud plate serving as a rotor blade connecting member, and FIGS. 2 (a) and 2 (b) are respectively shown in FIG. IIa-IIa line and IIb-IIb line cutting enlarged sectional view, FIG. 3 is a diagram showing the relationship between the dent size ratio in the width direction of the shroud plate and the working stress in the first embodiment of the present invention, and FIG. 4 is FIG. 5 is a perspective view of a connecting structure of blades using a conventional shroud plate as seen from the front side, and FIG. 6 is a perspective view as seen from the outer peripheral side of the shroud plate. , FIG. 7 and FIG. 8 are explanatory views of the operating stress of the shroud plate viewed from the IX-IX line and XX line directions of FIG. 6, and FIG. 9 is an explanatory drawing of the operating stress around the tenon. 1 ... Moving blade, 2 ... Tenon provided on the outer peripheral side of the moving blade, 4 ... Shroud plate as a moving blade connecting member, 4a.
Center part between blades of the shroud plate, 4b .... Parts superposed on the outer peripheral side end of the blade of the same shroud plate, δ 1 , δ 2.
Amount of indentation in the width direction of the shroud plate, A ... minimum width of shroud plate, B ... maximum width of shroud plate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−142908(JP,A) 実公 昭44−8405(JP,Y1) 英国特許876637(GB,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-142908 (JP, A) JP-A-44-8405 (JP, Y1) British patent 876637 (GB, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】動翼の外周側端部にかしめ結合用の突起部
を設け、この突起部に嵌合穴を介して動翼連結部材を組
み付け、前記突起部をかしめ、複数枚の動翼を連結して
群翼を構成する連結構造において、前記動翼連結部材の
肉厚を一定とし、この動翼連結部材の幅を、蒸気入口側
および蒸気出口側とも、円周方向に隣り合う動翼から翼
間の中央部に向かって漸減すると共に、そのへこみ寸法
比を最大幅の約0.6に設定したことを特徴とする蒸気タ
ービン動翼の連結構造。
1. A plurality of moving blades having a plurality of blades provided with a protrusion for caulking and coupling on an outer peripheral side end of the moving blade, a moving blade connecting member being assembled to the protrusion through a fitting hole, and the protruding portion being caulked. In the connecting structure in which the blades are connected to each other to form a group blade, the thickness of the blade connecting member is set to be constant, and the width of the blade connecting member is set so that the steam inlet side and the steam outlet side are adjacent to each other in the circumferential direction. A connecting structure for steam turbine blades characterized in that the dent size ratio is set to about 0.6 of the maximum width while gradually decreasing from the blade to the central portion between the blades.
JP59217289A 1984-10-18 1984-10-18 Steam turbine blade connecting structure Expired - Lifetime JPH0680281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217289A JPH0680281B2 (en) 1984-10-18 1984-10-18 Steam turbine blade connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217289A JPH0680281B2 (en) 1984-10-18 1984-10-18 Steam turbine blade connecting structure

Publications (2)

Publication Number Publication Date
JPS6196104A JPS6196104A (en) 1986-05-14
JPH0680281B2 true JPH0680281B2 (en) 1994-10-12

Family

ID=16701800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217289A Expired - Lifetime JPH0680281B2 (en) 1984-10-18 1984-10-18 Steam turbine blade connecting structure

Country Status (1)

Country Link
JP (1) JPH0680281B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876637A (en) 1957-05-10 1961-09-06 United Aircraft Corp Improvements relating to axial flow compressors and turbines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448405Y1 (en) * 1966-04-08 1969-04-03
JPS55142908A (en) * 1979-04-26 1980-11-07 Hitachi Ltd Turbine moving blade cover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB876637A (en) 1957-05-10 1961-09-06 United Aircraft Corp Improvements relating to axial flow compressors and turbines

Also Published As

Publication number Publication date
JPS6196104A (en) 1986-05-14

Similar Documents

Publication Publication Date Title
KR100435798B1 (en) Seal for gas turbines
JP2828651B2 (en) Stator assembly of axial rotating machine
US6341941B1 (en) Steam turbine
EP1291492A1 (en) Turbine blade damper and seal assembly
US6568908B2 (en) Steam turbine
EP1369553A2 (en) Rotor blade for a centripetal turbine
JP2011069361A (en) Tip clearance control mechanism of rotary machine
US4460315A (en) Turbomachine rotor assembly
JPH0240841B2 (en)
US4191508A (en) Turbine rotor construction
EP1698760B1 (en) Torque-tuned, integrally-covered bucket and related method
JPH0680281B2 (en) Steam turbine blade connecting structure
CN106799569B (en) A kind of combinational processing method of the stator blade on band sector installation side
JP2895157B2 (en) Integral shroud wing
US2350310A (en) Blade shrouding
JP3682131B2 (en) Turbine blade and its assembly method
JP2567044B2 (en) Turbine rotor blade coupling device
JPH07332003A (en) Turbine moving blade
US20200256441A1 (en) Blade assembly with tabless blades
JPH11294102A (en) Steam turbine bucket
EP0267405A2 (en) Radial-flow turbo machine
JP2000170502A (en) Integral shroud blade
JPS5925089B2 (en) Turbine moving blade dovetail
JPS6232201A (en) Structure of cascade of rotary blades in axial flow rotary machine
JP2001248404A (en) Moving blade of turbine