JPS6196104A - Coupling structure of steam turbine bucket - Google Patents

Coupling structure of steam turbine bucket

Info

Publication number
JPS6196104A
JPS6196104A JP21728984A JP21728984A JPS6196104A JP S6196104 A JPS6196104 A JP S6196104A JP 21728984 A JP21728984 A JP 21728984A JP 21728984 A JP21728984 A JP 21728984A JP S6196104 A JPS6196104 A JP S6196104A
Authority
JP
Japan
Prior art keywords
blades
rotor blade
shroud plate
width
buckets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21728984A
Other languages
Japanese (ja)
Other versions
JPH0680281B2 (en
Inventor
Kazuo Ikeuchi
和雄 池内
Tetsuo Sasada
哲男 笹田
Ryoichi Kaneko
金子 了市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59217289A priority Critical patent/JPH0680281B2/en
Publication of JPS6196104A publication Critical patent/JPS6196104A/en
Publication of JPH0680281B2 publication Critical patent/JPH0680281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding

Abstract

PURPOSE:To prevent a tenon from being fractured by gradually reducing a cross-sectional area of a bucket coupling member in a width direction thereof from buckets adjoining circumferentially toward a central portion among the buckets, and reducing centrifugal force and stress applied to a bucket coupling member. CONSTITUTION:A shroud plate 4 is assembled onto the outer peripheral surface of a plurality of buckets 1 having a tenon 2 provided at an end part on the outer peripheral side thereof as a bucket coupling member having a hole fitting to the tenon 2. Thereupon, the shroud plate 4 is adapted to have a prescribed wall thickness and a width gradually reduced from the buckets 1 adjoining circumferentially toward a central portion 4a among the buckets forming a circular arc-shape. Namely, the shroud plate 4 has a maximum width B at their portions superposed on the end part 4b on the outer peripheral side thereof, the width being gradually reduced toward the central portion 4a among the buckets. In addition, the central portion 4a has an amount of indentation delta1 at the side of a steam inlet and an amount of indentation delta2 at the side of a steam outlet respectively being shortened, and has a minimum width A at the central portion 4a among the buckets.

Description

【発明の詳細な説明】 【発明の利用分野】 本発明は、蒸気タービン動翼の連結構造に係り、特に低
圧段長翼の外周で複数枚の動翼を綴って1つの群翼を構
成する連結構造に関する。 〔発明の背景〕 一般に、蒸気タービン動翼は連結構造を持たない単独翼
のままでは、IWI気力、複雑な蒸気励振に対する強度
が1−分でなく、かつ性能的にも翼先端部のシュラウド
板などの連結部材で連結する連結構造が必要不可欠であ
る。 従来、蒸気タービン動翼の連結i造には1次のようなも
のがある。 (1)最も典型的な例として1機械工学便覧(社団法人
 日本機械学会 昭和52年7月15日発行)第13編
 13−97  第235図に示されているシュラウド
板かしめ構造のもの、(2)低圧段長翼のように高遠心
カ下で使用される連結構造として、特公昭53−308
44号公報に示されているタービン動翼カバーを、突起
部と、嵌合穴との嵌合を介して回動自在に結合したもの
、(3)動翼先端部で周方向に棚を突き出し、その棚同
士を溶接することにより、複数枚の動翼を綴る溶接カバ
一方式のもの。 等が知られている。 これらの従来技術において、前記(1)のシュラウド板
かしめ構造のものに比べて、前記(2)のタービン動翼
カバーを回動自在に結合したもの、および前記(3)の
溶接カバ一方式のものは、構造が複雑で作業工数が増大
する問題がある。また、前記(3)の溶接カバ一方式の
ものは、溶接に適合する材料を使用しなければならず、
材料の制約が加わる問題もある。 ついで、第7図および第8図は高圧段に使用される短翼
から、低圧段に使用される長翼に至るまで、広く適用さ
れている従来技術としてのシュラウド板を用いた連結構
造の綴り状態を示す。 これらの図に示す連結構造では、各動翼1の外周側端部
に突起部(以下、テノンという)2を設れ、このテノン
2に嵌合する嵌合穴を有するシュラウド板3を前記テノ
ン2と嵌合穴との嵌合を介して組み付け、シュラウド板
3の外周側でテノン2をかしめ、シュラウド板3により
5枚の動翼1を綴り、一体化することにより1つの群翼
構造としている。 ところで、複数枚の動翼を綴って群翼構造とする理由に
は幾つか挙げられるが、大きな理由として2つある。そ
の1つは、翼振動の励振振動数(ロータの回転に起因す
る励振、蒸気流の上流側ノズルからの偏流に起因する励
振など)からの前肩と振動減衰効果があり、他の1つは
動翼先端部における蒸気漏洩防止および性能低下につな
がる偏流防止である。 以上のような理由により、動翼先端部に、シュラウド板
やタービン動翼カバー等の動翼連結部材を取り付けるこ
とは必要であるが、翼長が増大するとともに、第7図お
よび第8図に示すようなシュラウド板構造の場合、遠心
力による応力が増大し、事実上、50七および60Hz
機では翼の有効長600(1)、25Hzおよび30七
機では有機長750R1程度が限界となっている。これ
を超える翼長のものに対しては、特公昭55−481f
54号公報に示す構造や前記(3)の溶接カバ一方式を
採用するか、あるいはその必要性に目をつぶって動翼連
結部材による連結を断念し、翼中間部を連結するタイワ
イヤのみで耐力を保持するかの、いずれかの手段を採る
ことになる。 ところで、前述のシュラウド板による連結構造は、最も
簡単で、かつ製作工数も少なく、しかも性能的にも優れ
ているが、長翼に採用した場合に。 テノン回りの強度的な問題がある。 前記第7および第8図に示す連結構造では、シュラウド
板3の幅および肉厚が一定に作られている。このタイプ
のシュラウド板3の作用応力の分布状況およびその構造
の問題点を以下、第9図〜第11図により説明する。 第9図および第10図は第8図中■−■線およびX−X
線から見たシュラウド板に作用する応力分布を示すもの
であって、(士は表面引っ張り応力を表し、(=は圧縮
応力を表している。また、第11図はかしめられたテノ
ン回りに発生する遠心力による剪断応力分布を示す、そ
して、第9図中9゛はシュラウド板の翼間最大応力を示
し、第10図中(后・はシュラウド板のテノン回りの最
大応力を示し、第11図中(Rはテノンのかしめ部の最
大剪断応力を示す。 これらの図において、シュラウド板3の応力分布は第9
図および第10図に示すように1通常テノン2の回りで
最大となり、ついでテノン2,2間のほぼ中央部で大き
くなる。一方、テノン2のかしめ部の剪断応力は第11
図に示すごとく、蒸気入口側または蒸気出口側のコーナ
部分で大きくなり、シュラウド板3の応力はほぼ同一レ
ベルとなることが多い、さらに、テノン2の回りは応力
集中が起きやすい構造でもあり、またかしめ加工に伴う
過大応力が発生しやすい個所のため、僅かな振動等によ
り破損することがある。 前記破損事故を防ぐためには、全体的に作用応力レベル
を低く抑える必要がある。 〔発明の目的〕 本発明の目的は、低圧段に使用される長大翼の複数枚の
連結に適用してもテノンの破損事故を防止でき、かつ性
能低下の問題を引き起こさない蒸気タービン動翼の連結
構造を提供するにある。 〔発明の概要〕 本発明の特徴は、動翼連結部材の幅方向の断面積を、円
周方向に−り合う動翼から翼間の中央部に向かって漸減
したところにあり、この構成により、前記目的を確実に
達成することができる。 〔発明の実施例〕 以下、本発明の実施例を図面により説明する。 第1図および第2図(a)、(b)は、本発明の第1の
実施例でを示すもので、外周側端部にテノン2を設けた
複数枚の動翼1の外周面に、前記テノン2に嵌合する嵌
合穴を有するl!lJ翼連結部材としてのシュラウド板
4が、前記テノン2に嵌合穴を嵌合させて組み付けられ
、かつシュラウド板4°の外周面から突出したテノン2
の端部をかしめた結合構造を介して、シュラウド板4に
この実施例では5枚の動翼1が綴じられ1群雲が構成さ
れて動電る。 前記シュラウド板4は、肉厚が一定に形成され、かつ幅
が円周方向に隣り合う動翼1.1から翼間の中央部4a
に向かって円弧形に漸減されている。 すなわち、シュラウド板4は動翼1の外周側端部に重ね
られた部分4bで最大幅Bとされ、翼間の中央部4aに
向かって漸減され、この中央部4aにおいて蒸気入口側
でへこみ景δ1、蒸気出口側でへこみ量δ2、短縮され
ていて、前記翼間の中央部4aで最小幅Aとされている
。その結果、シュラウド板4の幅方向の断面積が、円周
方向に隣り合う動翼1,1から中央部4aに向かって漸
減されている。 次に、第3図はシュラウド板を第1図および第2図(a
)、(b)に示す形状とした時の、シュラウド板4およ
びテノン2に発生する応力の変化状態を示す。この第3
図は、有効長約600mの長翼について実験の結果を示
すもので、シュラウド板4のへこみ量を蒸気入口側で6
1、蒸気出口側で62とし、シュラウド板4の最大幅B
とした時、シュラウド板4のへこみ寸法比(δ、+62
)/Bを横軸に、応力σを縦軸にとって表している。 この第3図中、曲、t%lPはシュラウド板のテノン回
りの最大応力を示し、曲線Q)はシュラウド板の翼間最
大応力を示し1曲線1R・はテノンのがしめ部の最大剪
断応力を示し、パS・は応力との関係から判断したシュ
ラウド板のへこみ量の最適点を示す。 この第7図から、シュラウド板のへこみ量(δ1+62
)が増大するに伴い、主にシュラウド板自体の遠心力が
低減し、これによりシュラウド板のテノン回りの最大応
力tp、と、テノンのかしめ部の最大剪断応力CRIが
減少することが分かる。また、同第7図から、シュラウ
ド板の幅が減少するにつれ、シュラウド板の翼間最大応
力(9ンが増大することが分かる。これら3つの応力よ
り総合的に判断してシュラウド板のへこみ量の最適点r
$rを選ぶと、へこみ寸法比(δ1+68)/Bが約0
.6の点となる。シュラウド板のへこみ量を前記最適立
場)に設定すると、シュラウド板の作用応力も、従来の
幅を−・定としたシュラウド板の作用応力の約0.6倍
となる。に れらの値は、対象とする動翼のサイズ、テノン形状、シ
ュラウド板の厚さおよび材質等により異なるが1作用応
力とシュラウド板のへこみ量との関係は、第3図に示す
傾向となる。 ついで、第4図は動翼先端部における蒸気の偏流状況を
示すもので、これに関連して前記第1図および第2図(
a)、(b)に示す実施例の性能面を考察する。 この第4図に示すように、蒸気の主流5は動翼1の形状
に沿って流れるが、翼の腹側7の圧力は背側8の圧力よ
り高いため、シュラウド板4がない場合には流線6のよ
うに、動翼先端部を回り込むような2次流れが発生し、
蒸気漏洩量が増加するばかりでなく、主流5の流れを乱
すことによる性能低下をきたし、深刻な問題となる6し
かし、この2次流れは翼形の近くで起こるため、シュラ
ウド板で翼幅全体を覆う必要はなく、シュラウド板は翼
形近くを蒸気が回り込む流れを防ぐ防止板としての機能
を有する形状であればよい6したがって、第1図および
第2図(a)、(b)に示すように、シュラウド板4は
翼形近くでは翼幅全体を覆う形状とし、翼間の中央部に
向かって幅を漸減した形状としても、性能面ではほとん
で悪影響を与えず1問題がない。 なお、前記第1の実施例において、シュラウド板4の幅
方向の蒸気入口側または蒸気出口側にのみ、へこみを設
けてもよい。 次に、第5図および第6図は本発明の第2の実施例を示
す。 この実施例のものは、シュラウド板9の幅は一定に形成
され、シュラウド板9の肉厚を異にしている。すなわち
、シュラウド板9の外周面に、円周方向に隣り合う動翼
1,1から翼間の中央部に向かって肉厚が漸減され、全
体の肉厚からへこみ量δ、を取ったほぼ凹円弧形のへこ
み10が形成されていて、前記中央部の断面積が狭く形
成されている。 この第2の実施例においても、シュラウド板9に作用す
る遠心力を低減することができ、したがって作用応力を
減少させることが可能となる。 また1本発明では前記第1.第2の実施例を併用し、シ
ュラウド板における翼間の中央部の幅を狭くシ、かつ翼
間の中央部の肉厚を薄くしてもよし)。 さらに、本発明ではシュラウド板を鉄系の金属材料より
比重が小さい、例えばタタン合金やアルミ合金を用いて
形成し、かつ前述のごとく、シュラウド仮における翼間
の中央部の幅を狭くし、または翼間の中央部の肉厚を薄
くし、さらにはシュラウド板を比重が小さい材料で形成
するとともに。 シュラウド板における翼間の幅を狭くしかつ肉厚を薄く
してもよい。  ・ 〔発明の効果〕 以上説明した本発明によれば、動翼連結部材の幅方向の
断面積を、円周方向に隣り合う動翼から翼間の中央部に
向かって漸減した構成としているので、動翼連結部材に
作用する遠心力を低減することができ、したがって動翼
連結部材の作用応力を減少させることができるので、テ
ノンの破損事故を防止し得る効果があり、長大翼と群X
iW造とする場合にも適用し得る効果がある。 さらに、本発明によれば、翼形近くは!!llR連結部
材で十分に覆うことができ、翼形近くの蒸気が回り込む
流れを防止できる結果、性能低下の問題を未然に解消し
得る効果がある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a connection structure for steam turbine rotor blades, and particularly to a connection structure in which a plurality of rotor blades are connected around the outer periphery of a long low-pressure stage blade to form one group of blades. Regarding. [Background of the Invention] In general, if a steam turbine rotor blade is left as a single blade without a connecting structure, its strength against IWI force and complex steam excitation is not 1 minute, and in terms of performance, the shroud plate at the blade tip is A connection structure that connects with a connection member such as this is essential. Conventionally, there is a first-order type of connection structure for steam turbine rotor blades. (1) The most typical example is the shroud plate caulking structure shown in 1 Mechanical Engineering Handbook (Japan Society of Mechanical Engineers, July 15, 1972), Volume 13, 13-97, Figure 235. 2) As a connection structure used under high centrifugal forces such as low-pressure stage long blades,
A turbine rotor blade cover shown in Publication No. 44 is rotatably coupled through a projection and a fitting hole, and (3) a shelf is protruded in the circumferential direction at the tip of the rotor blade. , one type with a welded cover that connects multiple moving blades by welding the shelves together. etc. are known. In these conventional technologies, compared to the shroud plate caulking structure described in (1), the turbine rotor blade cover described in (2) is rotatably coupled, and the one-type welded cover described in (3) is used. However, the problem is that the structure is complicated and the number of man-hours required increases. In addition, for the one-type welding cover mentioned in (3) above, materials that are compatible with welding must be used.
There is also the issue of material constraints. Next, Figures 7 and 8 show a connection structure using shroud plates as a conventional technology that is widely applied from short blades used in high pressure stages to long blades used in low pressure stages. Indicates the condition. In the connection structure shown in these figures, a protrusion (hereinafter referred to as a tenon) 2 is provided at the outer peripheral end of each rotor blade 1, and a shroud plate 3 having a fitting hole that fits into the tenon 2 is connected to the tenon. 2 and the fitting hole, the tenon 2 is caulked on the outer circumferential side of the shroud plate 3, and the five rotor blades 1 are bound by the shroud plate 3, and are integrated into one blade group structure. There is. By the way, there are several reasons why a plurality of rotor blades are combined to form a group structure, but there are two main reasons. One of them is the front shoulder and vibration damping effect from the excitation frequency of blade vibration (excitation caused by rotor rotation, excitation caused by deviation of steam flow from the upstream nozzle, etc.), and the other one is This is to prevent steam leakage at the tips of rotor blades and to prevent drifting that can lead to performance degradation. For the above reasons, it is necessary to attach rotor blade connecting members such as a shroud plate and a turbine rotor blade cover to the tip of the rotor blade, but as the blade length increases, In the case of the shroud plate structure shown, centrifugal stress increases and effectively
For aircraft, the effective wing length is 600(1), 25Hz, and for 307 aircraft, the organic length is approximately 750R1. For those with a wing length exceeding this,
Either adopt the structure shown in Publication No. 54 or the one-type welded cover described in (3) above, or ignore its necessity and abandon the connection using the rotor blade connection member, and use only the tie wire that connects the intermediate part of the blade to achieve the load-bearing force. Either way will be taken to maintain the . By the way, the above-mentioned connection structure using shroud plates is the simplest, requires less man-hours to manufacture, and has excellent performance, but when it is applied to long wings. There is a strength problem around Tenon. In the connection structure shown in FIGS. 7 and 8, the width and thickness of the shroud plate 3 are made constant. The distribution of stress acting on this type of shroud plate 3 and problems with its structure will be explained below with reference to FIGS. 9 to 11. Figures 9 and 10 are the ■-■ line and X-X in Figure 8.
This shows the stress distribution acting on the shroud plate as seen from the line, where (〉 represents surface tensile stress and (= represents compressive stress. Figure 11 shows the stress distribution that occurs around the caulked tenon. 9 indicates the maximum stress between the blades of the shroud plate, 9 in Figure 10 indicates the maximum stress around the tenon of the shroud plate, and 11 In the figures (R indicates the maximum shear stress of the Tenon caulking part. In these figures, the stress distribution of the shroud plate 3 is
As shown in FIG. 1 and FIG. 10, 1 usually reaches a maximum around the tenon 2, and then becomes large approximately in the center between the tenons 2 and 2. On the other hand, the shear stress of the caulked part of Tenon 2 is the 11th
As shown in the figure, the stress in the shroud plate 3 increases at the corners on the steam inlet side or the steam outlet side, and is often at almost the same level.Furthermore, the structure around the tenon 2 tends to cause stress concentration. In addition, since excessive stress is likely to occur during caulking, even slight vibrations may cause damage. In order to prevent the above-mentioned failure accidents, it is necessary to keep the overall applied stress level low. [Object of the Invention] The object of the present invention is to provide a steam turbine rotor blade that can prevent tenon breakage accidents and that does not cause performance deterioration even when applied to the connection of a plurality of long blades used in a low pressure stage. Provides a connection structure. [Summary of the Invention] A feature of the present invention is that the cross-sectional area of the rotor blade connecting member in the width direction gradually decreases from the rotor blades that meet in the circumferential direction toward the center between the blades. , the above objective can be achieved reliably. [Embodiments of the Invention] Examples of the present invention will be described below with reference to the drawings. FIGS. 1, 2(a) and 2(b) show a first embodiment of the present invention, in which the outer circumferential surface of a plurality of rotor blades 1 is provided with a tenon 2 at the outer circumferential end. , l! has a fitting hole that fits into the tenon 2! The shroud plate 4 as an IJ blade connecting member is assembled to the tenon 2 by fitting into the fitting hole, and the tenon 2 protrudes from the outer peripheral surface of the shroud plate 4°.
In this embodiment, five rotor blades 1 are bound to the shroud plate 4 through a joint structure in which the ends of the blades are caulked to form one group of clouds, which is electrodynamically operated. The shroud plate 4 has a constant wall thickness and a width extending from the circumferentially adjacent rotor blades 1.1 to the center portion 4a between the blades.
It gradually decreases in an arc shape towards the end. That is, the shroud plate 4 has a maximum width B at a portion 4b overlapping the outer circumferential end of the rotor blade 1, and gradually decreases toward the central portion 4a between the blades, and has a concave shape on the steam inlet side in the central portion 4a. δ1, the concave amount δ2 is shortened on the steam outlet side, and the minimum width A is at the center portion 4a between the blades. As a result, the cross-sectional area of the shroud plate 4 in the width direction gradually decreases from the circumferentially adjacent rotor blades 1 toward the center portion 4a. Next, Figure 3 shows the shroud plate in Figures 1 and 2 (a).
), (b) shows changes in stress generated in the shroud plate 4 and the tenon 2 when the shapes shown in FIG. This third
The figure shows the results of an experiment on a long blade with an effective length of about 600 m, and the amount of dent in the shroud plate 4 was set to 6 on the steam inlet side.
1. 62 on the steam outlet side, the maximum width B of the shroud plate 4
When, the dent size ratio of the shroud plate 4 (δ, +62
)/B on the horizontal axis and stress σ on the vertical axis. In Fig. 3, the curve t%lP indicates the maximum stress around the tenon of the shroud plate, the curve Q) indicates the maximum stress between the blades of the shroud plate, and the curve 1R· indicates the maximum shear stress at the tenon clamping part. , and Pa S represents the optimal point of the amount of dent in the shroud plate determined from the relationship with stress. From this Figure 7, the amount of dent in the shroud plate (δ1+62
) increases, mainly the centrifugal force of the shroud plate itself decreases, and as a result, the maximum stress tp around the tenon of the shroud plate and the maximum shear stress CRI at the caulked portion of the tenon decrease. Also, from Figure 7, it can be seen that as the width of the shroud plate decreases, the maximum stress between the blades of the shroud plate (9 N) increases. Judging comprehensively from these three stresses, the amount of dent in the shroud plate The optimal point r
When $r is selected, the dent size ratio (δ1+68)/B is approximately 0.
.. This results in a score of 6. When the amount of depression of the shroud plate is set to the optimum position), the stress acting on the shroud plate is also approximately 0.6 times the stress acting on the conventional shroud plate with the width constant. Although these values vary depending on the size of the rotor blade, tenon shape, thickness and material of the shroud plate, etc., the relationship between the applied stress and the amount of dent in the shroud plate follows the trend shown in Figure 3. Become. Next, FIG. 4 shows the steam drift situation at the tip of the rotor blade, and in relation to this, the above-mentioned FIGS. 1 and 2 (
The performance aspects of the embodiments shown in a) and (b) will be considered. As shown in FIG. 4, the main stream 5 of steam flows along the shape of the rotor blade 1, but the pressure on the ventral side 7 of the blade is higher than the pressure on the back side 8, so if there is no shroud plate 4, As shown in streamline 6, a secondary flow that wraps around the tip of the rotor blade occurs,
Not only does this increase the amount of steam leakage, but it also disrupts the flow of the main stream 5, resulting in a decrease in performance, which poses a serious problem.6 However, since this secondary flow occurs near the airfoil, the shroud plate prevents the entire blade span. It is not necessary to cover the shroud plate, and the shroud plate may have a shape that functions as a prevention plate to prevent steam from flowing around near the airfoil.6 Therefore, as shown in Fig. 1 and Fig. 2 (a) and (b). Thus, even if the shroud plate 4 has a shape that covers the entire blade span near the airfoil shape, and the width gradually decreases toward the center between the blades, there is hardly any adverse effect on performance and there is no problem. In the first embodiment, the recess may be provided only on the steam inlet side or the steam outlet side in the width direction of the shroud plate 4. Next, FIGS. 5 and 6 show a second embodiment of the present invention. In this embodiment, the width of the shroud plate 9 is constant, and the thickness of the shroud plate 9 is different. That is, the outer circumferential surface of the shroud plate 9 has a substantially concave shape, with the wall thickness gradually decreasing from the circumferentially adjacent rotor blades 1 toward the center between the blades, and the recess amount δ being subtracted from the overall wall thickness. An arc-shaped recess 10 is formed, and the cross-sectional area of the central portion is narrow. In this second embodiment as well, the centrifugal force acting on the shroud plate 9 can be reduced, and therefore the applied stress can be reduced. In addition, in one aspect of the present invention, the first aspect of the present invention. The second embodiment may also be used to narrow the width of the shroud plate at the center between the blades and reduce the wall thickness at the center between the blades). Furthermore, in the present invention, the shroud plate is formed using a material having a specific gravity lower than that of iron-based metal materials, such as tatan alloy or aluminum alloy, and as described above, the width of the central portion between the blades of the shroud is narrowed, The wall thickness in the center between the blades was made thinner, and the shroud plate was made of a material with lower specific gravity. The width between the blades in the shroud plate may be narrowed and the wall thickness may be thinned. [Effects of the Invention] According to the present invention described above, the cross-sectional area of the rotor blade connecting member in the width direction is gradually decreased from the circumferentially adjacent rotor blades toward the center between the blades. , it is possible to reduce the centrifugal force acting on the rotor blade connecting member, and therefore the stress acting on the rotor blade connecting member, which has the effect of preventing Tenon breakage accidents, and the long wing and group X
This effect can also be applied to the case of iW construction. Furthermore, according to the present invention, near the airfoil! ! It can be sufficiently covered by the llR connecting member and the flow of steam near the airfoil shape can be prevented, which has the effect of eliminating the problem of performance deterioration before it occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の、第1の実施例を示すもので、動翼連
結部材としてのシュラウド板の外周側から見た斜視図、
第2図(a)、(b)はそれぞれ第1図のI[a−Ha
線および■b −II b線切断拡大断面図、第3図は
本発明の第1の実施例におけるシュラウド板の幅方向の
へこみ寸法比と作用応力との関係を示す図、第4図は本
発明の第1実施例の性能説明図、第5図は本発明の第2
の実施例を示すもので、シュラウド板の外周側から見た
斜視図、第6図は第5図のVI−VI線切断拡大断面図
、第7図は従来のシュラウド板による動翼の連結構造を
正面側から見た斜視図、第8図は同シュラウド板の外周
側から見た斜視図、第9図および第10図は第8図の[
−1X線およびx−X線方向から見たシュラウド板の作
用応力説明図、第11図はテノン回りの作用応力説明図
である。 1・・・動翼、2・・・動翼外周側端部に設けられたテ
ノン、4・・・動翼連結部材としてのシュラウド板、4
a・・・シュラウド板における翼間の中央部、4b・・
・同シュラウド板の動翼外周側端部に重ねられた部分、
δ□、δ2・・・シュラウド板の幅方向のへこみ量、A
・・・シュラウド板の最小幅、B・・・シュラウド板の
最大幅、9・・・シュラウド板、10・・・シュラウド
板の肉厚方向のへこみ、δ3・・・シュラウド板の肉厚
のへこみ量。
FIG. 1 shows a first embodiment of the present invention, which is a perspective view of a shroud plate serving as a rotor blade connecting member, viewed from the outer peripheral side;
Figures 2(a) and (b) are I[a-Ha in Figure 1, respectively.
3 is an enlarged cross-sectional view taken along the line II b-II b, FIG. 3 is a diagram showing the relationship between the dent size ratio in the width direction of the shroud plate and the applied stress in the first embodiment of the present invention, and FIG. A performance explanatory diagram of the first embodiment of the invention, and FIG.
Fig. 6 is an enlarged sectional view taken along line VI-VI in Fig. 5, and Fig. 7 is a conventional rotor blade connection structure using a shroud plate. FIG. 8 is a perspective view of the shroud plate seen from the outer circumferential side, and FIGS. 9 and 10 are [ of FIG.
FIG. 11 is an explanatory diagram of acting stress on the shroud plate viewed from the -1 X-ray and x-X-ray directions, and FIG. 11 is an explanatory diagram of acting stress around Tenon. DESCRIPTION OF SYMBOLS 1... Moving blade, 2... Tenon provided at the outer peripheral side end of the moving blade, 4... Shroud plate as a moving blade connecting member, 4
a...Central part between the blades on the shroud plate, 4b...
・The part of the shroud plate that overlaps the outer edge of the rotor blade,
δ□, δ2... Amount of dent in the width direction of the shroud plate, A
... Minimum width of the shroud plate, B... Maximum width of the shroud plate, 9... Shroud plate, 10... Indentation in the thickness direction of the shroud plate, δ3... Indentation in the wall thickness of the shroud plate amount.

Claims (1)

【特許請求の範囲】 1、動翼の外周側端部に、かしめ結合用の突起部を設け
、この突起部に嵌合穴を介して動翼連結部材を組み付け
、前記突起部をかしめ、複数枚の動翼を連結して群翼を
構成する連結構造において、前記動翼連結部材の幅方向
の断面積を、円周方向に隣り合う動翼から翼間の中央部
に向かつて漸減したことを特徴とする蒸気タービン動翼
の連結構造。 2、特許請求の範囲第1項において、前記動翼連結部材
の肉厚を一定とし、この動翼連結部材の幅を、円周方向
に隣り合う動翼から翼間の中央部に向かつて漸減したこ
とを特徴とする蒸気タービン動翼の連結構造。 3、特許請求の範囲第1項において、前記動翼連結部材
の幅を一定とし、この動翼連結部材の肉厚を、円周方向
に隣り合う動翼から翼間の中央部に向かつて漸減したこ
とを特徴とする蒸気タービン動翼の連結構造。 4、特許請求の範囲第1項において、前記動翼連結部材
の幅を、円周方向に隣り合う動翼から翼間の中央部に向
かつて漸減し、かつ前記動翼連結部材の肉厚を、円周方
向に隣り合う動翼から翼間の中央部に向かつて漸減した
ことを特徴とする蒸気タービン動翼の連結構造。 5、特許請求の範囲第1項、第2項、第3項または第4
項において、前記動翼連結部材を鉄系の金属材料よりも
比重が小さい材料で形成したことを特徴とする蒸気ター
ビン動翼の連結構造。
[Claims] 1. A protrusion for caulking is provided on the outer peripheral side end of the rotor blade, a rotor blade connecting member is assembled to the protrusion through a fitting hole, the protrusion is caulked, and a plurality of protrusions are attached. In the connection structure in which two rotor blades are connected to form a group of blades, the cross-sectional area in the width direction of the rotor blade connecting member is gradually decreased from circumferentially adjacent rotor blades toward the center between the blades. A steam turbine rotor blade connection structure characterized by: 2. In claim 1, the thickness of the rotor blade connecting member is constant, and the width of the rotor blade connecting member gradually decreases from the circumferentially adjacent rotor blades toward the center between the blades. A steam turbine rotor blade connection structure characterized by: 3. In claim 1, the width of the rotor blade connecting member is constant, and the thickness of the rotor blade connecting member gradually decreases from the circumferentially adjacent rotor blades toward the center between the blades. A steam turbine rotor blade connection structure characterized by: 4. In claim 1, the width of the rotor blade connecting member is gradually decreased from the circumferentially adjacent rotor blades toward the center between the blades, and the wall thickness of the rotor blade connecting member is increased. , a connection structure of steam turbine rotor blades, characterized in that the rotor blades that are adjacent to each other in the circumferential direction gradually decrease toward the center between the blades. 5. Claims 1, 2, 3, or 4
2. The steam turbine rotor blade connection structure according to item 1, wherein the rotor blade connection member is made of a material having a specific gravity smaller than that of an iron-based metal material.
JP59217289A 1984-10-18 1984-10-18 Steam turbine blade connecting structure Expired - Lifetime JPH0680281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217289A JPH0680281B2 (en) 1984-10-18 1984-10-18 Steam turbine blade connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217289A JPH0680281B2 (en) 1984-10-18 1984-10-18 Steam turbine blade connecting structure

Publications (2)

Publication Number Publication Date
JPS6196104A true JPS6196104A (en) 1986-05-14
JPH0680281B2 JPH0680281B2 (en) 1994-10-12

Family

ID=16701800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217289A Expired - Lifetime JPH0680281B2 (en) 1984-10-18 1984-10-18 Steam turbine blade connecting structure

Country Status (1)

Country Link
JP (1) JPH0680281B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448405Y1 (en) * 1966-04-08 1969-04-03
JPS55142908A (en) * 1979-04-26 1980-11-07 Hitachi Ltd Turbine moving blade cover

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2912157A (en) 1957-05-10 1959-11-10 United Aircraft Corp Cambered shroud

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448405Y1 (en) * 1966-04-08 1969-04-03
JPS55142908A (en) * 1979-04-26 1980-11-07 Hitachi Ltd Turbine moving blade cover

Also Published As

Publication number Publication date
JPH0680281B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
EP1688586B1 (en) Turbine cascade structure
KR100518200B1 (en) Vane wheel for radial turbine
US7740451B2 (en) Turbomachine blade
US6877955B2 (en) Mixed flow turbine and mixed flow turbine rotor blade
EP1452692B1 (en) Turbine bucket damper pin
EP1559869B1 (en) Rotor blade for a turbomachine
JP2003148102A (en) Blade platform for rotor assembly
JP6000980B2 (en) Wing and platform assembly for supersonic flow
US4460315A (en) Turbomachine rotor assembly
CA2962733C (en) Stator-vane structure and turbofan engine employing the same
US2625365A (en) Shrouded impeller
US11814987B2 (en) Turbine engine comprising a straightening assembly
EP1559870B1 (en) Shrouded rotor blade for a turbomachine
US20070148001A1 (en) Impeller with widened blades
JPS6196104A (en) Coupling structure of steam turbine bucket
US20190368361A1 (en) Non-symmetric fan blade tip cladding
US8469669B2 (en) Cover disk for a closed impeller
JP4846139B2 (en) Hydraulic machine
JPH0478803B2 (en)
EP0267405A2 (en) Radial-flow turbo machine
WO2018105329A1 (en) Casing and turbo machine
US20230258197A1 (en) Impeller of centrifugal compressor and centrifugal compressor
JP2000170502A (en) Integral shroud blade
EP3828417B1 (en) Bridged stage piece
JPH1061405A (en) Stationary blade of axial flow turbo machine