JPH0680172B2 - Low-loss grain-oriented silicon steel sheet and method for manufacturing the same - Google Patents

Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Info

Publication number
JPH0680172B2
JPH0680172B2 JP59099701A JP9970184A JPH0680172B2 JP H0680172 B2 JPH0680172 B2 JP H0680172B2 JP 59099701 A JP59099701 A JP 59099701A JP 9970184 A JP9970184 A JP 9970184A JP H0680172 B2 JPH0680172 B2 JP H0680172B2
Authority
JP
Japan
Prior art keywords
grain
steel sheet
annealing
grain size
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59099701A
Other languages
Japanese (ja)
Other versions
JPS60245769A (en
Inventor
道郎 小松原
征夫 井口
氏裕 西池
庸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59099701A priority Critical patent/JPH0680172B2/en
Publication of JPS60245769A publication Critical patent/JPS60245769A/en
Publication of JPH0680172B2 publication Critical patent/JPH0680172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 技術分野 鉄損の低い方向性けい素鋼板およびその製造方法に関し
て、この明細書で述べる技術内容は、最終仕上げ焼鈍後
における2次再結晶粒の粒径さらにはその分布を調整す
ることにより、製品の磁束密度を低下させることなしに
鉄損特性の改善を図ることに関連している。
TECHNICAL FIELD The technical contents described in this specification with respect to a grain-oriented silicon steel sheet having a low iron loss and a method for producing the same are the grain size of secondary recrystallized grains after final finish annealing and the distribution thereof. Is related to improving iron loss characteristics without reducing the magnetic flux density of the product.

背景技術 方向性けい素鋼板は主として変圧器でその他の電気機器
の鉄心として利用され、その磁化特性が優れているこ
と、とくに鉄損(W17/50で代表される)が低いことが要
求されている。
BACKGROUND ART Grain-oriented silicon steel sheets are mainly used in transformers as iron cores for other electrical equipment, and are required to have excellent magnetizing properties, especially low iron loss (typically W17 / 50). There is.

このためには、第一に鋼板中の2次再結晶粒の<001>
粒方位を圧延方向に高度に揃えることが必要であり、第
二には、最終製品の鋼中に存在する不純物や析出物をで
きるだけ減少させる必要がある。かかる配慮の下に製造
される方向性けい素鋼板は、今日まで多くの改善努力に
よつて、その鉄損値も年を追つて改善され、最近では板
厚0.30mmの製品でW17/50の値が1.05W/kgの低鉄損のもの
が得られている。
For this purpose, firstly, the secondary recrystallized grains <001> in the steel sheet
It is necessary to highly align the grain orientation with the rolling direction, and secondly, it is necessary to reduce impurities and precipitates existing in the final product steel as much as possible. The grain-oriented silicon steel sheet manufactured under such consideration has improved its iron loss value year by year through many improvement efforts to date, and recently, the product with a sheet thickness of 0.30 mm has a W17 / 50 A low iron loss value of 1.05 W / kg is obtained.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器を求める傾向が一段と強まり、そ
れらの鉄芯材料として、さらに鉄損の低い方向性けい素
鋼板が要請されるようになつている。
However, since the energy crisis of several years ago, the tendency to seek electrical equipment with less power loss has become stronger, and as a core material for them, grain-oriented silicon steel sheets with even lower iron loss are required. I'm running.

従来技術とその問題点 ところで、方向性けい素鋼板の鉄損を下げる手法として
は、Si含有量を高める、製品板厚を薄くする、2次再結
晶粒を細かくする、不純物含有量を低減する、そして
(110)〔001〕方位の2次再結晶粒をより高度に揃える
など、主に冶金学的方法が一般に知られているが、これ
らの手法は、現行の生産手段の上からはもはや限界に達
していて、これ以上の改善は極めて難しく、たとえ多少
の改善が認められたとしても、その努力の割には鉄損改
善の実効は僅かとなるに至つていた。
Conventional technology and its problems By the way, as a method of reducing the iron loss of grain-oriented silicon steel sheets, the Si content is increased, the product sheet thickness is made thinner, the secondary recrystallized grains are made finer, and the impurity content is reduced. , And metallurgical methods are generally known, such as aligning the secondary recrystallized grains in the (110) [001] orientation to a higher degree, but these methods are no longer available from the viewpoint of the current production means. The limit was reached, and further improvement was extremely difficult. Even if some improvement was recognized, the effect of iron loss improvement was small in spite of the efforts.

たとえば2次再結晶粒を(110)〔001〕方位に高度に揃
える方法においては、(110)〔001〕方位への集積度を
極力高めていくと、かかる集積度に依存する磁束密度
(磁化力1000A/mのときの最大磁束密度B10で代表され
る)は向上するけれども、2次再結晶粒が次第に粗大化
していくため、鉄損は逆に劣化していたのである。
For example, in the method of aligning the secondary recrystallized grains in the (110) [001] orientation to a high degree, if the integration degree in the (110) [001] orientation is increased as much as possible, the magnetic flux density (magnetization Although the maximum magnetic flux density B 10 at a force of 1000 A / m) is improved), the secondary recrystallized grains are gradually coarsened, and the iron loss is deteriorated.

ところで鉄損に対する2次再結晶粒の最適粒径について
は、これまでにも種々の研究がなされていて、平均粒径
1mm程度まで粒径を細かくすると効果があること、しか
しながらそれ以上細かくするとかえつて鉄損は劣化する
ことが知られている。
By the way, various studies have been conducted so far on the optimum grain size of secondary recrystallized grains with respect to iron loss, and the average grain size is
It is known that reducing the grain size to about 1 mm is effective, but further reducing the grain size deteriorates iron loss.

こうした2次再結晶粒の微細化技術としては、たとえば
特公昭54-23647号公報において、鋼板表面に2次再結晶
阻止領域を形成され、2次再結晶粒の成長をかかる阻止
領域で抑止することによつて、実質的に2次再結晶粒を
細粒化させる方法が提案されている。また特開昭54-710
28号公報には、溝付きロールを用いて冷間圧延をするこ
とによつて一次再結晶集合組織を制御し、もつて2次再
結晶粒を細粒化させる手法が開示されている。
As such a technique for refining secondary recrystallized grains, for example, in Japanese Patent Publication No. Sho 54-23647, a secondary recrystallized block region is formed on the surface of a steel sheet, and the growth of the secondary recrystallized grain is suppressed by the block region. Therefore, a method of substantially refining secondary recrystallized grains has been proposed. In addition, JP-A-54-710
Japanese Unexamined Patent Publication No. 28-28 discloses a method of controlling primary recrystallized texture by cold rolling using a grooved roll and thereby making secondary recrystallized grains fine.

しかしながらこれらの方法はいずれも、鋼板全体の2次
再結晶粒を上述した最適粒径である1mm程度の単に近づ
けるための手法であり、従つてかかる手法によつて2次
再結晶粒の細粒化は達成し得たとしても、一方で細粒化
に伴う磁束密度の低下は免れ得ず、このため時としては
鉄損そのものの劣化をも招来していたのである。
However, all of these methods are methods for simply bringing the secondary recrystallized grains of the entire steel sheet closer to the above-mentioned optimum grain size of about 1 mm. Although it could be achieved, on the other hand, the decrease in the magnetic flux density due to the refinement of particles was unavoidable, which sometimes led to the deterioration of the iron loss itself.

その他、方向性けい素鋼の製品板の適正な結晶粒経に関
する研究もなされていて、たとえば特開昭59-23822号公
報には、2次再結晶を完了したあとの鋼板表面の一部に
加工歪を付与してから再度焼鈍を施して、加工歪を加え
た領域に約200μm以下のサイズ(板厚0.40mm以下の場
合)の再結晶粒を配列させることによつて鉄損の低い方
向性けい素鋼板を得る手法が開示されている。
In addition, research has been conducted on the proper grain size of grain-oriented silicon steel product sheets. For example, in Japanese Patent Laid-Open No. 59-23822, a part of the steel sheet surface after secondary recrystallization has been completed. A direction in which iron loss is low by arranging recrystallized grains with a size of about 200 μm or less (when the plate thickness is 0.40 mm or less) in the region subjected to processing strain after applying processing strain and then annealing again A method of obtaining a silicon carbide steel sheet is disclosed.

しかしながら上記の手法では、工程が複雑になる欠点に
加え、加工歪の導入によつて再結晶する200μm程度以
下の微細な粒は、本質的には1次再結晶粒であるため、
製品の方位としては好ましい方位である(110)〔001〕
からのずれが大きく、磁束密度の低下が避けられないと
ころにも問題を残していた。
However, in the above method, in addition to the drawback that the process is complicated, since fine grains of about 200 μm or less that are recrystallized by the introduction of processing strain are essentially primary recrystallized grains,
The preferred orientation for the product is (110) [001]
There was a problem even where the deviation from the magnetic field was large and the decrease in magnetic flux density was unavoidable.

発明の目的 この発明は、上記の問題を有利に解決するもので、磁束
密度を低下させることなしに鉄損特性の有利な改善を実
現した方向性けい素鋼板およびその製造方法を提案する
ことを目的とする。
An object of the present invention is to solve the above problems advantageously, and to propose a grain-oriented silicon steel sheet and a method for producing the same, which achieves an advantageous improvement in iron loss characteristics without lowering the magnetic flux density. To aim.

発明の端緒 この発明は、上記の問題を解決すべく、磁気特性と結晶
粒径との関係につき鋭意研究を重ねた末新たに開発され
たもので、2次再結晶の粒径さらにはその配列に工夫を
加えることによつて所期した目的が有利に達成されるこ
との新規知見に立脚する。
SUMMARY OF THE INVENTION The present invention was newly developed after intensive research on the relationship between the magnetic properties and the crystal grain size in order to solve the above problems. Based on the new knowledge that the intended purpose can be advantageously achieved by adding the device to.

発明の構成 すなわちこの発明は、最終仕上げ焼鈍を経た含けい素鋼
板の2次再結晶粒につき、その粒度分布を、粒径:1.0〜
2.5mmの結晶粒の個数比率が40〜80%,一方粒径:5.0〜1
0.0mmの結晶粒の個数比率が15%以上である混粒分布と
したことを特徴とする鉄損の低い方向性けい素鋼板であ
る。
Structure of the Invention That is, the present invention relates to a secondary recrystallized grain of a silicon-containing steel sheet that has been subjected to final finish annealing, and its grain size distribution is calculated as follows:
Number ratio of 2.5mm crystal grains is 40-80%, while grain size: 5.0-1
It is a grain-oriented silicon steel sheet with low iron loss characterized by a mixed grain distribution in which the number ratio of 0.0 mm crystal grains is 15% or more.

またこの発明は、含けい素鋼スラブを熱間圧延して得ら
れた熱延板に、1回または中間焼鈍を挾む2回の冷間圧
延を施して最終板厚としたのち、脱炭・1次再結晶焼鈍
を施し、ついで鋼板表面にMgOを主成分とする焼鈍分離
剤を塗布してから最終仕上焼鈍および上塗りコーテイン
グ処理を施す一連の工程よりなる方向性けい素鋼板の製
造方法において、脱炭・1次再結晶焼鈍後、焼鈍分離剤
塗布前の鋼板表面に2次再結晶発現促進剤を離散的に付
着させることにより、2次再結晶粒の粒度分布を、粒
径:1.0〜2.5mmの個数比率が40〜80%、粒径:5.0〜10.0m
mの結晶粒の個数比率が15%以上とすることを特徴とす
る鉄損の低い方向性けい素鋼板の製造方法である。
The present invention also provides a hot-rolled sheet obtained by hot-rolling a silicon steel slab by performing cold rolling once or twice with intermediate annealing to obtain a final sheet thickness and then decarburizing. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps in which primary recrystallization annealing is performed, and then an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, followed by final finish annealing and overcoating treatment. After the decarburization / primary recrystallization annealing, the secondary recrystallization development accelerator is discretely adhered to the surface of the steel sheet before the application of the annealing separating agent, so that the particle size distribution of the secondary recrystallized particles becomes 1.0 Number ratio of ~ 2.5mm is 40 ~ 80%, particle size: 5.0 ~ 10.0m
A method for producing a grain-oriented silicon steel sheet having a low iron loss, characterized in that the number ratio of m crystal grains is 15% or more.

この発明において、粒径1.0〜2.5mmの結晶粒の形成領域
としては、鋼板の圧延方向にほぼ直角の向きをなす連続
または非連続の帯状領域であつて、しかもその幅が1.0
〜4.0mmでかつ、圧延方向における繰返し間隔が5〜15m
mのものがとりわけ好都合である。
In the present invention, the formation region of the crystal grains having a grain size of 1.0 to 2.5 mm is a continuous or discontinuous strip-shaped region having a direction substantially perpendicular to the rolling direction of the steel sheet, and its width is 1.0
~ 4.0mm and 5 ~ 15m repeat interval in rolling direction
Those of m are particularly convenient.

以下この発明の由来するに至つた実験結果に基き、この
発明を具体的に説明する。
The present invention will be described in detail below based on the experimental results leading to the origin of the present invention.

さて方向性けい素鋼板の製造過程において、最終板厚に
冷間圧延された鋼板は有害な炭素を取除くため通常脱炭
焼鈍が施される。かかる焼鈍によつて鋼板は、脱炭され
ると同時に再結晶するので脱炭・1次再結晶焼鈍板と呼
ばれる。またこのとき得られる再結晶粒は、多種、多様
の方位からなつていて、正常粒と呼ばれたり、1次再結
晶粒と呼ばれる。ついで後続の2次再結晶焼鈍におい
て、多種、多様の方位の正常粒のなかから(110)〔00
1〕方位の粒が優先的にしかも爆発的に成長し、かくし
て鋼板中のすべての結晶粒が(110)〔001〕方位ないし
はこれに近い方位の粒となる。かかる異常な粒成長現象
は、正常粒つまり1次再結晶粒が再結晶するというい意
味で2次再結晶と呼ばれる。この2次再結晶において、
(110)〔001〕方位に近い粒を優先的に成長させるため
には、それ以外の方位の粒の成長を抑制する必要があ
り、そのために抑制剤と呼ばれる成分が鋼中に添加され
る。かような抑制剤としては、現在、各種硫化物,セレ
ン化物,窒化物,炭化物ならびにB,SbおよびTeなどが知
られている。
In the manufacturing process of grain-oriented silicon steel sheet, the steel sheet cold-rolled to the final thickness is usually subjected to decarburization annealing to remove harmful carbon. Due to such annealing, the steel sheet is decarburized and recrystallized at the same time, so it is called a decarburized / first recrystallization annealed sheet. Further, the recrystallized grains obtained at this time have various and various orientations and are called normal grains or primary recrystallized grains. Then, in the subsequent secondary recrystallization annealing, from the normal grains with various orientations (110) [00
The grains in the 1] orientation preferentially and explosively grow, and thus all the crystal grains in the steel sheet become the grains having the (110) [001] orientation or an orientation close thereto. Such abnormal grain growth phenomenon is called secondary recrystallization in the sense that normal grains, that is, primary recrystallized grains are recrystallized. In this secondary recrystallization,
In order to preferentially grow grains close to the (110) [001] orientation, it is necessary to suppress the growth of grains in other orientations, and for that reason, a component called an inhibitor is added to the steel. As such inhibitors, various sulfides, selenides, nitrides, carbides, B, Sb and Te are currently known.

ところで抑制剤として添加された成分のうちSやSe,Nな
どが最終製品に残留していると、磁気特性への悪影響が
著しいため、2次再結晶処理に引続き、1200℃程度の高
温H2雰囲気中で焼鈍を施して、上記の如き残留不純物を
鋼中から除去する。それ故かかる焼鈍は純化焼鈍と呼ば
れる。また2次再結晶焼鈍と純化焼鈍とは通常連続して
行なわれるので、両者をまとめて最終仕上げ焼鈍と呼ぶ
こともある。
By the way, if S, Se, N, etc. among the components added as a suppressor remain in the final product, the magnetic properties will be significantly adversely affected. Therefore, following the secondary recrystallization treatment, high temperature H 2 Annealing is performed in the atmosphere to remove the above-mentioned residual impurities from the steel. Therefore, such annealing is referred to as purification annealing. Further, since the secondary recrystallization annealing and the purification annealing are usually performed continuously, they may be collectively referred to as final finish annealing.

さて脱炭・1次再結晶焼鈍液の1次再結晶粒の粒径は、
通常20μm程度であるが、引続く2次再結晶焼鈍におい
て上記した抑制剤の抑制効果が不十分な場合には、正常
粒が粒成長を起こす結果、所期した2次再結晶を惹起し
得ず、このため最終仕上げ焼鈍後の鋼板は、数百μm程
度までの大きさのいわゆる正常粒で構成されることにな
り、製品の磁気特性が著しく劣化することになる。
Now, the grain size of the primary recrystallized grains of the decarburization / primary recrystallization annealing liquid is
Usually about 20 μm, but when the inhibitory effect of the above-mentioned inhibitor is insufficient in the subsequent secondary recrystallization annealing, normal grains cause grain growth, and as a result, the desired secondary recrystallization can be induced. Therefore, the steel sheet after the final finish annealing is composed of so-called normal grains with a size of up to about several hundreds of μm, and the magnetic properties of the product are significantly deteriorated.

発明者らは、上記のような状況を定量的に把握するた
め、Siを3.2重量%(以下単に%で示す)含有する方向
性けい素鋼板につき、その製造条件を種々に変化させ
て、板厚0.30mmの製品の結晶粒径を意図的に変え、得ら
れた結晶粒の平均粒径と磁気特性(磁束密度B10および
鉄損W17/50)との関係について調査した。その結果第1
図a,bに○印で示す。
In order to quantitatively grasp the situation as described above, the inventors of the present invention have variously changed the production conditions of grain-oriented silicon steel sheet containing 3.2% by weight of Si (hereinafter referred to simply as%) to obtain a plate. The crystal grain size of the product with a thickness of 0.30 mm was intentionally changed, and the relationship between the average grain size of the obtained crystal grains and the magnetic properties (magnetic flux density B 10 and iron loss W 17/50) was investigated. As a result, the first
It is indicated by a circle in Figures a and b.

第1図から明らかなように、平均結晶粒径の増加ととも
に、B10値は単純に増加するが、鉄損値W17/50は次第に
減少し、粒径1〜3mmで極小値を示したのち再び増加す
る傾向にある。従つて鉄損に対しては、平均粒径でいえ
ば、従来から知られているように1〜3mmが最適値とな
る。
As is clear from FIG. 1, the B 10 value simply increases with an increase in the average crystal grain size, but the iron loss value W17 / 50 gradually decreases, and after reaching a minimum value at a grain size of 1 to 3 mm. It tends to increase again. Therefore, for the iron loss, the average value of 1 to 3 mm is the optimum value as conventionally known in terms of the average particle size.

ところで第1図によれば、平均粒径が0.5〜1.0mmの範囲
で、B10値ならびにW17/50値とも急激に変化している
が、この現象は、鋼板を構成する結晶粒につき、平均粒
径0.5〜1.0mmを境として、それより細粒側では正常粒,
一方粗粒側では2次再結晶粒が主体となつていることを
示している。すなわち平均粒径1.0mm以上では、2次再
結晶粒の発現によつて製品の(110)〔001〕方位への集
積度が高まり、B10値の急激な上昇と鉄損の急激な低減
がもたらされるわけである。
Meanwhile, according to FIG. 1, in the range of average particle size of 0.5 to 1.0 mm, although changing rapidly with B 10 value and W17 / 50 value, this phenomenon, per crystal grains constituting the steel sheet, the average With a grain size of 0.5 to 1.0 mm as a boundary, fine grains on the finer side have normal grains,
On the other hand, it is shown that the secondary recrystallized grains are mainly contained on the coarse grain side. That is, when the average grain size is 1.0 mm or more, the degree of accumulation in the (110) [001] orientation of the product is increased due to the appearance of secondary recrystallized grains, and the B 10 value and the iron loss are rapidly reduced. It will be brought.

次に発明者らは、鋼板における結晶粒の粒度分布とその
配列とについて検討を加えた。実験は、上掲した3.2%S
i含有方向性けい素鋼板を用いて行ない、一つは、特開
昭56-130454号公報に開示された手法に従つて、第1図
中に○印で示した製品板に局部的に歪を加えたのち再焼
鈍を施すことにより、鋼板表面に平均粒径約0.1mmの大
きさの再結晶粒を圧延方向に対して直角方向に配列さ
せ、しかもこの配列を圧延方向に対する繰返しピツチ12
mmの間隔で繰返した。得られた結果を第1図に△印で示
す。また他の一つは、脱炭・1次再結晶焼鈍板の表面に
微細なSrO粉を付着させることによつて、製品板の2次
再結晶組織に粒径1.0〜2.5mmの大きさの2次再結晶粒群
からなる領域を設けた。この領域は、幅約3mmで、圧延
方向に対し直角方向に連続または断続して連なる帯状の
領域であつて、圧延方向に対して間隔を12mmの繰返しピ
ツチをもつ。得られた結果を、第1図に◎印で示す。な
お脱炭・1次再結晶焼鈍板の表面に微細なSrO粉を付着
させることによつて、製品板に粒径1.0〜2.5mmの細かい
2次再結晶粒が形成される理由は、かかるSrO粉に付着
させた個所は2次再結晶焼鈍において、2次再結晶粒の
発現が早められ、しかもその成長速度は大きくないの
で、結果的に細かい2次再結晶粒として鋼板中に残存す
ることになるためと考えられる。そして2次再結晶粒の
成長速度が遅いわけは、その方位が(110)〔001〕方位
から若干ずれているためではないかと推察される。
Next, the inventors examined the grain size distribution of the crystal grains in the steel sheet and the arrangement thereof. The experiment is 3.2% S listed above.
The i-containing grain-oriented silicon steel sheet was used. One was locally distorted on the product sheet indicated by a circle in FIG. 1 according to the method disclosed in JP-A-56-130454. Then, re-annealing is performed to arrange recrystallized grains having an average grain size of about 0.1 mm in a direction perpendicular to the rolling direction on the surface of the steel sheet.
Repeated at mm intervals. The obtained results are shown by Δ in FIG. The other one is to attach fine SrO powder to the surface of the decarburized / primary recrystallization annealed plate, so that the secondary recrystallization structure of the product plate has a grain size of 1.0 to 2.5 mm. A region composed of secondary recrystallized grains was provided. This region has a width of about 3 mm and is a strip-shaped region which is continuous or intermittently continuous in the direction perpendicular to the rolling direction, and has repetitive pitches spaced at 12 mm in the rolling direction. The obtained results are indicated by a double circle in FIG. The reason why fine SrO powder is attached to the surface of the decarburized / primary recrystallization annealed plate to form fine secondary recrystallized grains with a grain size of 1.0 to 2.5 mm on the product sheet is SrO. Since the appearance of secondary recrystallized grains in the secondary recrystallization annealing is accelerated and the growth rate is not high at the parts attached to the powder, they should remain as fine secondary recrystallized grains in the steel sheet. It is thought to be because. It is speculated that the reason why the growth rate of the secondary recrystallized grains is slow is that the orientation thereof is slightly deviated from the (110) [001] orientation.

さて第1図に示した結果から明らかなように、従来法に
従い約100μmの大きさの再結晶粒を鋼板表面に配列さ
せた例(△印)では確かに、平均粒径7〜20mmの範囲に
おいて大きな鉄損低減効果が見られたが、その値は○印
の最適結晶粒径の製品と同程度にすぎず、一方その反面
で磁束密度(B10値)についてはかなりの低下を示し
た。
As is clear from the results shown in Fig. 1, in the example where the recrystallized grains having a size of about 100 µm are arranged on the surface of the steel sheet according to the conventional method (marked with △), the average grain size is certainly in the range of 7 to 20 mm. Although a large iron loss reduction effect was observed in, the value was only about the same as the product with the optimum crystal grain size indicated by ○, while the magnetic flux density (B 10 value) showed a considerable decrease. .

これに対し、1.0〜2.5mmの細かい2次再結晶群からなる
帯状領域を配置したもの(◎印)は、その鉄損改善効果
は極めて大きく、従来の最良値をさらに凌ぐ成果が得ら
れ、しかも磁束密度(B10値)の低下は図示したとおり
ほとんどなかつた。
On the other hand, the one in which the band-shaped region composed of the fine secondary recrystallization group of 1.0 to 2.5 mm is arranged (marked with ⊚) has an extremely large effect of improving the iron loss, and the result exceeding the conventional best value can be obtained. Moreover, the decrease in magnetic flux density (B 10 value) was almost negligible as shown in the figure.

すなわち結晶粒径の異なる2次再結晶粒を圧延方向に対
して交互に配列することによつて、磁束密度の劣化を招
くことなしに従来に比べてより一層低鉄損の方向性けい
素鋼板が得られることが判明したのである。ここに磁束
密度の劣化を招かない理由は、鋼板を構成する結晶粒
は、細粒であるとはいうものの、2次再結晶粒であるの
で(110)〔001〕方位からのずれは小さいためであると
考えられる。
That is, by arranging the secondary recrystallized grains having different grain sizes alternately in the rolling direction, the grain-oriented silicon steel sheet having a lower iron loss than the conventional one without causing deterioration of the magnetic flux density. It was found that The reason why the magnetic flux density is not deteriorated here is that although the crystal grains that make up the steel sheet are fine grains, since they are secondary recrystallized grains, the deviation from the (110) [001] orientation is small. Is considered to be.

第2図a,bに、第1図に◎印で示した製品のうち平均粒
径が3.98mmのものの、結晶粒径の度数分布とマクロ組織
をそれぞれ示す。第2図bにおいてAで示した領域(幅
3mm)では、1.0〜2.5mmの結晶粒の個数が約90%を占
め、一方それ以外のBで示した領域(幅9mm)では粒径
5.0〜7.5mmの結晶粒の個数が約60%を占めていた。なお
領域A,Bを区別しない場合は、粒径1.0〜2.5mmの結晶粒
の個数比率は約60%,5.0〜7.5mmの結晶粒のそれは約17
%であつた。
2a and 2b show the frequency distribution of the crystal grain size and the macrostructure of the products indicated by the double circles in FIG. 1 having an average grain size of 3.98 mm, respectively. The area indicated by A in Fig. 2b (width
3 mm), the number of crystal grains of 1.0 to 2.5 mm accounts for about 90%, while the grain size in the other area B (9 mm wide)
The number of crystal grains of 5.0 to 7.5 mm accounted for about 60%. When the areas A and B are not distinguished, the number ratio of crystal grains with a grain size of 1.0 to 2.5 mm is about 60%, that of crystal grains with a grain size of 5.0 to 7.5 mm is about 17%.
It was in%.

これに対し、第1図において○印で示した従来材のう
ち、平均粒径が3.89mmの製品について同様の調査を行つ
たところ、結晶粒径の度数分布は第3図aに示したよう
に粒径2.5〜5.0mmの結晶粒が最も多く個数にして全体の
約70%を占めていて、これにより細粒側になるに従い、
また粗粒側になるに従つて数はそれぞれ減少する傾向に
あつた。
On the other hand, among the conventional materials indicated by ◯ in FIG. 1, the same investigation was conducted on the products having an average grain size of 3.89 mm, and the frequency distribution of the crystal grain size was as shown in FIG. 3a. The largest number of crystal grains with a grain size of 2.5-5.0 mm occupies about 70% of the total, and as a result, the finer grain side becomes,
Moreover, the numbers tended to decrease as the particles became coarser.

このように従来製品では、2次再結晶粒の粒度分布は整
粒分布を呈していたのに対し、この発明に従う製品で
は、2次再結晶粒の粒度分布が混粒分布を呈していると
ころに大きな特徴がある。
As described above, in the conventional product, the particle size distribution of the secondary recrystallized particles exhibited a uniform particle size distribution, whereas in the product according to the present invention, the particle size distribution of the secondary recrystallized particles exhibited a mixed particle distribution. Has a big feature.

ここで結晶粒径および平均粒径の計算方法について述べ
ると、第2および3図においては、どちらの結晶粒も2
次再結晶粒であるので、0.30mmの板厚の製品において
は、結晶粒が板厚を貫通している。したがつて、鋼板の
片面側についてのみ計算すれば十分である。いま、ひと
つの結晶粒の面積をScm2とすると、この結晶粒径Dmmは で計算できる。次に、多結晶粒の平均粒径は総面積をAm
m2とし、そこに含まれる結晶粒の個数をNとした時、平
均粒径mmは で計算される。
Here, the calculation method of the crystal grain size and the average grain size will be described. In FIGS.
Since it is the next recrystallized grain, the crystal grain penetrates the plate thickness in the product with the plate thickness of 0.30 mm. Therefore, it is sufficient to calculate only on one side of the steel sheet. Now, assuming that the area of one crystal grain is Scm 2 , this crystal grain size Dmm is Can be calculated by Next, the average grain size of polycrystalline grains is
When m 2 and the number of crystal grains contained therein is N, the average grain size mm is Calculated by

なお第2図bに示した領域内での粒度分布の算出方法
は、領域AとBに完全に含まれる粒はそれぞれ領域A,B
に属するとして数え、一方領域AとBにまたがる粒につ
いては、境界線によつて2分割された粒の2つの面積の
うち、大きな面積有する側の領域に属するものとして、
数えた。
Note that the method of calculating the particle size distribution in the area shown in FIG. 2b is such that the particles completely contained in the areas A and B are the areas A and B, respectively.
For a grain that spans regions A and B, on the other hand, of the two areas of the grain divided into two by the boundary line, it belongs to the region having the larger area,
I counted.

次に、鉄損改善効果に関し、2次再結晶粒の粒度分布が
混粒タイプである点と粒径1.0〜2.5mmの2次再結晶粒が
帯状に配列されている点とで、どちらがより本質的であ
るを見極めるべく、以下に述べる実験を行つた。
Next, regarding the iron loss improving effect, which one is better is that the grain size distribution of the secondary recrystallized grains is a mixed grain type and that the secondary recrystallized grains with a grain size of 1.0 to 2.5 mm are arranged in a strip shape. In order to determine what is essential, the following experiments were conducted.

すなわち脱炭・1次再結晶焼鈍板の表面に、微細粒を得
るべく微細なSrO粉の塗布を行うに際し、該SrO粉を斑点
状に散布し、その後の処理は前述の例と同様にして行な
い製品とした。得られた製品の2次再結晶粒の度数分布
およびマクロ組織を第4図a,bにそれぞれ示す。
That is, when applying fine SrO powder to obtain fine particles on the surface of the decarburized / primary recrystallization annealed plate, the SrO powder is scattered in spots, and the subsequent treatment is performed in the same manner as in the above example. It was a done product. The frequency distribution of secondary recrystallized grains and the macrostructure of the obtained product are shown in FIGS. 4a and 4b, respectively.

第4図bから明らかなように、この製品板では粒径1.0
〜2.5mmの2次再結晶粒の領域が斑点状に点在し、その
粒度分布は1.0〜2.5mmの粒径の個数が一番多くて約64
%、一方5.0〜7.5mmの粒径の個数が二番目に多くて約20
%、そして他のものはいずれも10%以下であつて、前掲
第2図に示した例とほぼ同一の混粒タイプの製品が得ら
れた。
As is clear from Fig. 4b, this product plate has a particle size of 1.0.
Areas of secondary recrystallized grains of ~ 2.5 mm are scattered in spots, and the grain size distribution is about 64 with the largest number of grains of 1.0 ~ 2.5 mm.
%, On the other hand, the number of particles with a particle size of 5.0 to 7.5 mm is the second largest and is about 20.
%, And all others were 10% or less, and almost the same mixed grain type product as the example shown in FIG. 2 was obtained.

さてここで、上掲した第2〜4図に示した3種類の度数
分布ならびにマクロ組織になる製品板の磁気特性につい
ては、下表1に示したとおりであつた。
Now, the three types of frequency distributions shown in FIGS. 2 to 4 and the magnetic properties of the product sheet having a macrostructure are shown in Table 1 below.

表1から明らかなように、微細な2次再結晶群を斑点状
に点在させた場合でも、圧延と直角方向に帯状に分布さ
せた第2図に示した例には及ばないにしても、鉄損低減
に関してかなりの効果があることが判明した。
As is clear from Table 1, even when fine secondary recrystallized groups are scattered in spots, even if they do not reach the example shown in FIG. 2 in which they are distributed in strips in the direction perpendicular to the rolling. , It was found that there is a considerable effect on reducing iron loss.

ここに磁束密度の劣化に伴うことのない鉄損の改善につ
いては、微細な2次再結晶群の配置が本質的要因である
のではなく、その粒度分布に大きな意味があり、たとえ
ば第2図および第4図に示したような混粒タイプにする
ことが重要であることが究明されたのである。
Regarding the improvement of iron loss that is not accompanied by the deterioration of magnetic flux density, the arrangement of fine secondary recrystallization groups is not an essential factor, but the particle size distribution has a great significance. It has been clarified that it is important to make the mixed grain type as shown in FIG.

さてこの発明における方向性けい素鋼板の成分について
は、Siを含有することが不可欠であるが、その量が2.0
%未満では鉄損の劣化が著しく、一方4.0%を超えると
冷間加工性が劣化するきらいにあるので、Si含有量は2.
0〜4.0%とするのが望ましい。またその他の成分につい
ては、通常方向性けい素鋼板の成分として用いられるも
のであれば、従来公知のいずれの成分をも使用できる。
Now, regarding the composition of the grain-oriented silicon steel sheet in this invention, it is essential to contain Si, but the amount is 2.0
If it is less than 4.0%, the iron loss is significantly deteriorated, while if it exceeds 4.0%, the cold workability tends to be deteriorated, so the Si content is 2.
It is desirable to set it to 0 to 4.0%. As for other components, any conventionally known component can be used as long as it is a component usually used for grain-oriented silicon steel sheets.

また鋼板の板厚は、0.15〜0.5mm程度が好ましい。とい
うのは0.15mm未満では、2次再結晶が困難であり、一方
0.5mmを超えると鉄損の改善効果が乏しく実用的でない
からである。
The plate thickness of the steel plate is preferably about 0.15 to 0.5 mm. Because, if it is less than 0.15 mm, secondary recrystallization is difficult, while
This is because if it exceeds 0.5 mm, the effect of improving iron loss is poor and it is not practical.

さらに鋼板を構成する結晶粒は、そのほとんどが粒径1.
0mm以上で、しかも(110)〔001〕方位からのいずれが
小さい2次再結晶粒であることが必要である。粒径が1.
0mmに満たないと(110)〔001〕方位からのずれが大き
く、極端な場合は正常粒のまま残存して鋼板の磁束密度
ひいては鉄損を甚しく害することになるからである。
Most of the crystal grains that make up the steel sheet have a grain size of 1.
It is necessary that the secondary recrystallized grains have a size of 0 mm or more and a small size from the (110) [001] orientation. Particle size is 1.
If it is less than 0 mm, the deviation from the (110) [001] orientation is large, and in an extreme case, it remains as normal grains and seriously damages the magnetic flux density of the steel sheet and thus the iron loss.

ここにおいて、鋼板を構成する結晶粒の粒度分布が、混
粒タイプであること、すなわち個数比率にして、1.0〜
2.5mmの粒径の2次再結晶粒が40〜80%好ましくは60〜7
0%でかつ、5.0〜10.0mmの粒径の2次再結晶粒が15%以
上であることが必要とされる。
Here, the grain size distribution of the crystal grains forming the steel sheet is a mixed grain type, that is, in the number ratio, 1.0 to
Secondary recrystallized grains having a grain size of 2.5 mm are 40 to 80%, preferably 60 to 7
It is required that the secondary recrystallized grains having a grain size of 0 to 10 mm and a grain size of 5.0 to 10.0 mm be 15% or more.

というのは粒径1.0〜2.5mmの2次再結晶粒の個数比率が
40%未満では鉄損低減効果に乏しく、一方80%を超える
場合や、粒径5.0〜10.0mmの結晶粒の個数比率が15%に
満たない場合には、粗粒側の個数比率が小さくなつて磁
束密度の劣化を招くからである。
This is because the number ratio of secondary recrystallized grains with a grain size of 1.0 to 2.5 mm
If it is less than 40%, the effect of reducing iron loss is poor. On the other hand, if it exceeds 80%, or if the number ratio of crystal grains with a grain size of 5.0 to 10.0 mm is less than 15%, the number ratio on the coarse grain side becomes small. This causes deterioration of the magnetic flux density.

なお粒径が2.5mmを超え5.0mm未満の結晶粒の個数比率
は、5.0〜10.0mmの結晶粒のそれよりも小さい方が好ま
しい。
The number ratio of crystal grains having a grain size of more than 2.5 mm and less than 5.0 mm is preferably smaller than that of crystal grains of 5.0 to 10.0 mm.

このように混粒タイプの粒度分布とすることによつて、
製品の磁束密度を低下させることなく、鉄損を低減する
ことが可能となるわけであるが、かかる混粒タイプの2
次再結晶組織とするためには、脱炭・1次再結晶焼鈍板
に、2次再結晶焼鈍に先立ち、2次再結晶の発現を促進
するようなものを付着させればよく、かような2次再結
晶発現促進剤としてはSrO粉の他に、MgO3やSnO、SnO2
がとりわけ有利に遊合する。
By having a mixed-grain type particle size distribution in this way,
It is possible to reduce iron loss without reducing the magnetic flux density of the product.
In order to obtain the secondary recrystallization structure, it is sufficient to attach a material that promotes the development of secondary recrystallization to the decarburized / primary recrystallization annealed plate prior to the secondary recrystallization annealing. In addition to SrO powder, MgO 3 , SnO, and SnO 2 powders are particularly advantageous as secondary secondary crystallization promoters.

これらの薬剤により、2次再結晶の発現が促進される理
由は、2次再結晶焼鈍中に、これらの薬剤が、鋼板表層
地鉄中に分散しているSiO2粒子の存在形態を変えるた
め、2次再結晶粒の発現までの時間(潜伏時間と呼ばれ
る)が短縮されるからである。これらの薬剤により、早
期に発現した2次再結晶粒の成長速度は通常の2次再結
晶粒の成長速度に比して小さいため、結果的に1.0〜2.5
mmの細粒として鋼板に残存する。この成長速度が遅い理
由は、その方位が(110)〔001〕方位から若干ずれてい
るためではないかと推察される。
The reason why these agents promote the development of secondary recrystallization is that these agents change the existing form of the SiO 2 particles dispersed in the steel sheet surface base metal during secondary recrystallization annealing. This is because the time required to develop the secondary recrystallized grains (called the latency) is shortened. With these agents, the growth rate of the secondary recrystallized grains that appeared early was smaller than the growth rate of normal secondary recrystallized grains.
It remains on the steel sheet as fine particles of mm. It is speculated that the reason for this slow growth rate is that the orientation is slightly deviated from the (110) [001] orientation.

かかる2次再結晶発現促進剤を付着させた領域は、2次
再結晶の発現が早められる結果、1.0〜2.5mm程度の2次
再結晶粒を最終板厚後の鋼板にもたらし、一方2次再結
晶発現促進剤未付着領域では主に5.0〜10.0mmの結晶粒
が発現するので、所期した混粒タイプの2次再結晶組織
が得られることになるのである。
The region to which the secondary recrystallization development accelerator is attached brings about secondary recrystallization of about 1.0 to 2.5 mm to the steel sheet after the final thickness, as a result of the accelerated development of the secondary recrystallization, while the secondary recrystallization is promoted. Since crystal grains of 5.0 to 10.0 mm are mainly expressed in the region where the recrystallization promoting agent is not attached, a desired mixed grain type secondary recrystallization structure can be obtained.

ところで上記した混粒タイプにおいて、1.0〜2.5mmの2
次再結晶粒群は、圧延方向に対し直角方向に帯状にそれ
も繰返して分布させることが、鉄損低減に関し一層の効
果が得られる。このとき粒径1.0〜2.5mmの結晶粒群の帯
状領域は、幅1.0〜4.0mmが好ましく、また繰返し間隔は
5〜15mmが望ましい。
By the way, in the above-mentioned mixed grain type, 1.0 to 2.5 mm of 2
If the secondary recrystallized grain group is also repeatedly distributed in the form of a strip in the direction perpendicular to the rolling direction, it is possible to obtain a further effect in reducing the iron loss. At this time, the band-shaped region of the crystal grain group having a grain size of 1.0 to 2.5 mm preferably has a width of 1.0 to 4.0 mm and a repeating interval of 5 to 15 mm.

そしてかかる鋼板の表面は、フオルステライト(MgO2Si
O4)からなるグラス被膜を有し、さらにその上には、層
間抵抗などの要請から必要により、上塗りコーテイング
膜をそなえる場合もある。上塗りコーテイング膜には、
通常の絶縁被膜のほか、鋼板に張力を付与するタイプの
コーテイング膜をも含む。
And the surface of such steel sheet is forsterite (MgO 2 Si
In some cases, it has a glass coating made of O 4 ), and on top of that, an overcoating coating may be provided if necessary due to requirements such as interlayer resistance. For the top coating film,
In addition to the usual insulating coating, it also includes a coating film that gives tension to the steel sheet.

実施例 実施例1 Si:3.2%を含有するけい素鋼板素材を、常法に従つて厚
み0.30mmの冷延鋼板とし、ついで脱炭・1次再結晶焼鈍
したのち鋼板を2分割し、一方はそのままMgOを主成分
とする焼鈍分割剤を塗布し、2次再結晶焼鈍と1200℃,5
時間の純化焼鈍とからなる最終仕上げ焼鈍を施して比較
例とした。また他のひとつは鋼板表面に、平均粒径500
ÅのSrO粉を、付着幅2mmで圧延方向と直角方向に帯状
に、しかも圧延方向において、間隔7mmで繰返し付着さ
せたのち、焼鈍分離剤をその上から塗布してから比較例
と同じ要領で最終仕上げ焼鈍を施して製品とした。
Examples Example 1 A silicon steel sheet material containing Si: 3.2% was made into a cold-rolled steel sheet having a thickness of 0.30 mm according to a conventional method, then decarburized and subjected to primary recrystallization annealing, and then the steel sheet was divided into two. Is applied as it is with an annealing resolving agent containing MgO as the main component, followed by secondary recrystallization annealing and 1200 ° C, 5
A final finish annealing consisting of time-purified annealing was given as a comparative example. The other one has an average grain size of 500 on the steel plate surface.
Å SrO powder was applied in a strip shape with an attachment width of 2 mm in the direction perpendicular to the rolling direction, and with an interval of 7 mm repeatedly in the rolling direction, and then an annealing separator was applied over it, following the same procedure as in the comparative example. Final finishing annealing was performed to obtain a product.

その結果、後者の実施例においては、SrO粉を付着させ
た領域において粒径1.0〜2.5mmの細かい2次再結晶粒が
帯状に出現したが、比較例においては粒径2.5〜5.0mmの
2次再結晶粒が最も多かつた。これらの粒度分布を測定
した結果は、第5図に示したように、比較例では整粒分
布となつたが、実施例では、混粒分布を示し、粒径1.0
〜2.5mmの結晶粒の個数比率は、72.8%,一方5.0〜10.0
mmの粒径の個数比率は15.6%であつた。
As a result, in the latter example, fine secondary recrystallized grains having a grain size of 1.0 to 2.5 mm appeared in a band-like shape in the region where the SrO powder was adhered, but in the comparative example, a grain size of 2.5 to 5.0 mm was obtained. The number of secondary recrystallized grains was the highest. As shown in FIG. 5, the results of the measurement of the particle size distributions show that the comparative examples have a uniform particle size distribution, but the examples show a mixed particle size distribution with a particle size of 1.0.
The ratio of the number of crystal grains of ~ 2.5mm is 72.8%, while that of 5.0 to 10.0
The number ratio of the particle size of mm was 15.6%.

そしてこれらの磁気特性は、実施例がB10=1.902T;W17/
50=0.985W/kgであるのに対し、比較例は、B10=1.908
T;W17/50=1.073W/kgであつた。
And, regarding these magnetic characteristics, the example is B 10 = 1.902T; W17 /
While 50 = 0.985 W / kg, the comparative example has B 10 = 1.908.
It was T; W17 / 50 = 1.073 W / kg.

実施例2 Si:3.2%を含有するけい素鋼素材を、常法に従つて厚み
0.23mmの冷延鋼板としたのち、脱炭・1次再結晶焼鈍を
施し、ついで焼鈍分離剤を散布するに際し、塗布前に、
鋼板表面に平均粒径1000ÅのMoO3粉を径3mmの斑点状に
散布した後、焼鈍分離剤を塗布した。
Example 2 A silicon steel material containing Si: 3.2% was thickened according to a conventional method.
After making 0.23 mm cold-rolled steel sheet, decarburization / primary recrystallization annealing is performed, and then when applying the annealing separator, before application,
MoO 3 powder with an average particle size of 1000Å was scattered on the surface of the steel sheet in spots with a diameter of 3 mm, and then an annealing separator was applied.

しかるのち2次再結晶焼鈍ついで1200℃,5時間の純化焼
鈍を施した。
After that, secondary recrystallization annealing and then purification annealing at 1200 ° C. for 5 hours were performed.

なお比較のため、常法に従いMoOを主成分とする焼鈍分
離剤のみを塗布し、2次再結晶焼鈍ついで1200℃,5時間
の純化焼鈍を施し、比較例とした。
For comparison, only an annealing separator containing MoO as a main component was applied according to a conventional method, secondary recrystallization annealing was performed, and then purification annealing was performed at 1200 ° C. for 5 hours, which was used as a comparative example.

この結果、実施例においては、Mo03粉を付着させた領域
において1.0〜2.5mmの細かい2次再結晶粒の群が斑点状
に出現したが、比較例においては2.5〜5.0mmの2次再結
晶粒が最も多かつた。これらの粒度分布を測定した結果
は、第6図に示したように比較例では整粒分布となつた
が、実施例では混粒分布を示し、1.0〜2.5mmの粒径の個
数比率は71.4%;5.0〜10.0mmの粒径の個数比率は19.7%
であつた。
As a result, in the example, a group of fine secondary recrystallized grains of 1.0 to 2.5 mm appeared in spots in the region to which the MoO 3 powder was attached, but in the comparative example, a secondary recrystallized grain of 2.5 to 5.0 mm was observed. The largest number of crystal grains. As a result of measuring these particle size distributions, as shown in FIG. 6, a particle size distribution was obtained in the comparative example, but a mixed particle size distribution was shown in the example, and the number ratio of particle sizes of 1.0 to 2.5 mm was 71.4. %; The ratio of the number of particles with particle size of 5.0 to 10.0 mm is 19.7%
It was.

そしてこれらの磁気特性は実施例がB10=1.885T;W17/50
=0.856W/kgであるのに対し、比較例はB10=1.889T,W17
/50=0.937W/kgであつた。
The magnetic characteristics of these examples are as follows: B 10 = 1.885T; W17 / 50
= 0.856 W / kg, whereas the comparative example has B 10 = 1.889T, W17
/50=0.937W/kg.

実施例3 Si:3.0%を含有するけい素鋼素材を、常法に従つて厚み
0.30mmの冷延鋼板としたのち、脱炭・1次再結晶焼鈍を
施し、ついで焼鈍分離剤を塗布するに際し、塗布前に、
鋼板表面に、SnO粉を径2mmの斑点状に散布した後、焼鈍
分離剤を塗布した。
Example 3 A silicon steel material containing Si: 3.0% was formed in a thickness according to a conventional method.
After making 0.30 mm cold-rolled steel sheet, decarburization and primary recrystallization annealing are applied, and then when applying the annealing separator, before applying,
SnO powder was scattered on the surface of the steel sheet in spots having a diameter of 2 mm, and then an annealing separator was applied.

しかるのち2次再結晶焼鈍ついで1200℃,5時間の純化焼
鈍を施した。
After that, secondary recrystallization annealing and then purification annealing at 1200 ° C. for 5 hours were performed.

なお比較のため、常法に従いMgOを主成分とする焼鈍分
離剤のみを塗布し、2次再結晶焼鈍、ついで1200℃,5時
間の純化焼鈍を施し、比較例とした。
For comparison, only an annealing separator containing MgO as a main component was applied according to a conventional method, secondary recrystallization annealing was performed, and then purification annealing was performed at 1200 ° C. for 5 hours, which was used as a comparative example.

この結果、実施例においては、SnO粉を付着させた領域
において1.0〜2.5mmの細かい2次再結晶粒の群が斑点状
に出現したが、比較例においては2.5〜5.0mmの2次再結
晶粒が最も多かつた。粒度分布の個数比率を算出したと
ころ、実施例では、1.0〜2.5mmの粒径の個数比率は63.0
%;5.0〜10.0mmの粒径の個数比率は16.3%であつた。こ
れに対し、比較例では、個数比率は各々9.3%;18.5%で
あり、2.5〜5.0mmの粒径の個数比率は65%であつた。
As a result, in the example, a group of fine secondary recrystallized grains of 1.0 to 2.5 mm appeared in spots in the region to which the SnO powder was attached, but in the comparative example, a secondary recrystallized grain of 2.5 to 5.0 mm was formed. It had the most grains. When the number ratio of particle size distribution was calculated, in the example, the number ratio of particle sizes of 1.0 to 2.5 mm was 63.0.
%; The number ratio of particle diameters of 5.0 to 10.0 mm was 16.3%. On the other hand, in the comparative example, the number ratios were 9.3% and 18.5%, respectively, and the number ratio of the particle diameters of 2.5 to 5.0 mm was 65%.

そして、これらの磁気特性は実施例がB10=1.915T;W17/
50=0.997W/kgであるのに対し、比較例はB10=1.920T;W
17/50=1.062W/kgであつた。
The magnetic properties of these examples are B 10 = 1.915T; W17 /
50 = 0.997 W / kg, whereas the comparative example has B 10 = 1.920T; W
It was 17/50 = 1.062 W / kg.

発明の効果 かくしてこの発明によれば、磁束密度を劣化させること
なしに、従来に比べて鉄損特性が格段に優れた方向性け
い素鋼板を得ることができる。
EFFECTS OF THE INVENTION Thus, according to the present invention, it is possible to obtain a grain-oriented silicon steel sheet having significantly excellent iron loss characteristics as compared with the prior art without deteriorating the magnetic flux density.

【図面の簡単な説明】[Brief description of drawings]

第1図a,bはそれぞれ、平均粒径とB10およびW17/50との
関係を示したグラフ、 第2図a,bはそれぞれ、この発明に従う方向性けい素鋼
板の粒度分布およびマクロ組織を示した模式図、 第3図a,bはそれぞれ、従来の方向性けい素鋼板の粒度
分布およびマクロ組織の模式図、 第4図a,bはそれぞれ、この発明の他の実施例の粒度分
布およびマクロ組織を示した模式図、 第5図および第6図はいずれも、この発明と従来例の粒
度分布をそれぞれ比較して示したグラフである。
1 a and b are graphs showing the relationship between the average grain size and B 10 and W 17/50, respectively, and FIGS. 2 a and b are the grain size distribution and macrostructure of the grain-oriented silicon steel sheet according to the present invention, respectively. 3A and 3B are schematic diagrams of the grain size distribution and macrostructure of the conventional grain-oriented silicon steel sheet, and FIGS. 4A and 4B are grain sizes of other embodiments of the present invention. Schematic diagrams showing the distribution and macrostructure, FIG. 5 and FIG. 6 are graphs showing the comparison of the particle size distributions of the present invention and the conventional example, respectively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 庸 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yo Ito 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】最終仕上げ焼鈍を経た含けい素鋼板の2次
再結晶粒の粒度分布につき、粒径:1.0〜2.5mmの結晶粒
の個数比率が40〜80%、一方粒径5.0〜10.0mmの結晶粒
の個数比率が15%以上である混粒分布になることを特徴
とする鉄損の低い方向性けい素鋼板。
1. The particle size distribution of secondary recrystallized grains of a silicon-containing steel sheet that has been subjected to final finish annealing, the ratio of the number of crystal grains having a grain size of 1.0 to 2.5 mm is 40 to 80%, while the grain size is 5.0 to 10.0. A grain-oriented silicon steel sheet with low iron loss characterized by a mixed grain distribution in which the number ratio of mm crystal grains is 15% or more.
【請求項2】粒径:1.0〜2.5mmの結晶粒の形成領域が、
鋼板の圧延方向にほぼ直角の向きをなす連続または非連
続の帯状領域であつて、しかもかかる帯状領域の幅が1.
0〜4.0mmでかつ、圧延方向における繰返し間隔が5〜15
mmの範囲である特許請求の範囲第1項記載の方向性けい
素鋼板。
2. A grain formation region of grain size: 1.0 to 2.5 mm,
A continuous or discontinuous strip-shaped region that is oriented almost at right angles to the rolling direction of the steel sheet, and the width of such strip-shaped region is 1.
0 ~ 4.0mm and the repeat interval in rolling direction is 5 ~ 15
The grain-oriented silicon steel sheet according to claim 1, which is in the range of mm.
【請求項3】含けい素鋼スラブを熱間圧延して得られた
熱延板に、1回または中間焼鈍を挾む2回の冷間圧延を
施して最終板厚としたのち、脱炭・1次再結晶焼鈍を施
し、ついで鋼板表面にMgOを主成分とする焼鈍分離剤を
塗布してから最終仕上焼鈍および上塗りコーテイング処
理を施す一連の工程よりなる方向性けい素鋼板の製造方
法において、脱炭・1次再結晶焼鈍後、焼鈍分離剤塗布
前の鋼板表面に2次再結晶発現促進剤を離散的に付着さ
せることにより、2次再結晶粒の粒度分布を、粒径:1.0
〜2.5mmの個数比率が40〜80%、粒径:5.0〜10.0mmの結
晶粒の個数比率が15%以上とすることを特徴とする鉄損
の低い方向性けい素鋼板の製造方法。
3. A hot-rolled sheet obtained by hot-rolling a silicon steel slab is cold-rolled once or twice with intermediate annealing to obtain a final thickness, and then decarburized. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps in which primary recrystallization annealing is performed, and then an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, followed by final finish annealing and overcoating treatment. After the decarburization / primary recrystallization annealing, the secondary recrystallization development accelerator is discretely adhered to the surface of the steel sheet before the application of the annealing separating agent, so that the particle size distribution of the secondary recrystallized particles becomes 1.0
A method for producing a grain-oriented silicon steel sheet having a low iron loss, characterized in that the number ratio of ~ 2.5 mm is 40 to 80%, and the number ratio of crystal grains of grain size: 5.0 to 10.0 mm is 15% or more.
JP59099701A 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same Expired - Lifetime JPH0680172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099701A JPH0680172B2 (en) 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099701A JPH0680172B2 (en) 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS60245769A JPS60245769A (en) 1985-12-05
JPH0680172B2 true JPH0680172B2 (en) 1994-10-12

Family

ID=14254356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099701A Expired - Lifetime JPH0680172B2 (en) 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0680172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837148A3 (en) * 1996-10-21 1998-07-15 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858126A (en) * 1992-09-17 1999-01-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
JP5648335B2 (en) * 2010-06-17 2015-01-07 新日鐵住金株式会社 Fe-based metal plate with partially controlled crystal orientation
JP5871137B2 (en) * 2012-12-12 2016-03-01 Jfeスチール株式会社 Oriented electrical steel sheet
KR102597512B1 (en) * 2020-12-22 2023-11-01 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837148A3 (en) * 1996-10-21 1998-07-15 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
WO2019245044A1 (en) 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics

Also Published As

Publication number Publication date
JPS60245769A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
CN113727788B (en) Method for producing non-oriented electromagnetic steel sheet
CN113302336B (en) Method for producing grain-oriented electrical steel sheet
GB2167439A (en) Process for producing a grain-oriented electrical steel sheet having a low watt loss
US4952253A (en) Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
US5858126A (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
EP0076109B1 (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
JPH0680172B2 (en) Low-loss grain-oriented silicon steel sheet and method for manufacturing the same
EP0588342A1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
KR930010323B1 (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JPH02173209A (en) Cold rolling method for grain oriented silicon steel sheet
EP2243865B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP3490048B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR100332251B1 (en) Manufacturing method of unidirectional silicon steel sheet
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPS6311406B2 (en)
JP7028215B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2020169367A (en) Method for manufacturing grain oriented electrical steel sheet
JP2003193141A (en) Method of producing grain oriented silicon steel sheet having excellent coating property
JP2003253334A (en) Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property and stamping property
JP2724659B2 (en) High magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties
EP0392535B2 (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term