JPS60245769A - Grain-oriented silicon steel sheet having low iron loss and its production - Google Patents

Grain-oriented silicon steel sheet having low iron loss and its production

Info

Publication number
JPS60245769A
JPS60245769A JP59099701A JP9970184A JPS60245769A JP S60245769 A JPS60245769 A JP S60245769A JP 59099701 A JP59099701 A JP 59099701A JP 9970184 A JP9970184 A JP 9970184A JP S60245769 A JPS60245769 A JP S60245769A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
annealing
grains
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59099701A
Other languages
Japanese (ja)
Other versions
JPH0680172B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Masao Iguchi
征夫 井口
Ujihiro Nishiike
西池 氏裕
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59099701A priority Critical patent/JPH0680172B2/en
Publication of JPS60245769A publication Critical patent/JPS60245769A/en
Publication of JPH0680172B2 publication Critical patent/JPH0680172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the grain size and arrangement of secondary recrystallization and to obtain a grain-oriented silicon steel sheet having a low iron loss by subjecting a hot rolled silicic steel sheet to cold rolling including intermediate annealing and coating an accelerator for development of secondary recrystallization thereon after decarburization and primary recrystallization annealing then subjecting the steel sheet to finish annealing. CONSTITUTION:The hot-rolled silicic steel sheet is subjected to cold rolling including intermediate annealing to a final sheet thickness and is then subjected to decarburization and primary recrystallization annealing. The accelerator for development of secondary recrystallization such as SrO powder is discretely stuck to the surface of such steel sheet. A separating agent for annealing consisting essentially of MgO is then coated thereon and the steel sheet is subjected to final finish annealing and finish coating. The grain-oriented silicon steel sheet of which the grain size distribution of the secondary recrystallization grains is made into the duplex grain size distribution consisting of 40- 80% number ratio of crystal grains having 1.0-2.5mm. grain size and >=15% number ratio of the crystal grains having 5.0-10.0 grain size and which has the low iron loss is thus obtd. Such silicon steel sheet has the exceptionally outstanding iron loss characteristic without having the deteriorated magnetic flux density.

Description

【発明の詳細な説明】 技術分野 鉄損の低い方向性けい素鋼板およびその製造方法に関し
て、この明細書で述べる技術内容は、最終仕上げ焼鈍後
における2次再結晶粒の粒径さらにはその分布を調整す
ることにより、製品の磁束密度を低下させることなしに
鉄損特性の改善な図ることに関連している。
Detailed Description of the Invention Technical Field The technical content described in this specification regarding a grain-oriented silicon steel sheet with low core loss and its manufacturing method is to improve the grain size and distribution of secondary recrystallized grains after final annealing. By adjusting this, it is possible to improve the iron loss characteristics without reducing the magnetic flux density of the product.

背景技術 方向性けい素鋼板は主として変圧器その他の電気機器の
鉄心として利用され、その磁化特性が優れていること、
とくに鉄損(W1?150で代表される)が低いことが
要求されている。
BACKGROUND TECHNOLOGY Grain-oriented silicon steel sheets are mainly used as cores for transformers and other electrical equipment, and their magnetization properties are excellent.
In particular, low iron loss (represented by W1~150) is required.

このためには、第一に鋼板中の2次再結晶粒の<OO1
>粒方位を圧延方向に高度に揃えることが必要であり、
第二には、最終製品の鋼中に存在する不純物や析出物を
できるだけ減少させる必要がある。かかる配慮の下に製
造される方向性けい素鋼板は、今日まで多くの改善努力
によって、その鉄損値も年を追って改善され、最近では
板厚0.80絹の製品でW17150の値が1.05 
W/′Kgの低鉄損のものが得られている。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet should be <OO1
>It is necessary to highly align grain orientation in the rolling direction,
Secondly, it is necessary to reduce as much as possible the impurities and precipitates present in the final steel product. The iron loss value of grain-oriented silicon steel sheets manufactured under these considerations has been improved over the years through many improvement efforts, and recently, the value of W17150 has increased to 1 for products made of 0.80 silk plate thickness. .05
A product with a low core loss of W/'Kg has been obtained.

しかし、数年前のエネルギー危機を填圧して、電力損失
のより少ない電気機器をめる傾向が一段と強まり、それ
らの鉄芯材料として、さらに鉄損の低い方向性けい素鋼
板が要請されるようになっている。
However, as a result of the energy crisis that occurred a few years ago, the trend toward using electrical equipment with lower power loss became even stronger, and grain-oriented silicon steel sheets with even lower core loss were required as core materials for these devices. It has become.

従来技術とその問題点 ところで、方向性けい素鋼板の鉄損な下げる手法として
は、Si含有量を高める、製品板厚を薄くする、2次再
結晶粒を細かくする、不純物含有量を低減する、そして
(110)[001]方位の2次再結晶粒をより高度に
揃えるなど、主に冶金学的方法が一般に知られているが
、これらの手法は、現行の生産手段の上からはもはや限
界に達していて、これ以上の改善は極めて難しく、たと
え多少の改善が認められたとしても、その努力の割には
鉄損改善の実効は僅かとなるに至っていた。
Conventional technology and its problems By the way, methods to reduce the iron loss of grain-oriented silicon steel sheets include increasing the Si content, reducing the thickness of the product plate, making the secondary recrystallized grains finer, and reducing the impurity content. , and (110)[001] oriented secondary recrystallized grains to a higher degree of alignment.Although metallurgical methods are generally known, these methods are no longer compatible with current production methods. It has reached its limit and it is extremely difficult to make any further improvements, and even if some improvement is recognized, the effectiveness of iron loss improvement is small compared to the efforts made.

たとえば2次再結晶粒を(110)[001)方位に高
度に揃える方法においては、(110)[001]方位
への集積度を極力高めていくと、かかる集積度に依存す
る磁束密度(磁化力1000A/mのときの最大磁束密
度B1oで代表される)は向上するけれども、2次再結
晶粒が次第に粗大化していくため、鉄損は逆に劣化して
いたのである。
For example, in a method of highly aligning secondary recrystallized grains in the (110)[001] orientation, if the degree of accumulation in the (110)[001] direction is increased as much as possible, the magnetic flux density (magnetization Although the maximum magnetic flux density B1o at a force of 1000 A/m improved, the iron loss deteriorated because the secondary recrystallized grains gradually became coarser.

ところで鉄損に対する2次再結晶粒の最適粒径について
は、これまでにも種々の研究がなされていて、平均粒径
l順程度まで粒径な細かくすると効果があること、しか
しながらそれ以上細かくするとかえって鉄損は劣化する
ことが知られている。
By the way, various studies have been conducted on the optimum grain size of secondary recrystallized grains for iron loss, and it has been found that reducing the grain size to the order of the average grain size l is effective, however, if it is made smaller than that, It is known that iron loss actually deteriorates.

こうした2次再結晶粒の微細化技術としては、たとえば
特公昭54−28647号公報において、鋼板表面に2
?に再結晶阻止領域を形成させ、2次再結晶粒の成長を
かかる阻止領域で抑止することによって、実質的に2次
再結晶粒な細粒化させる方法が提案されている。また特
開昭54−71028号公報には、溝付きロールを用い
て冷間圧延をすることによって一次再結晶集合組織を制
御1.、もって2次再結晶粒を細粒化させる手法が開示
されている。
As a technique for refining secondary recrystallized grains, for example, in Japanese Patent Publication No. 54-28647,
? A method has been proposed in which the secondary recrystallized grains are substantially refined by forming a recrystallization blocking region and inhibiting the growth of secondary recrystallized grains in the blocking region. Furthermore, Japanese Patent Application Laid-Open No. 54-71028 discloses that the primary recrystallization texture is controlled by cold rolling using grooved rolls. , a method for refining secondary recrystallized grains is disclosed.

しかしながらこれらの方法はいずれも、鋼板全体の2次
再結晶粒を上述した最適粒径である1fi程度に単に近
づけるだめの手法であり、従ってかかる手法によって2
次再結晶粒の細粒化は達成し得たとしても、一方で細粒
化に伴う磁束密度の低下は免れ得す、このため時として
は鉄損そのものの劣化をも招来していたのである。
However, all of these methods are methods that simply bring the secondary recrystallized grains of the entire steel sheet closer to the above-mentioned optimal grain size of about 1fi, and therefore, these methods
Even if it were possible to achieve finer recrystallized grains, the decrease in magnetic flux density due to grain refinement could not be avoided, and this sometimes led to a deterioration of iron loss itself. .

その他、方向性けい素鋼の製品板の適正な結晶粒径に関
する研究もなされていて、たとえば特開昭59−288
22号公報には、2次再結晶を完了したあとの鋼板表面
の一部に加工歪を付与してから再度焼鈍を施して、加工
歪を加えた領域に約200μ電以下のサイズ(板厚0.
40m以下の場合)の再結晶粒を配列させることKよっ
て鉄損の低い方向性けい素鋼板を得る手法が開示されて
bる。
In addition, research has been conducted on the appropriate grain size of grain-oriented silicon steel product sheets, such as JP-A No. 59-288.
Publication No. 22 discloses that after completing secondary recrystallization, a part of the surface of the steel sheet is subjected to processing strain, and then annealed again, so that the area to which processing strain has been applied has a size of approximately 200μ or less (sheet thickness). 0.
A method for obtaining a grain-oriented silicon steel sheet with low iron loss by arranging recrystallized grains (in the case of 40 m or less) is disclosed.

しかしながら上記の手法では、工程が複雑になる欠点に
加え、加工歪の導入によって再結晶する200μm程度
以下の微細な粒は、本質的には1次再結晶粒である−た
め、製品の方位としては好ましい方位である(110)
(001)からのずれが大きく、磁束密度の低下が避け
られないところにも問題、を残していた。
However, with the above method, in addition to the disadvantage of complicating the process, the fine grains of about 200 μm or less that recrystallize due to the introduction of processing strain are essentially primary recrystallized grains. is the preferred orientation (110)
There remained a problem in that the deviation from (001) was large and a decrease in magnetic flux density was unavoidable.

発明の目的 との発明は、上記の問題を有利に解決するもので、ea
東密度を低下させることなしに鉄損特性の有利な改善を
実現した方向性けい素鋼板およびその製造方法を提案す
ることを目的とする。
The invention with the object of the invention advantageously solves the above problem and ea
The purpose of this paper is to propose a grain-oriented silicon steel sheet and a method for producing the same that realizes an advantageous improvement in iron loss characteristics without reducing the east density.

発明の端緒 この発明は、上記の問題を解決すべく、磁気特性と結晶
粒径との関係につき鋭意研究を重ねた末新たに開発され
たもので、2次再結晶の粒径さらにはその配列に工夫を
加えることによって所期した目的が有利に達成されるこ
との新規知見に立脚する。
Introduction to the Invention This invention was newly developed after extensive research into the relationship between magnetic properties and crystal grain size in order to solve the above problems. It is based on new knowledge that the intended purpose can be advantageously achieved by adding ingenuity to the method.

発明の構成 すなわちこの発明は、最終仕上げ焼鈍を経た含けい素鋼
板の2次再結晶粒につき、その粒度分布を、粒径:1.
0〜2.5頭の結晶粒の個数比率が40〜80%、−万
粒径75.0〜10.0 m +7)結晶粒の個数比兜
が15%以上となる混粒分布としたことを特徴とする鉄
損の低い方向性けい素鋼板である。
The structure of the invention, that is, the present invention has a particle size distribution of secondary recrystallized grains of a silicon-containing steel sheet that has undergone final finish annealing.
A mixed grain distribution in which the number ratio of crystal grains with 0 to 2.5 heads is 40 to 80%, -10,000 grain size 75.0 to 10.0 m +7) The number ratio of crystal grains is 15% or more This is a grain-oriented silicon steel sheet with low iron loss.

またこの発明は、含けい素鋼スラブを熱間圧延して得ら
れた熱延板に、1回または中間焼鈍を挾む2回の冷間圧
延を施して最終板厚としたのち、脱炭・1次再結晶焼鈍
を施し、っbで鋼板表面KMgOを主成分とする焼鈍分
離剤を塗布してから最終仕上焼鈍および上塗りコーティ
ング処理を施す一連の工程よりなる方向性けい素鋼板の
製造方法において、脱炭・1次再結晶焼鈍後、焼鈍分離
剤塗布前の鋼板表面に2次再結晶発現促進剤を離散的に
付着させることにより、2次再結晶粒の粒度分布を、粒
径:1.θ〜2.5uの個数比率が40〜80%、粒径
5.0〜10,0非の結晶粒の個数比庫が15%以上と
することを特徴とする鉄損の低い方向性けい素鋼板の製
造方法である。
In addition, this invention provides a hot rolled sheet obtained by hot rolling a silicon-containing steel slab, which is cold rolled once or twice with intermediate annealing to achieve the final thickness, and then decarburized.・A method for producing grain-oriented silicon steel sheets, which consists of a series of steps of performing primary recrystallization annealing, applying an annealing separator mainly composed of KMgO to the surface of the steel sheet in b, and then performing final annealing and top coating treatment. After decarburization and primary recrystallization annealing, a secondary recrystallization promoter is discretely attached to the surface of the steel sheet before application of an annealing separator, thereby changing the particle size distribution of secondary recrystallized grains to: 1. Directional silicon with low iron loss, characterized in that the number ratio of θ~2.5u is 40-80%, and the number ratio of crystal grains with grain size 5.0-10.0 is 15% or more This is a method for manufacturing steel plates.

この発明において、粒径1.θ〜2.5露の結晶粒の形
成領域としては、鋼板の圧延方向にほぼ直角の向きをな
す連続または非連続の帯状領域であって、しかもその幅
が1.0〜4.0闘でかっ、圧延方向における繰返し間
隔が5〜155mのものがとりわけ好都合である。
In this invention, particle size 1. The formation region of crystal grains of θ ~ 2.5 dew is a continuous or discontinuous band-shaped region that is oriented almost perpendicular to the rolling direction of the steel sheet and whose width is 1.0 to 4.0 mm. Particularly advantageous are repetition intervals of 5 to 155 m in the rolling direction.

以下この発明を由来するに至った実験結果に基き、この
発明を具体的に説明する。
This invention will be specifically explained below based on the experimental results that led to this invention.

さて方向性けい素鋼板の製造過程において、最終板厚1
c冷間圧延された鋼板は有害な炭素を取除くため通常脱
炭焼鈍が施される。かかる焼鈍によって鋼板は、脱炭さ
れると同時に再結晶するので脱炭・1次再結晶焼鈍板と
呼ばれる。またこのとき得られる再結晶粒は、多種、多
様の方位からなってbて、正常粒と呼ばれたり、1次再
結晶粒と呼ばれる。ついで後続の2次再結晶焼鈍におい
て、多種、多様の方位の正常粒のなかから(110)(
0013万位の粒が優先的圧しかも爆発的に成長し、か
くして鋼板中のすべての結晶粒が(110)[OOX]
方位ないしはこれに近い方位の粒となる。かかる異常な
粒成長現象は、正常籾つまり1次再結晶粒が再結晶する
とめう意味で2次再結晶と呼ばれる。この2次再結晶に
おいて、(110)COOL:]方位に近い粒を優先的
に成長させるためには、それ以外の方位の粒の成長を抑
制する必要があり、そのために抑制剤と呼ばれる成分が
鋼中に添加される。かような抑制剤としては、現在、各
種硫化物、セレン化物、窒化物、炭化物ならびKB、8
bおよびTeなどが知られている。
Now, in the manufacturing process of grain-oriented silicon steel sheet, the final sheet thickness is 1
c Cold rolled steel sheets are usually subjected to decarburization annealing to remove harmful carbon. By such annealing, the steel sheet is decarburized and recrystallized at the same time, so it is called a decarburized and primary recrystallization annealed sheet. Further, the recrystallized grains obtained at this time are composed of various types and orientations and are called normal grains or primary recrystallized grains. Then, in the subsequent secondary recrystallization annealing, (110) (
Grains of about 0.013 million grow preferentially and explosively, and thus all grains in the steel sheet become (110) [OOX]
The grains will be in this direction or in a similar direction. Such abnormal grain growth phenomenon is called secondary recrystallization, which means that normal rice grains, that is, primary recrystallized grains, are recrystallized. In this secondary recrystallization, in order to preferentially grow grains close to the (110)COOL:] orientation, it is necessary to suppress the growth of grains in other orientations, and for this purpose a component called an inhibitor is used. Added to steel. Currently, such inhibitors include various sulfides, selenides, nitrides, carbides, and KB, 8
b, Te, etc. are known.

ところで抑制剤として添加された成分のうちSやSe 
、 Nなどが最終製品に残留していると、磁気特性への
悪影響が著しいため、2次再結晶処理に引続き、120
0℃程度の高温H2雰囲気中で焼鈍を施して、上記の如
き残留不純物を鋼中から除去する。それ故かかる焼鈍は
純化焼鈍と呼ばれる。
By the way, among the components added as inhibitors, S and Se
If , N, etc. remain in the final product, it will have a significant negative effect on the magnetic properties, so following the secondary recrystallization treatment, 120%
Annealing is performed in a H2 atmosphere at a high temperature of about 0° C. to remove the above-mentioned residual impurities from the steel. Such annealing is therefore called purification annealing.

また2次再結晶焼鈍と純化焼鈍とは通常連続して行なわ
れるので、両者をまとめて最終仕上げ焼鈍と呼ぶことも
ある。
Furthermore, since secondary recrystallization annealing and purification annealing are usually performed continuously, they are sometimes collectively referred to as final finish annealing.

さて脱炭・1次再結晶焼鈍板の1次再結晶粒の粒径は、
通常zOμm程度であるが、引続く2次再結晶焼鈍にお
いて上記した抑制剤の抑制効果が不十分な場合には、正
常粒が粒成長を起こす結果、所期1.’c2次再結晶を
惹起し得す、このため最終仕上げ焼鈍後の鋼板は、数百
社程度までの大きさのいわゆる正常籾で構成されること
になり、製品の磁気特性が著しく劣化することになる。
Now, the grain size of the primary recrystallized grains of the decarburized and primary recrystallized annealed plate is:
Usually, it is about zOμm, but if the suppressing effect of the above-mentioned inhibitor is insufficient in the subsequent secondary recrystallization annealing, the normal grains will grow, resulting in the expected 1. 'C Secondary recrystallization may occur, and as a result, the steel plate after final annealing will be composed of so-called normal grains of up to several hundred sizes, and the magnetic properties of the product will deteriorate significantly. become.

発明者らは、上記のような状況を定量的に把握するため
、Slを84重量%(以下単に%で示す)含有する方向
性けい素鋼板につき、その製造条件を種々に変化させて
、板厚0.80闘の製品の結晶粒径を意図的に変え、得
られた結晶粒の平均粒径と磁気特性(ω束密度Bloお
よび鉄損W17150)との関係について調査した。そ
の結果を第1図a。
In order to quantitatively understand the above-mentioned situation, the inventors developed a grain-oriented silicon steel sheet containing 84% by weight of Sl (hereinafter simply expressed as %) by variously changing the manufacturing conditions. The crystal grain size of a product with a thickness of 0.80 mm was intentionally changed, and the relationship between the average grain size of the obtained crystal grains and magnetic properties (ω flux density Blo and iron loss W17150) was investigated. The results are shown in Figure 1a.

bKO印で示す。Indicated by bKO mark.

第1図から明らかなように、平均結晶粒径の増加ととも
に、BI3値は単純に増加するが、鉄損値W17150
は次第に減少し、粒径1〜811111で極小値を示し
たのち再び増加する傾向にある。従って鉄損に対しては
、平均粒径でいえば、従来から知られているように1〜
8困が最適値となる。
As is clear from Fig. 1, as the average grain size increases, the BI3 value simply increases, but the iron loss value W1715
gradually decreases, reaches a minimum value at particle sizes of 1 to 811111, and then tends to increase again. Therefore, in terms of iron loss, in terms of average particle size, as is known from the past,
The optimum value is 8 troubles.

ところで第1図によれば、平均粒径が0.5〜1.0朋
の範囲で、BI3値ならびにW1?150値とも急激に
変化しているが、この現象は、鋼板を構成する結晶粒に
つき、平均粒径0.5〜1.0闘を境として、それより
細粒側では正常粒、一方粗粒側では2次再結晶粒が主体
となっていることを示している。すなわち平均粒径1.
Om以上では、2次再結晶粒の発現によって製品の(1
1O)〔001〕方位への集積度が高まり、BI3値の
急激な上昇と鉄損の急激な低減がもたらされるわけであ
る。
By the way, according to Fig. 1, both the BI3 value and the W1?150 value change rapidly in the average grain size range of 0.5 to 1.0 mm, but this phenomenon is caused by the change in the crystal grains that make up the steel sheet. The results show that, with an average grain size of 0.5 to 1.0, normal grains are predominant on the finer grain side, while secondary recrystallized grains are predominant on the coarser grain side. That is, the average particle size is 1.
At temperatures above Om, the appearance of secondary recrystallized grains causes the (1
The degree of integration in the 1O) [001] direction increases, leading to a rapid increase in the BI3 value and a rapid reduction in iron loss.

次に発明者らは、鋼板における結晶粒の粒度分布とその
配列とについて検討を加えた。実験は、上掲した8、2
%S1含有驚旬方向性けい素鋼板を用いて行ない、一つ
は、特開昭56−180454号公報に開示された手法
に従って、第1図中に○印で示した製品板に局部的に歪
を加えたのち再焼鈍を施すことにより、鋼板表面に平均
粒径約0.1顛の大きさの再結晶粒を圧延方向に対して
直角方向に配列させ、しかもこの配列を圧延方向に対す
る繰返しピッチ12mの間隔で繰返した。得られた結果
を第1図にΔ印で示す。また他の一つは、脱炭・1次再
結晶焼鈍板の表面に微細なSrO粉を付着させることに
よって、製品板の2次再結晶組織に粒径1.0〜2.5
g+mの大きさの2次再結晶粒群からなる領域を設けた
。この領域は、縮約8mで、圧延方向に対し直角方向に
連続または断続して連なる帯状の領域であって、圧延方
向に対して間隔12顛の繰返しピッチをもつ。得られた
結果を、第1図に◎印で示す。なお脱炭・1次再結晶焼
鈍板の表面に微細なSrO粉を付着させることによって
、製品板に粒径1.θ〜2.5寵の細かい2次再結晶粒
が形成される理由は、かかるSrO粉を付着させた個所
は2次再結晶焼鈍において、2次再結晶粒の発現が早め
られ、しかもその成長速度は大きくはないので、結果的
に細かい2次再結晶粒として鋼板中に残存することにな
るためと考えられる。・そして2次再結晶粒の成長速度
が遅いわけは、その方位が(110)COOL)方位か
ら若干ずれているためではないかと推察される。
Next, the inventors investigated the grain size distribution and arrangement of crystal grains in a steel sheet. The experiment was carried out in 8.2 listed above.
%S1-containing grain-oriented silicon steel sheet, and one was carried out locally on the product sheet indicated by the circle in FIG. By applying strain and then reannealing, recrystallized grains with an average grain size of approximately 0.1 square meters are arranged on the surface of the steel sheet in a direction perpendicular to the rolling direction, and this arrangement is repeated in the rolling direction. The test was repeated at a pitch of 12 m. The obtained results are shown in FIG. 1 by the symbol Δ. Another method is to attach fine SrO powder to the surface of the decarburized and primary recrystallized annealed plate, thereby changing the secondary recrystallization structure of the product plate to a grain size of 1.0 to 2.5.
A region consisting of a group of secondary recrystallized grains with a size of g+m was provided. This region is a strip-shaped region having a contraction length of 8 m and continuous or discontinuously extending in a direction perpendicular to the rolling direction, and has a repeating pitch of 12 frames in the rolling direction. The obtained results are shown in FIG. 1 with a mark ◎. By attaching fine SrO powder to the surface of the decarburized/primary recrystallized annealed plate, the product plate has a grain size of 1. The reason why fine secondary recrystallized grains of θ~2.5 mm are formed is that the appearance of secondary recrystallized grains is accelerated in the areas to which such SrO powder is attached during secondary recrystallization annealing, and the growth of the secondary recrystallized grains is accelerated. This is thought to be because the speed is not high, so as a result, fine secondary recrystallized grains remain in the steel sheet. -The reason why the growth rate of secondary recrystallized grains is slow is presumed to be because their orientation is slightly deviated from the (110)COOL) orientation.

さて第1図に示した結果から明らかなように、従来法に
従い約100μmの大きさの再結晶粒を鋼板表面に配列
させた例(△印)では確かに、平均粒径7〜20關の範
囲において大きな鉄損低減効果が見られたが、その値は
○印の最適結晶粒径の製品と同程度にすぎず、一方その
反面で磁束密度(BI3値)についてはかなりの低下を
示した。
Now, as is clear from the results shown in Figure 1, in the example (△ mark) in which recrystallized grains with a size of about 100 μm are arranged on the steel plate surface according to the conventional method, it is true that the average grain size is about 7 to 20 μm. Although a large iron loss reduction effect was seen in the range, the value was only about the same as that of the product with the optimum grain size marked with ○, while on the other hand, the magnetic flux density (BI3 value) showed a considerable decrease. .

これに対し、1.0〜2.5 mの細かい2次再結晶群
からなる帯状領域を配置したもの(◎印)は、その鉄損
改善効果は極めて大きく、従来の最良値をさらに凌ぐ成
果が得られ、しかも磁束密度(B10値)の低下は図示
したとおりほとんどなかった。
On the other hand, the one in which a band-shaped region consisting of fine secondary recrystallization groups of 1.0 to 2.5 m is arranged (◎ mark) has an extremely large iron loss improvement effect, and the result is even better than the conventional best value. was obtained, and there was almost no decrease in magnetic flux density (B10 value) as shown in the figure.

すなわち結晶粒径の異なる2次再結晶粒を圧延方向に対
して交互に配列することによって、磁束密度の劣化を招
くことなしに従来に比べてより一層低鉄損の方向性けい
素鋼板が得られることが判明したのである。ここに磁束
密度の劣化を招かない理由は、鋼板を構成する結晶粒は
、細粒であるとはいうものの、2次再結晶粒であるので
(110)[0013方位からのずれは小さいためであ
ると考えられる。
In other words, by arranging secondary recrystallized grains with different grain sizes alternately in the rolling direction, a grain-oriented silicon steel sheet with lower iron loss than before can be obtained without deteriorating the magnetic flux density. It turned out that it was possible. The reason why this does not cause deterioration of magnetic flux density is that although the crystal grains that make up the steel sheet are fine, they are secondary recrystallized grains, so the deviation from the (110) [0013 orientation is small. It is believed that there is.

第2図a、bに、第11Mに◎印で示した製品のうち平
均粒径が8.98mのものの、結晶粒径の度数分布とマ
クI2粗織をそれぞれ示す。第2図すにおいてAで示し
た領域(幅8騙)では、1.0〜L′5so+の結晶粒
の個数が約90%を占め、一方それ以外のBで示した領
域(幅9朋)では粒径5.0〜7.5鴎の結晶粒の個数
が約60%を占めていた。
FIGS. 2a and 2b show the frequency distribution of crystal grain size and the coarse weave of Mac I2, respectively, for the product marked with ◎ in No. 11M, which has an average grain size of 8.98 m. In the region marked A in Figure 2 (width 8 squares), the number of crystal grains of 1.0 to L'5so+ accounts for approximately 90%, while the other region marked B (width 9 squares) In this case, the number of crystal grains having a grain size of 5.0 to 7.5% accounted for about 60%.

なお領域A、Bを区別しない場合は、粒径1.0〜2・
5龍の結晶粒の個数比率は約60%、5.0〜7.5 
IIIの結晶粒のそれは約17%であった。
In addition, when areas A and B are not distinguished, the particle size is 1.0 to 2.
The number ratio of 5 dragon crystal grains is approximately 60%, 5.0 to 7.5
That of the III grains was about 17%.

これに対し、第1図において○印で示した従来材のうち
、平均粒径が3.89 朋の製品について同様の調査を
行ったところ、結晶粒径の度数分布は、第8図りに示し
たように粒径2.5〜5.0属tの結晶粒が最も多く個
数にして全体の約70%を占めていて、これよりも細粒
側になるに従い、なた粗粒側になるに従って数はそれぞ
れ減少する傾向にあった。
On the other hand, when we conducted a similar investigation on our product, which has an average grain size of 3.89 among the conventional materials marked with a circle in Figure 1, the frequency distribution of the crystal grain size is shown in Figure 8. As shown above, crystal grains with a grain size of 2.5 to 5.0 t are the largest number, accounting for about 70% of the total, and as the grains become finer than this, the grains become coarser. The numbers tended to decrease accordingly.

このように従来製品では、2次再結晶粒の粒度分布は整
粒分布を呈していたのに対し、この発明に従う製品では
、2次鵠晶粒の粒度分布が混粒分布を呈しているところ
に大きな特徴がある。
In this way, in the conventional product, the particle size distribution of the secondary recrystallized grains exhibits a regular distribution, whereas in the product according to the present invention, the particle size distribution of the secondary recrystallized grains exhibits a mixed distribution. has major characteristics.

ここで結晶粒径および平均粒径の計算方法について述べ
ると、第2および8図においては、どちらの結晶粒も2
次再結晶粒であるので、0.81)mの板厚の製品にお
いては、結晶粒が板厚を貫通している。したがって、鋼
板の片面側についてのみ計算すれば十分である。いま、
ひとつの結晶粒の面積をS mBとすると、この結晶粒
径DmはD=zJで計算できる。次に、多結晶粒の平均
粒径は総面積を八−とし、そこに含まれる結晶粒の計算
される。
Now, to explain how to calculate the crystal grain size and average grain size, in Figures 2 and 8, both crystal grains are
Since they are secondary recrystallized grains, in products with a plate thickness of 0.81) m, the crystal grains penetrate through the plate thickness. Therefore, it is sufficient to calculate only one side of the steel plate. now,
If the area of one crystal grain is S mB, the crystal grain diameter Dm can be calculated as D=zJ. Next, the average grain size of the polycrystalline grains is calculated by taking the total area as 8- and the crystal grains contained therein.

なお第2図すに示した領域内での粒度分布の算出方法は
、領域AとBに完全に含まれる粒はそれぞれ領域A、B
に属するとして数え、一方領域AとBにまたがる粒につ
いては、境界線によって2分割された粒の8つの面積の
うち、大きな面積を有する側の領域に属するものとして
、数えた。
Note that the method for calculating the particle size distribution within the area shown in Figure 2 is that particles completely contained in areas A and B are classified into areas A and B, respectively.
On the other hand, grains spanning regions A and B were counted as belonging to the region with the larger area among the eight areas of the grain divided into two by the boundary line.

次に、鉄損改善効果に関し、2次再結晶粒の粒度分布が
混粒タイプである点と粒径1.0〜2.5諒の2次再結
晶群が帯状に配列されている点とで、どちらがより本質
的であるを見極めるべく、以下に述べる実験を行った。
Next, regarding the iron loss improvement effect, the particle size distribution of the secondary recrystallized grains is a mixed grain type, and the secondary recrystallized groups with a grain size of 1.0 to 2.5 grains are arranged in a band shape. So, in order to find out which one is more essential, we conducted the experiment described below.

′すなわち脱炭・1次再結晶焼鈍板の表面に、微細粒を
得るべく微細なSrO粉の塗布を行うに際し、該SrO
粉を斑点状に散布し、その後の処理は前述の例と同様に
して行ない製品とした。得られた製品の2次再結晶粒の
度数分布およびマクロ組織を第4図a、bにそれぞれ示
す。
'That is, when applying fine SrO powder to the surface of the decarburized and primary recrystallization annealed plate to obtain fine grains, the SrO
The powder was scattered in spots, and the subsequent treatment was carried out in the same manner as in the previous example to obtain a product. The frequency distribution and macrostructure of the secondary recrystallized grains of the obtained product are shown in FIGS. 4a and 4b, respectively.

第4図すから明らかなように、この製品板では粒径1.
0〜2.5mの2次再結晶粒の領域が斑点状に点在し、
その粒度分布は1.0〜2.5mmの粒径の個数が一番
多くて約64%、一方5.0〜7.5駆の粒径の個数が
二番目に多くて約20%、そして他のものはいずれも1
0%以下であって、前掲第2図に示した例とほぼ同一の
混粒タイプの製品が得られた。
As is clear from Figure 4, this product plate has a grain size of 1.
Regions of secondary recrystallized grains of 0 to 2.5 m are scattered in spots,
Regarding the particle size distribution, the number of particles with a diameter of 1.0 to 2.5 mm is the largest at about 64%, while the number of particles with a diameter of 5.0 to 7.5mm is the second largest at about 20%, and All others are 1
0% or less, and a mixed grain type product almost the same as the example shown in FIG. 2 above was obtained.

さてここで、上掲した第2〜4図に示した8種類の度数
分布ならびにマクロ組織になる製品板の磁気特性につb
ては、下31に示したとおりであった。
Now, let's take a look at the eight types of frequency distributions shown in Figures 2 to 4 above, as well as the magnetic properties of the product sheets with macrostructures.
The results were as shown in 31 below.

表1 表1から明らかなように、微細な2次再結晶群を斑点状
に点在させた場合でも、圧延と直角方向に帯状に分布さ
せた第2図に示した例には及ばないにしても、鉄損低域
に関してかなりの効果があることが判明した。
Table 1 As is clear from Table 1, even when fine secondary recrystallization groups are scattered in spots, they are still not as good as the example shown in Figure 2, in which they are distributed in a band shape in the direction perpendicular to the rolling direction. However, it was found that it has a considerable effect on low iron loss.

ここに磁束密度の劣化を伴うことのない鉄損の改善につ
いては、微細な2次再結晶群の配置が本質的要因である
のではなく、その粒度分布に大きな意味があり、たとえ
ば第2図および第4図に示したよりな混粒タイプにする
ことが重要であるととぶ究明されたのである。
Regarding the improvement of iron loss without deterioration of magnetic flux density, the essential factor is not the arrangement of fine secondary recrystallized groups, but the particle size distribution has a great meaning. For example, as shown in Figure 2. It was quickly determined that it was important to use a more mixed grain type as shown in Figure 4.

・ さてこの発明における方向性けい素鋼板の成分につ
しては、Slを含有することが不可欠であるが、その量
が2.0%未満では鉄損の劣化が著しく、一方4.0%
を超えると冷間加工性が劣化するきらいにあるので、S
i含有量は2.0〜4.0%とするのが望ましい。また
その他の成分につbては、通常方向性けい素鋼板の成分
として用いられるものであれば、従来公知のいずれの成
分をも使用できる。
- Now, regarding the ingredients of the grain-oriented silicon steel sheet in this invention, it is essential to contain Sl, but if the amount is less than 2.0%, the iron loss will deteriorate significantly, while if the amount is less than 2.0%, the iron loss will be significantly deteriorated.
If it exceeds S, cold workability is likely to deteriorate.
The i content is preferably 2.0 to 4.0%. As for the other components (b), any conventionally known components can be used as long as they are normally used as components of grain-oriented silicon steel sheets.

゛また鋼板の板厚は、0.15〜0.5鰭程度が好まし
い。というのはO,15m未満では、2次再結晶が困難
であり、一方0.5flを超えると鉄損の改善効果が乏
しく笑声的でないからである。
゛The thickness of the steel plate is preferably about 0.15 to 0.5 fins. This is because if it is less than 0.15 m, secondary recrystallization is difficult, whereas if it exceeds 0.5 fl, the effect of improving iron loss is poor and it is not funny.

さらに鋼板を構成する結晶粒は、そのtlとんどが粒径
1.0i以上で、しかも(110)[001]方位から
のずれが小さい2次再結晶粒であることが必要である。
Further, the crystal grains constituting the steel plate need to be secondary recrystallized grains whose tl has a grain size of 1.0i or more and whose deviation from the (110)[001] orientation is small.

粒径が1.0非に満たないと(110)(Q 01 )
方位からのずれが大きく、極端な場合は正常粒のまま残
存して鋼板の磁束密度ひいては鉄損を甚しく害すること
になるからである。
If the particle size is less than 1.0 (110) (Q 01 )
This is because the deviation from the orientation is large, and in extreme cases, normal grains may remain, seriously impairing the magnetic flux density of the steel sheet and ultimately the iron loss.

ここにおいて、鋼板を構成する結晶粒の粒度分布が、混
粒タイプであること、すなわちイ固数比率にして、1.
0〜2.6 mの粒径の2次再結晶粒カー40〜80%
好ましくは60〜70%でカニつ、5.0〜10.0 
mの粒径の2次再結晶粒力″−16%以上であることが
必要とされる。
Here, the grain size distribution of the crystal grains constituting the steel sheet is a mixed grain type, that is, the solid number ratio is 1.
40-80% secondary recrystallized grains with a grain size of 0-2.6 m
Preferably 60-70% crab meat, 5.0-10.0
It is required that the secondary recrystallization grain force of the grain size of m is -16% or more.

というのは粒径1.0〜2.5Hの2次再結晶粒の個数
比巡が40%未満では鉄損低減効果に乏しく、一方80
%を超える場合や、粒径5.0〜10.0mmの結晶粒
の個数比高が15%に満たない場合に(ま、粗粒側の個
数比嘉が小さくなって磁束腎度の劣イ1を招くからであ
る。
This is because if the number ratio of secondary recrystallized grains with a grain size of 1.0 to 2.5H is less than 40%, the iron loss reduction effect is poor;
%, or when the number ratio of crystal grains with a grain size of 5.0 to 10.0 mm is less than 15% (well, the number ratio on the coarse grain side becomes small and the magnetic flux density is poor. This is because it invites

なお粒径が2.5鰭を超え5.0m+a未満の結晶粒の
個数死出は、 5.0 = 10.011IIの結晶粒
のそれよりも小さい方が好ましい。
It is preferable that the number of dead crystal grains having a grain size exceeding 2.5 fins and less than 5.0 m+a is smaller than that of crystal grains having a diameter of 5.0 = 10.011 II.

このように混粒タイプの粒度分布とすることによって、
製品の磁束密度を低下させることなく、鉄損を低減する
ことが可能となるわけであるカt、かかる混粒タイプの
2次再結晶組織とする丸めには、脱炭・1次再結晶焼鈍
板に、2次再結晶焼鈍に扼立ち、2次再結晶の発現を促
進するようなも°のを付着させればよく、かような2次
再結晶発現促進剤としてはSrO粉の他に、Mo OB
やSnO。
By creating a mixed grain type particle size distribution in this way,
This makes it possible to reduce iron loss without reducing the magnetic flux density of the product, and rounding to create a mixed grain type secondary recrystallization structure requires decarburization and primary recrystallization annealing. What is necessary is to attach to the plate something that will stand up to the secondary recrystallization annealing and promote the development of secondary recrystallization.In addition to SrO powder, such a secondary recrystallization promoter can be used. , Mo OB
and SnO.

SnOs粉がとりわけ有利に適合する。SnOs powder is particularly advantageously suited.

これらの薬剤により、2次再結晶の発現が促進される理
由は、2次再結晶焼鈍中に、これらの薬剤が、鋼板表層
地峡中に分散している5tO2籾子の存在形態を変える
ため、2次再結晶粒の発現音での時間(潜伏時間と呼ば
れる)が短縮されるからである。これらの薬剤により、
早期に発現した2次再結晶粒の成長速度は通常の2次再
結晶粒の成長速度に比して小さいため、結果的に1.0
〜2.5mの細粒として鋼板に残存する。この成長速度
が遅い理由は、その方位が(110)〔001〕方位か
ら若干ずれているためではないかと推察される。
The reason why these agents promote the development of secondary recrystallization is that during secondary recrystallization annealing, these agents change the form of the 5tO2 rice grains dispersed in the isthmus of the surface layer of the steel plate. This is because the time (referred to as latent time) during which the secondary recrystallized grains appear is shortened. With these drugs,
Since the growth rate of secondary recrystallized grains that appeared early is smaller than the growth rate of normal secondary recrystallized grains, the result is 1.0
It remains on the steel plate as fine grains of ~2.5 m. It is presumed that the reason for this slow growth rate is that the orientation is slightly deviated from the (110)[001] orientation.

かかる2次再結晶発現促進剤を付着させた領域は、2次
再結晶の発現が早められる結果、1.0〜2.5闘程度
の2次再結晶粒を最終板厚後の鋼板にもたらし、一方2
次再結晶発現促進剤未付着領域では主に5.0〜10.
0*i+の結晶粒が発現するので、所期した混粒タイプ
の2次再結晶組織が得られることになるのである。
The area to which such a secondary recrystallization promoter is attached accelerates the onset of secondary recrystallization, resulting in secondary recrystallized grains of about 1.0 to 2.5 mm in the steel sheet after the final thickness. , while 2
The areas where the next recrystallization promoter is not attached are mainly 5.0 to 10.
Since 0*i+ crystal grains are developed, the desired mixed grain type secondary recrystallized structure is obtained.

ところで上記した混粒タイプにおいて、1.0〜2.5
 txの2次再結晶粒群は、圧延方向に対し直角方向に
帯状にそれも繰返して分布させることが、鉄損低域に関
し一層の効果が得られる。このとき粒径1.0〜L5m
の結晶粒群の帯状領域は、幅1.0〜4.0m+aが好
ましく、また繰返し間隔は5〜15v+mが望ましい。
By the way, in the mixed grain type mentioned above, 1.0 to 2.5
If the secondary recrystallized grain group of tx is repeatedly distributed in a band-like manner in a direction perpendicular to the rolling direction, a further effect in reducing iron loss can be obtained. At this time, the particle size is 1.0~L5m
The width of the band-like region of the crystal grain group is preferably 1.0 to 4.0 m+a, and the repeating interval is preferably 5 to 15 m+m.

そしてかかる鋼板の表面は、フォルステライト(M、9
 a S x O4)からなるグラス被膜を有し、さら
にその上には、層間抵抗などの要請から必要により、上
塗りコーテイング膜をそなえる場合もある。上塗りコー
テイング膜には、通常の絶縁被膜のほか、鋼板に張力を
付与するタイプのコーテイング膜をも含む。
The surface of the steel plate is forsterite (M, 9
It has a glass film made of a S x O4), and may further have an overcoating film thereon if necessary due to requirements such as interlayer resistance. The top coating film includes not only a normal insulating film but also a type of coating film that applies tension to the steel plate.

実施例 実施例 I Si : 8.2%を含有するけい素鋼素材を、常法に
従って厚み0.80mの冷延鋼板とし、ついで脱炭・1
次再結晶焼鈍したのち鋼板を2分割し、一方はそのまま
MgOを主成分とする焼鈍分離剤を塗布し、2次再結晶
焼鈍と1200°C,5時間の純化焼鈍とからなる最終
仕上げ焼鈍を施して比較例とした。また他のひとつは鋼
板表面に、平均粒径500AのSrO粉を、付着幅2龍
で圧延方向と直角方向に帯状に、しかも圧延方向におい
て、間隔7fiで繰返し付着させたのち、焼鈍分離剤を
その上から塗布してから比較例と同じ要領で最終仕上げ
焼鈍を施して製品とした。
Examples Example I A silicon steel material containing 8.2% Si was made into a cold-rolled steel plate with a thickness of 0.80 m according to a conventional method, and then decarburized and 1
After the second recrystallization annealing, the steel plate is divided into two parts, one of which is coated with an annealing separator containing MgO as the main component, and final finish annealing consisting of a second recrystallization annealing and a purification annealing at 1200°C for 5 hours is carried out. This was used as a comparative example. In the other method, SrO powder with an average particle size of 500A is repeatedly deposited on the surface of a steel plate in a band shape in a direction perpendicular to the rolling direction with a deposition width of 2 mm, and at an interval of 7 fi in the rolling direction, and then an annealing separator is applied. After coating on top of this, final finish annealing was performed in the same manner as in the comparative example to produce a product.

その結果、後者の実施例においては、SrO粉を付着さ
せた領域において粒径1.0〜2.5罪の細かい2次再
結晶粒が帯状に出現したが、比較例においては粒径2.
5〜5.Owmの2次再結晶粒が最も多かった。これら
の粒径分布を測定した結果は、第5図に示したように、
比較例では整粒分布となったが、実施例では、混粒分布
を示し、粒径1.0〜2.5m+aの結晶粒の個数比率
は、72.8%、一方5.0〜10.Omの粒径の個数
比率は15.6%であつた。
As a result, in the latter example, fine secondary recrystallized grains with a grain size of 1.0 to 2.5 mm appeared in a band shape in the area to which the SrO powder was attached, whereas in the comparative example, fine secondary recrystallized grains with a grain size of 2.5 mm appeared.
5-5. Owm had the most secondary recrystallized grains. The results of measuring these particle size distributions are as shown in Figure 5.
The comparative example showed a regular grain distribution, but the example showed a mixed grain distribution, and the number ratio of crystal grains with a grain size of 1.0 to 2.5 m+a was 72.8%, while 5.0 to 10. The number ratio of Om particle size was 15.6%.

そしてこれらの磁気物性は、実施例力1B = 1.9
i T ; W17150 = 0.985 W/kl
? テあルノ0 に対し、比較例は、B1o= 1.QO8T ;W 1
?150 = 1.078 W/kl?であった。
And these magnetic properties are as follows: Example force 1B = 1.9
i T ; W17150 = 0.985 W/kl
? In contrast to Tearuno 0, the comparative example has B1o=1. QO8T ; W 1
? 150 = 1.078 W/kl? Met.

実施例 2 Si : 8.2%を含有するけい素鋼素材を、常法に
従って厚み0.28mの冷延鋼板としたのち、脱炭・1
次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布するに際
し、塗布前に、鋼板表面に平均粒径101ooo’hの
MoOB粉を径8uの斑点状に散布した後、焼鈍分離剤
を塗布した。
Example 2 A silicon steel material containing 8.2% Si was made into a cold-rolled steel plate with a thickness of 0.28 m according to a conventional method, and then decarburized and 1
When performing the next recrystallization annealing and then applying an annealing separator, MoOB powder with an average particle size of 101 ooo'h was sprinkled on the surface of the steel plate in spots of 8u in diameter before application, and then the annealing separator was applied.

しかるのち2次再結晶焼鈍ついで1200”c。Then, secondary recrystallization annealing was performed to 1200"c.

5時間の純化焼鈍を施した。Purification annealing was performed for 5 hours.

なお比較のため、常法に従いMgOを主成分とする焼鈍
分離剤のみを塗布し、2次再結晶焼鈍ついで1200”
さ、5時間の純化焼鈍を施し、比較例とした。
For comparison, only an annealing separator containing MgO as the main component was applied according to a conventional method, and secondary recrystallization annealing was performed at 1200".
A comparative example was then subjected to purification annealing for 5 hours.

この結果、実施例においては、M2O3粉を付着さ誓た
領域において1.0〜2.5龍の細かい2次再結晶粒の
群が斑点状に出現したが、比較例においては2.5〜5
.0mの2次再結晶粒が最も多かった。
As a result, in the example, a group of fine secondary recrystallized grains of 1.0 to 2.5 grains appeared in spots in the area where the M2O3 powder was attached, but in the comparative example, a group of fine secondary recrystallized grains of 1.0 to 2.5 grains appeared in spots. 5
.. The largest number of secondary recrystallized grains was 0 m.

これらの粒径分布を測定した結果は、第6図に示したよ
うに比較例では整粒分布となったが、実施例では混粒分
布を示し、1.0〜2.5罪の粒径の個数比率は71.
4%;5.θ〜10.0 flの粒径の個数比率は19
.7%であった。
As shown in Figure 6, the results of measuring these particle size distributions showed that the comparative examples had a regular particle distribution, but the examples showed a mixed particle distribution, with particle sizes ranging from 1.0 to 2.5. The number ratio is 71.
4%; 5. The number ratio of particles with a diameter of θ ~ 10.0 fl is 19
.. It was 7%.

そしてこれらの磁気特性は実施例が B□。= 1.885 T ; W 1?150 = 
0.856 W/に9であるのに対し、比較例はB1o
= ]、、889 T 。
These magnetic properties are B□ in Example. = 1.885 T; W 1?150 =
9 to 0.856 W/, while the comparative example has B1o
= ],,889 T.

W 1?/ltO= 0.937 W/kl?であった
W 1? /ltO=0.937 W/kl? Met.

実施例 8 Si : 8.0%を含有するけい素鋼素材を、常法に
従って厚み0.8(1mの冷延鋼板としたのち、脱炭・
1次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布するに
際し、塗布前に、鋼板表面に、SnO粉を径z露の斑点
状に散布した後、焼鈍分離剤を塗布した。
Example 8 A silicon steel material containing 8.0% Si was made into a cold-rolled steel plate with a thickness of 0.8 (1 m) according to a conventional method, and then decarburized and
When performing primary recrystallization annealing and then applying an annealing separator, SnO powder was sprinkled on the surface of the steel sheet in spots with a diameter of Z, and then the annealing separator was applied.

しかるのち2次再結晶焼鈍ついで1200℃。Then, secondary recrystallization annealing was performed at 1200°C.

5時間の純化焼鈍を施した。Purification annealing was performed for 5 hours.

なお比較のため、常法に従いMgOを主成分とする焼鈍
分離剤のみを塗布し、2次再結晶焼鈍、ついで1200
℃、5時間の純化焼鈍を施し、比較例とした。
For comparison, only an annealing separator containing MgO as the main component was applied according to a conventional method, followed by secondary recrystallization annealing and then 1200
A comparative example was obtained by performing purification annealing at ℃ for 5 hours.

この結果、実施例においては、SnO粉を付着させた領
域において、1.0〜2.5闘の細かい2次再結晶粒の
群が斑点状に出現したが、比較例においては2.5〜5
.0謔の2次再結晶粒が最も多かった。
As a result, in the example, a group of fine secondary recrystallized grains of 1.0 to 2.5 grains appeared in spots in the area to which the SnO powder was attached, but in the comparative example, a group of fine secondary recrystallized grains of 1.0 to 2.5 grains appeared in spots. 5
.. The number of secondary recrystallized grains was the largest.

粒度分布の個数比率を算出したところ、実施例では、1
.0〜2.5 mの粒径の個数比率は68.0%:5.
0〜10.Omttの粒径の個数比率は16.8%であ
った。これに対し、比較例では、−個数比率は各々9.
8%; 18.5%であり、2.5〜5.0難の粒径の
個数比率は65%であった。
When the number ratio of particle size distribution was calculated, in the example, 1
.. The number ratio of particles with a diameter of 0 to 2.5 m was 68.0%:5.
0-10. The number ratio of Omtt particle size was 16.8%. On the other hand, in the comparative example, the -number ratio is 9.
8%; 18.5%, and the number ratio of particle sizes of 2.5 to 5.0 was 65%.

そして、これらの磁気特性は実施例が Blo= 1.915 T ; Wl!+150 = 
0.997 W/に#であるのに対し1、比較例はBl
o= 1.920 T ;W 1?150 = x、0
62 W/に&であった。
These magnetic properties of the example are Blo=1.915 T; Wl! +150 =
0.997 W/#, whereas the comparative example is Bl
o = 1.920 T ; W 1?150 = x, 0
It was & at 62 W/.

発明の効果 かくしてこの発明によれば、磁束密度を劣化させること
なしに、従来に比べて鉄損特性が格段に優れた方向性け
い素鋼板を得ることができる。
Effects of the Invention Thus, according to the present invention, it is possible to obtain a grain-oriented silicon steel sheet with much better iron loss characteristics than the conventional one without deteriorating the magnetic flux density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはそれぞれ、平均粒径とB□。およヒW 
1 ’I /60との関係を示したグラフ、第z図a、
bはそれぞれ、この発明に従う方向性けい素鋼板の粒度
分布およびマクロ組織を示した模式図、 第8図a、bはそれぞれ、従来の方向性けい素鋼板の粒
度分布およびマクロ組織の模式図、第4図a、bはそれ
ぞれ、この発明の他の実施例の粒度分布およびマクロ組
織を示した模式図、第5図および第6図はいずれも、こ
の発明と従来例の粒度分布をそれぞれ比較して示したグ
ラフである。 第2図 (a) (b) 第3図 (a) 0.5 10 2.5 50 75 10 15鮎晶籾
任(伽町 (b) 第4図 (a) (tj) 第5図 第6図 趙易社掻(句帽)
Figure 1 a and b are the average particle size and B□, respectively. Oyohi W
1 'Graph showing the relationship with I/60, Figure Z a,
b is a schematic diagram showing the grain size distribution and macrostructure of a grain-oriented silicon steel sheet according to the present invention, FIGS. 8a and b are schematic diagrams of the grain size distribution and macrostructure of a conventional grain-oriented silicon steel sheet, respectively; Figures 4a and 4b are schematic diagrams showing the particle size distribution and macrostructure of other embodiments of the present invention, and Figures 5 and 6 compare the particle size distributions of the present invention and conventional examples, respectively. This is a graph shown as follows. Figure 2 (a) (b) Figure 3 (a) 0.5 10 2.5 50 75 10 15 Ayu Shokinin (Kayacho (b) Figure 4 (a) (tj) Figure 5 6 Figure Zhao Yisheki (haiku hat)

Claims (1)

【特許請求の範囲】 1 最終仕上げ焼鈍を経た含けい素鋼板の2次再結晶粒
の粒度分布につき、粒径:1.0〜2.5 mの結晶粒
の個数比率が40〜80%、一方粒径5.0〜10.O
m+の結晶粒の個数比率が15%以上である混粒分布に
なることを特徴とする鉄損の低い方向性けい素鋼板。 L 粒径:1.0〜2.5Wの結晶粒の形成領域が、鋼
板の圧延方向にほぼ直角の向きをなす連続または非連続
の帯状領域であって、しかもかかる帯状領域の幅が1.
0 = 4.0 mでかつ、圧延方向における繰返し間
隔が5〜15鴎の範囲である特許請求の範囲第1項記載
の方向性けい素鋼板。 & 含けい素鋼スラブを熱間圧延して得られた熱延板に
、1回または中間焼鈍を挾む2回の冷間圧延を施して最
終板厚としたのち、脱炭・1次再結晶焼鈍を施し、つい
で鋼板表面にM、90を主成分とする焼鈍分離剤を塗布
してから最終仕上焼鈍および上塗りコーティング処理を
施す一連の工程よりなる方向性けい素鋼板の製造方法に
おいて、脱炭・1次再結晶焼鈍後、焼鈍分離剤塗布前の
鋼板表面に2次再結晶発現促進剤を離散的に付着させる
ことにより、2次再結晶粒の粒度分布を、粒径:1、θ
〜2.5闘の個数比率が40〜80%、粒径5.0〜1
0.Ohmの結晶粒の個数比率が16%以上とすること
を特徴とする鉄損の低い方向性けい素鋼板の製造方法。
[Claims] 1. Regarding the grain size distribution of secondary recrystallized grains of a silicon-containing steel sheet that has undergone final finish annealing, the number ratio of crystal grains with a grain size of 1.0 to 2.5 m is 40 to 80%, On the other hand, the particle size is 5.0-10. O
A grain-oriented silicon steel sheet with low iron loss characterized by having a mixed grain distribution in which the number ratio of m+ crystal grains is 15% or more. L Grain size: The formation region of crystal grains with a grain size of 1.0 to 2.5W is a continuous or discontinuous band-like region oriented almost perpendicular to the rolling direction of the steel sheet, and the width of the band-like region is 1.5W.
The grain-oriented silicon steel sheet according to claim 1, wherein the rolling direction is 0 = 4.0 m and the repetition interval in the rolling direction is in the range of 5 to 15 mm. & Hot-rolled sheets obtained by hot-rolling silicon-containing steel slabs are cold-rolled once or twice with intermediate annealing to reach the final thickness, and then decarburized and primary re-rolled. In a method for manufacturing a grain-oriented silicon steel sheet, which consists of a series of steps of crystal annealing, then applying an annealing separator mainly composed of M, 90 to the surface of the steel sheet, and then final annealing and top coating treatment. By discretely attaching a secondary recrystallization promoter to the surface of the steel sheet after charcoal/primary recrystallization annealing and before applying an annealing separator, the particle size distribution of secondary recrystallization grains can be adjusted to a particle size of 1, θ.
~2.5 particles ratio is 40~80%, particle size is 5.0~1
0. A method for producing a grain-oriented silicon steel sheet with low iron loss, characterized in that the number ratio of Ohm crystal grains is 16% or more.
JP59099701A 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same Expired - Lifetime JPH0680172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099701A JPH0680172B2 (en) 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099701A JPH0680172B2 (en) 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS60245769A true JPS60245769A (en) 1985-12-05
JPH0680172B2 JPH0680172B2 (en) 1994-10-12

Family

ID=14254356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099701A Expired - Lifetime JPH0680172B2 (en) 1984-05-19 1984-05-19 Low-loss grain-oriented silicon steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0680172B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837148A2 (en) * 1996-10-21 1998-04-22 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
US5858126A (en) * 1992-09-17 1999-01-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
JP2012001769A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp Fe-BASED METAL PLATE HAVING PARTIALLY CONTROLLED CRYSTAL ORIENTATION
WO2014092102A1 (en) * 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
EP4269651A4 (en) * 2020-12-22 2024-06-19 Posco Co Ltd Grain oriented electrical steel sheet and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307354B2 (en) 2018-06-21 2023-07-12 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic properties

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858126A (en) * 1992-09-17 1999-01-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
EP0837148A2 (en) * 1996-10-21 1998-04-22 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
EP0837148A3 (en) * 1996-10-21 1998-07-15 Kawasaki Steel Corporation Grain-oriented electromagnetic steel sheet
JP2012001769A (en) * 2010-06-17 2012-01-05 Nippon Steel Corp Fe-BASED METAL PLATE HAVING PARTIALLY CONTROLLED CRYSTAL ORIENTATION
WO2014092102A1 (en) * 2012-12-12 2014-06-19 Jfeスチール株式会社 Oriented electromagnetic steel sheet
JP2014114499A (en) * 2012-12-12 2014-06-26 Jfe Steel Corp Grain oriented silicon steel plate
US10643770B2 (en) 2012-12-12 2020-05-05 Jfe Steel Corporation Grain-oriented electrical steel sheet
EP4269651A4 (en) * 2020-12-22 2024-06-19 Posco Co Ltd Grain oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPH0680172B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JP5991484B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
EP0959142A2 (en) Grain oriented electromagnetic steel sheet and manufacturing method thereof
AU2002326892A1 (en) Method of continuously casting electrical steel strip with controlled spray cooling
EP1436432A1 (en) Method of continuously casting electrical steel strip with controlled spray cooling
EP0098324A1 (en) Process for producing aluminum-bearing grain-oriented silicon steel strip
CN107779727A (en) A kind of production method of orientation silicon steel
JP3644130B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017133086A (en) Manufacturing method of oriented electromagnetic steel sheet
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
JPS60245769A (en) Grain-oriented silicon steel sheet having low iron loss and its production
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
KR101908045B1 (en) Method for manufacturing grain oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7338812B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6331527B2 (en)
JP2003253334A (en) Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property and stamping property
JPH04259329A (en) Production of grain-oriented silicon steel sheet excellent in blankability
KR101110247B1 (en) Method for removing minuteness convex scar of grain-oriented electrical steel sheets
JP2698408B2 (en) Cold rolling method in the production process of grain oriented silicon steel sheet.
JPH067527B2 (en) Ultra-low iron loss grain-oriented silicon steel sheet and method for producing the same
JPH04120215A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic and surface characteristic
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS58151423A (en) Manufacture of unidirectional silicon steel plate with superior magnetic characteristic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term