JPH0678990B2 - Foreign object detection method and apparatus - Google Patents

Foreign object detection method and apparatus

Info

Publication number
JPH0678990B2
JPH0678990B2 JP62287392A JP28739287A JPH0678990B2 JP H0678990 B2 JPH0678990 B2 JP H0678990B2 JP 62287392 A JP62287392 A JP 62287392A JP 28739287 A JP28739287 A JP 28739287A JP H0678990 B2 JPH0678990 B2 JP H0678990B2
Authority
JP
Japan
Prior art keywords
signal
chip
foreign matter
detected
grayscale image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62287392A
Other languages
Japanese (ja)
Other versions
JPH01129143A (en
Inventor
伸幸 秋山
俊彦 中田
良彦 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62287392A priority Critical patent/JPH0678990B2/en
Publication of JPH01129143A publication Critical patent/JPH01129143A/en
Publication of JPH0678990B2 publication Critical patent/JPH0678990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,試料上の特定の物体を検出する方法及びその
装置に係り,特に表面に例えば微細な回路パターンを有
するウェハ上の異物を検出するのに好適な異物検出方法
及びその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for detecting a specific object on a sample, and more particularly to detecting foreign matter on a wafer having, for example, a fine circuit pattern on its surface. The present invention relates to a foreign matter detection method and apparatus suitable for doing so.

〔従来の技術〕[Conventional technology]

従来の異物検出装置は,例えば特開昭59-65428号に記載
され,これを第4図(a)に示すようにX方向に往復運
動するステージ1上の試料2に,斜め上方から矢印で示
したレーザ光(以下照明光という)3を照射し,このパ
ターンを対物レンズ4で拡大し,更に拡大レンズ5で拡
大して像6を形成する。このとき,対物レンズ4の中の
フーリエ変換面をフィールドレンズ7で撮影し,フーリ
エ変換面の像8を作る装置が提案されている。
A conventional foreign matter detecting device is described in, for example, Japanese Patent Laid-Open No. 59-65428, and a sample 2 on a stage 1 which reciprocates in the X direction as shown in FIG. The illustrated laser beam (hereinafter referred to as illumination light) 3 is irradiated, this pattern is magnified by the objective lens 4, and further magnified by the magnifying lens 5 to form an image 6. At this time, a device has been proposed in which the Fourier transform plane in the objective lens 4 is photographed by the field lens 7 to form an image 8 of the Fourier transform plane.

この装置では,試料2上のパターン11を斜め上方から照
明光3で照明することによって作成される像11′は,そ
の拡大図を第4図(b)に示すように,照明光3の照射
方向(矢印で表示)に対して直角方向のパターン11a,異
物11b,パターンコーナ部分11c及びパターン交差部分11d
などで光が散乱する。そのため,この像11′をフィール
ドレンズ7で撮影した像12は,その拡大図を第4図
(c)に示すように,照明光3の照射方向に対し直角方
向のパターン12a,異物12b,パターンコーナ部分12c及び
パターン交差部分12dなどが光る。この像12をフーリエ
変換すると,その像8はその拡大図を第4図(d)の13
に示すように,パターン11からの光13aは,中央の縦一
直線になり,それ以外の光13bは周辺に広く散乱する。
次いで,第4図(e)に示す遮光マスク14をかけて中央
の縦一直線からの光を遮へいすると,パターン11の情報
が遮へいされ,最終結像6はその拡大図を第4図(f)
の15に示すように,異物の像15aと,パターン交差部分
もしくはパターンコーナ部分の像15bのみとなる。
In this apparatus, an image 11 'created by illuminating the pattern 11 on the sample 2 with the illumination light 3 obliquely from above is used to irradiate the illumination light 3 as shown in the enlarged view of FIG. 4 (b). Pattern 11a, foreign material 11b, pattern corner 11c and pattern intersection 11d perpendicular to the direction (indicated by an arrow)
The light is scattered by. Therefore, the image 12 obtained by photographing this image 11 'with the field lens 7 has a pattern 12a, a foreign substance 12b, a pattern 12a perpendicular to the irradiation direction of the illumination light 3, as shown in an enlarged view of FIG. 4 (c). The corner portion 12c and the pattern intersection portion 12d etc. shine. When this image 12 is Fourier-transformed, the image 8 is an enlarged view of the image 13 in FIG.
As shown in, the light 13a from the pattern 11 becomes a straight line in the center, and the other light 13b is widely scattered to the periphery.
Then, when a light-shielding mask 14 shown in FIG. 4 (e) is applied to shield the light from the central vertical straight line, the information of the pattern 11 is shielded, and the final image formation 6 is an enlarged view of FIG. 4 (f).
As shown in No. 15, only the image 15a of the foreign matter and the image 15b of the pattern intersection portion or the pattern corner portion are formed.

したがって,大きな異物の場合には,その信号は,パタ
ーン交差部及びパターンコーナ部の信号より大きいの
で,かかる大信号を検出することにより,大異物の検出
は可能である。ところが,最近の半導体素子の回路パタ
ーンは微細化の一途をたどっており,このような微細パ
ターンでは,異物の信号よりもパターン交差部分もしく
はパターンコーナ部分の信号の方が大きい場合が多く,
上記の装置構成では,このような小さい信号の異物の検
出は困難になっている。
Therefore, in the case of a large foreign substance, the signal thereof is larger than the signals of the pattern crossing portion and the pattern corner portion, and therefore the large foreign substance can be detected by detecting such a large signal. However, recent circuit patterns of semiconductor elements are becoming finer, and in such fine patterns, the signal at the pattern crossing portion or the pattern corner portion is often larger than the signal of the foreign matter.
With the above-mentioned device configuration, it is difficult to detect such foreign matter with a small signal.

そこで,従来,例えば特開昭59-6536号に記載され,こ
れを第5図(a),(b)に示すように,試料21上の2
個のチップ22,23の検出像を比較して同一位置に表わさ
れているものをパターン,パターンコーナ部分もしくは
パターン交差部分の信号として判定し,これらチップ相
互の信号を差引くことにより削除し,もし差分の信号が
残ればこれをことなった位置に表われている異物信号と
みなして異物検出を行う装置が提案されている。具体的
には対物レンズ24で検出した像を透視鏡28を通過してセ
ンサ25で電気信号に変換し,その拡大図を第5図(b)
に示すようにまず幅Wのその領域26をメモリする。次に
現在検出しているチップ23の領域27の画像信号と先にメ
モリした信号とを比較して,異なったものを異物と判定
している。なお,図示の29は照明ランプである。
Therefore, conventionally, for example, as described in Japanese Patent Laid-Open No. 59-6536, as shown in FIGS.
By comparing the detection images of the individual chips 22 and 23, the ones represented at the same position are judged as signals of the pattern, pattern corners or pattern intersections, and the signals of these chips are subtracted to delete them. If a difference signal remains, it is considered as a foreign object signal appearing at a different position, and an apparatus for detecting a foreign object has been proposed. Specifically, the image detected by the objective lens 24 passes through the endoscope 28 and is converted into an electric signal by the sensor 25, and an enlarged view thereof is shown in FIG. 5 (b).
First, the area 26 having the width W is stored as shown in FIG. Next, the currently detected image signal of the area 27 of the chip 23 is compared with the previously stored signal, and a different one is determined as a foreign substance. Incidentally, 29 in the figure is an illumination lamp.

第6図は,第5図で検出した画像の信号を平面的に表わ
したものである。画面31,32はそれぞれチップ22におけ
る領域26,チップ23における領域27の一部分を表わした
ものであり,画面33は画面32から画面31の信号を差引い
た結果である。画面31,32に共通に存在する信号(310=
321,311=322)はパターン交差部・コーナ部であり,共
通に存在しない信号323が異物信号であるので,異物34
(信号323)が検出できる。
FIG. 6 is a plan view showing the signal of the image detected in FIG. The screens 31 and 32 represent a part of the region 26 in the chip 22 and a part of the region 27 in the chip 23, respectively, and the screen 33 is the result of subtracting the signal of the screen 31 from the screen 32. Signals that commonly exist on screens 31 and 32 (310 =
321, 311 = 322) are pattern intersections / corners, and the signal 323 that does not exist in common is a foreign matter signal.
(Signal 323) can be detected.

半導体ではチップ毎にパターンを何回も重ね露光するた
めに,チップ毎にパターンの重ね合せ状態が変化し,パ
ターンの立体的な形状が少しずつ変化している。第7図
35,36は同一パターンの画かれている異なったチップの
一部分を拡大したものであるが,下層パターン37,38と
上層パターン39,40と位置ずれ量が異なっていることが
わかる。
In a semiconductor, since the pattern is repeatedly exposed for each chip, the pattern superposition state changes for each chip, and the three-dimensional shape of the pattern changes little by little. Fig. 7
Reference numerals 35 and 36 are enlarged views of a part of different chips in which the same pattern is drawn, and it can be seen that the lower layer patterns 37 and 38 and the upper layer patterns 39 and 40 have different displacement amounts.

第8〜10図はパターンの断面図41〜43と,この部分を斜
方照明した時の対応する検出信号の大きさ44〜46を示し
たものである。第8図の如く位置ずれdが小さいもの
は,段差部分が急峻になるため検出信号44が大きいが,
第10図の如く位置ずれが大きなものは段差部分が小さく
且つパターンエッジが滑らかなため,検出信号46が小さ
い。第9図は両者の中間状態を示したものである。この
ように同じようなパターン交差部・段差部であっても,
重ね合せの位置ずれ量によって,検出信号の値が大きく
変化し,場合によっては,斜方照明しても殆ど散乱光を
生ぜず,検出信号が得られないこともある。
FIGS. 8 to 10 show cross-sectional views 41 to 43 of the pattern and corresponding detection signal magnitudes 44 to 46 when this portion is obliquely illuminated. As shown in FIG. 8, in the case where the positional deviation d is small, the detection signal 44 is large because the step portion becomes steep, but
As shown in FIG. 10, when the positional deviation is large, the step portion is small and the pattern edge is smooth, so that the detection signal 46 is small. FIG. 9 shows an intermediate state between the two. Even with similar pattern intersections / steps like this,
The value of the detection signal changes greatly depending on the amount of positional deviation of superposition, and in some cases, even if oblique illumination is performed, scattered light is hardly generated, and the detection signal may not be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このようなパターン交差部・コーナ部がチップ間で共通
に散乱光を生ずるとは言えないので,従来技術のように
単純にチップ同士の信号を差引いても,異物のみを正確
に検出することは難しいという課題を有していた。
Since it cannot be said that such pattern intersections / corners generate scattered light in common between chips, it is not possible to accurately detect only a foreign substance by simply subtracting signals between chips as in the prior art. It had a difficult problem.

本発明の目的は、上記従来の課題を解決すべく、チップ
間において回路パターンのエッジ部から散乱光の強度が
同じように検出されずに散乱光に基づく濃淡差信号が生
じても、回路パターンのエッジ部を誤検出することなく
真の異物だけを正しく検出することができるようにした
異物検査方法とその装置を提供するものである。
The object of the present invention is to solve the above-mentioned conventional problems, even if the intensity difference of scattered light is not similarly detected from the edge portion of the circuit pattern between chips and a grayscale difference signal based on the scattered light occurs, the circuit pattern The present invention provides a foreign matter inspection method and an apparatus therefor capable of correctly detecting only a true foreign matter without erroneously detecting the edge portion of the.

〔問題点を解決するための手段〕[Means for solving problems]

パターンの重ね合せ位置ずれ量には許容される範囲内で
チップ間で差があるので,パターン交差部・コーナ部が
チップ間で常に同一位置で共通に散乱光を生ずるとは言
えないが,ウェハ上には同一種類のチップが100個以上
存在するので,この中の少なくとも二つのチップ内の同
一のパターン交差部・コーナ部が同一位置で共通に散乱
光を生ずることがあると考えても不自然ではない。一
方,異物についてみれば,異なるチップ内の同一座標上
に異物が存在する確率は零と考えて良いので,チップ間
の同一座標上で散乱光を生ずることはない。本発明では
このことに着目して成されたもので,隣接するチップ同
士の各々から散乱光に基づいて順次検出される濃淡画像
信号同士を比較してその濃淡差を示す濃淡差信号が所定
の値以上の場合、これを異物候補信号として順次抽出
し、この異物候補信号の抽出と同期させて前チップの濃
淡画像信号及び後チップの濃淡画像信号の各々について
所定値以上で検出された場合、これをチップ間において
同一パターン信号であるとみなして前記異物候補信号か
らこのパターン信号を除去して真の異物を検出するもの
である。
Since there is a difference in the amount of pattern registration misalignment between chips within the allowable range, it cannot be said that the pattern intersection / corner always produces scattered light in common at the same position between chips. Since there are more than 100 chips of the same type on the top, it can be considered that the same pattern intersection / corner in at least two of these chips may generate scattered light at the same position in common. Not natural. On the other hand, regarding foreign matter, the probability of foreign matter existing on the same coordinates in different chips can be considered to be zero, so scattered light does not occur on the same coordinates between chips. The present invention has been made paying attention to this fact, and compares the grayscale image signals sequentially detected based on the scattered light from each of the adjacent chips, and compares the grayscale difference signals indicating the grayscale difference with each other. If it is equal to or more than the value, it is sequentially extracted as a foreign matter candidate signal, and in synchronization with the extraction of the foreign matter candidate signal, if detected with a predetermined value or more for each of the grayscale image signal of the front chip and the grayscale image signal of the rear chip, This is regarded as the same pattern signal between chips, and this pattern signal is removed from the foreign substance candidate signal to detect a true foreign substance.

以下に本発明の構成上の特徴点を列挙し,本発明を更に
具体的に詳述する。
The characteristic features of the present invention will be listed below, and the present invention will be described in more detail.

先ず,第1の発明である異物検出方法について説明す
る。
First, the foreign matter detection method of the first invention will be described.

(1)試料上における繰り返されるチップの各々におい
て同一パターンを示す微小領域の各々に順次垂直方向か
ら所望の傾斜角度で傾斜した斜方向から照明光で照明
し、順次照明された各々の微小領域からの散乱光を光電
変換手段で受光してチップ同士の各々の散乱光に基づく
濃淡画像信号を順次検出し、順次検出された前チップの
濃淡画像信号を記憶手段に順次記憶し、順次記憶された
前チップの濃淡画像信号と前記順次検出された後チップ
の濃淡画像信号と間の濃淡差を示す濃淡差信号を順次算
出して濃淡差信号が所定の値以上の場合、これを異物候
補信号として順次抽出し、異物候補信号の抽出と同期さ
せて前記順次記憶された前チップの濃淡画像信号および
前記順次検出された後チップの濃淡画像信号の各々につ
いて所定の値以上で検出された場合、これをチップ間に
おいて同一パターン信号であるとみなして前記異物候補
信号からこのパターン信号を除去して真の異物を検出す
ることを特徴とする異物検出方法である。
(1) Illuminating light from each of the microscopic regions showing the same pattern on each of the repeated chips on the sample from the vertical direction in the oblique direction inclined at a desired inclination angle from each of the microscopic regions sequentially illuminated. The scattered light of is received by the photoelectric conversion means, the grayscale image signals based on the scattered light of the chips are sequentially detected, and the sequentially detected grayscale image signals of the previous chip are sequentially stored in the storage means, and sequentially stored. When the grayscale difference signal indicating the grayscale difference between the grayscale image signal of the previous chip and the grayscale image signal of the subsequent chip that has been sequentially detected is sequentially calculated and the grayscale difference signal is equal to or greater than a predetermined value, this is used as the foreign object candidate signal. A predetermined value or more for each of the sequentially stored grayscale image signal of the preceding chip and the sequentially detected grayscale image signal of the subsequent chip, which are sequentially extracted and synchronized with the extraction of the foreign substance candidate signal. If issued, an foreign substance detecting method characterized by detecting a true foreign matter removing the pattern signal from said foreign object candidate signal is regarded to be the same pattern signal between this tip.

(2)上記照明光としてレーザ光を用い,上記試料を半
導体ウェハとし,検出対象をウェハ上の異物としたこと
を特徴とする。
(2) A laser beam is used as the illumination light, the sample is a semiconductor wafer, and the detection target is a foreign substance on the wafer.

次に第2の発明である異物検出装置について説明する。Next, the foreign matter detection device of the second invention will be described.

(1)試料上における繰り返されるチップの各々におい
て同一パターンを示す微小領域の各々に垂直方向から所
望の傾斜角度で傾斜した斜方向から照明光を照射する照
明光学系と、照明光学系で照明された各々の微小領域か
らの散乱光を光電変換手段で受光してチップ同士の各々
の散乱光に基づく濃淡画像信号を検出する検出光学系
と、検出光学系の光電変換手段により検出された前チッ
プの濃淡画像信号を記憶する第1の記憶手段と、第1の
記憶手段により記憶された前チップの濃淡画像信号と前
記検出光学系の光電変換手段により検出された後チップ
の濃淡画像信号と間の濃淡差を示す濃淡差信号を算出し
て濃淡差信号が所定の値以上の場合、これを異物候補信
号として抽出する異物候補信号抽出手段と、異物候補信
号抽出手段による異物候補信号の抽出と同期させて前記
第1の記憶手段に記憶された前チップの濃淡画像信号お
よび前記検出光学系の光電変換手段により検出された後
チップの濃淡画像信号の各々について所定の値以上で検
出された場合、これをチップ間において同一パターン信
号であるとみなして前記異物候補信号抽出手段によって
抽出された異物候補信号からこのパターン信号を除去し
て真の異物を検出する真の異物検出手段とを備えたこと
を特徴とする異物検出装置である。
(1) An illumination optical system that illuminates illumination light from a slanting direction that is inclined at a desired slant angle from the vertical direction to each of microscopic regions that show the same pattern on each of repeated chips on a sample, and is illuminated by the illumination optical system. A detection optical system that receives scattered light from each minute region by photoelectric conversion means and detects a grayscale image signal based on each scattered light between chips, and a front chip detected by the photoelectric conversion means of the detection optical system Between the gray scale image signal of the previous chip stored by the first storage means and the gray scale image signal of the subsequent chip detected by the photoelectric conversion means of the detection optical system. When the gray level difference signal indicating the gray level difference is calculated and the gray level difference signal is equal to or greater than a predetermined value, the foreign particle candidate signal extracting means and the foreign particle candidate signal extracting means differ from each other. A predetermined value or more for each of the grayscale image signal of the previous chip stored in the first storage means and the grayscale image signal of the subsequent chip detected by the photoelectric conversion means of the detection optical system in synchronization with the extraction of the candidate signal. If it is detected by the above, it is regarded as the same pattern signal between the chips, the pattern signal is removed from the foreign substance candidate signal extracted by the foreign substance candidate signal extracting means, and the true foreign substance is detected. And a means for detecting the foreign matter.

(2)上記異物検出装置において、上記異物候補信号抽
出手段として、抽出された異物候補信号を記憶する第2
の記憶手段を有することを特徴とする。
(2) In the foreign matter detection device, the second foreign matter candidate signal extracting means stores the extracted foreign matter candidate signal.
It is characterized by having a storage means of.

(3)上記異物検出装置において、上記真の異物検出手
段として、上記第1の記憶手段に記憶された前チップの
濃淡画像信号について所定の閾値で2値化して2値化信
号に変換する第1の2値化手段と、上記検出光学系の光
電変換手段により検出された後チップの濃淡画像信号に
ついて所定の閾値で2値して2値化信号に変換する第2
の2値化手段と、前記第1の2値化手段から得られる2
値化信号と前記第2の2値化手段から得られる2値化信
号の論理積をとって前記パターン信号を形成する論理積
回路とを備えたことを特徴とする。
(3) In the foreign matter detection device, as the true foreign matter detection means, the grayscale image signal of the previous chip stored in the first storage means is binarized with a predetermined threshold value and converted into a binarized signal. A binarizing unit 1 and a grayscale image signal of the post-chip detected by the photoelectric conversion unit of the detection optical system is binarized by a predetermined threshold value and converted into a binarized signal.
And the binary value obtained from the first binary value conversion means.
It is characterized by further comprising: a logical product circuit for taking a logical product of the binarized signal and the binarized signal obtained from the second binarization means to form the pattern signal.

(4)上記異物検出装置において、上記第1の2値化手
段として2値化信号を記憶する第3の記憶手段を有する
ことを特徴とする。
(4) The foreign matter detecting device is characterized in that it has third storage means for storing a binarized signal as the first binarization means.

〔作用〕[Action]

上述したごとく、ウェハ等の試料上に繰返して形成され
るチップ同士の各々の散乱光に基づく濃淡画像信号を比
較してそれらの間の濃淡差を示す濃淡差信号を算出した
際、第8図〜第10図に示すごとくパターンのエッジ形状
の相違または位置ずれによりチップ同士においてパター
ンのエッジから生じる散乱光の強度(濃淡)において差
が生じてしまい、異物なのかパターンのエッジなのかを
識別することができないものとなる。しかし、各々のチ
ップのパターンのエッジからは散乱光に基づく濃淡画像
信号が検出されるので、各々の濃淡画像信号を、例えば
低い閾値で2値化すれば、パターンのエッジに相当する
信号が検出され、その検出信号が両方のチップで検出さ
れた場合パターンのエッジ信号とみなすことができる。
そこで、ウェハ等の試料上における繰り返されるチップ
の各々において同一パターンを示す微小領域の各々に順
次垂直方向から所望の傾斜角度で傾斜した斜方向から照
明光で照射し、順次照明された各々の微小領域からの散
乱光を光電変換手段で受光してチップ同士の各々の散乱
光に基づく濃淡画像信号を順次検出し、順次検出された
前チップの濃淡画像信号を記憶手段に順次記憶し、順次
記憶された前チップの濃淡画像信号と前記順次検出され
た後チップの濃淡画像信号と間の濃淡差を示す濃淡差信
号を順次算出して濃淡差信号が所定の値以上の場合、こ
れを異物候補信号として順次抽出し、異物候補信号の抽
出と同期させて前記順次記憶された前チップの濃淡画像
信号及び前記順次検出された後チップの濃淡画像信号の
各々について所定の値以上で検出された場合、これをチ
ップ間において同一パターン信号であるとみなして前記
異物候補信号から、このパターン信号を除去することに
より真の異物を検出することができるようにしたもので
ある。
As described above, when comparing the grayscale image signals based on the scattered light of each chip repeatedly formed on the sample such as the wafer and calculating the grayscale difference signal indicating the grayscale difference between them, FIG. ~ As shown in Fig. 10, due to the difference in the edge shape of the pattern or the positional deviation, there is a difference in the intensity (shading) of the scattered light generated from the edge of the pattern between chips, and it is possible to identify whether it is a foreign substance or the edge of the pattern. It will not be possible. However, since the grayscale image signal based on the scattered light is detected from the edge of the pattern of each chip, if each grayscale image signal is binarized with a low threshold value, for example, a signal corresponding to the edge of the pattern is detected. If the detected signal is detected by both chips, it can be regarded as an edge signal of the pattern.
Therefore, in each of repeated chips on a sample such as a wafer, each of minute regions showing the same pattern is sequentially irradiated with illumination light from an oblique direction inclined at a desired inclination angle from the vertical direction, and each minute region illuminated sequentially. The scattered light from the area is received by the photoelectric conversion means, the grayscale image signals based on the scattered light of the chips are sequentially detected, and the sequentially detected grayscale image signals of the previous chip are sequentially stored in the storage means, and sequentially stored. If a gray level difference signal indicating a gray level difference between the gray level image signal of the preceding chip and the gray level image signal of the subsequent chip that are sequentially detected is sequentially calculated and the gray level difference signal is equal to or greater than a predetermined value, this is a foreign substance candidate. The signals are sequentially extracted as a signal, and in synchronization with the extraction of the foreign-matter candidate signal, a predetermined value is given to each of the sequentially stored grayscale image signal of the previous chip and the sequentially detected grayscale image signal of the subsequent chip. When it is detected with a value or more, it is regarded as the same pattern signal between chips and the true foreign matter can be detected by removing the pattern signal from the foreign matter candidate signal. .

〔実施例〕〔Example〕

以下,本発明の一実施例を第1図により説明する。同図
はパターン付製品ウェハ上の異物を検出する装置であ
る。
An embodiment of the present invention will be described below with reference to FIG. The figure shows an apparatus for detecting foreign matter on a patterned product wafer.

ウェハ50上の小領域51をレーザ光52(光源は図示せず)
で斜め上方から照射し,この小領域を対物レンズ53で拡
大し,フィールドレンズ54,拡大レンズ55を介して撮像
素子56検出する。対物レンズ53のフーリエ変換面の実像
(共役像)の位置に第4図で述べた遮光マスク14に相当
する遮光マスク57を設け,ウェハ上のパターン情報を除
去する。この状態でXYステージ58をX方向に移動させ
る。
A laser beam 52 (light source is not shown) is applied to a small area 51 on the wafer 50.
Then, the small area is enlarged by the objective lens 53, and the image pickup element 56 is detected through the field lens 54 and the magnifying lens 55. A light-shielding mask 57 corresponding to the light-shielding mask 14 described in FIG. 4 is provided at the position of the real image (conjugate image) on the Fourier transform surface of the objective lens 53 to remove the pattern information on the wafer. In this state, the XY stage 58 is moved in the X direction.

初めに異物候補座標を求める電気回路を説明する。ま
ず,書込み側切換スイッチ81を実線の状態に切換えて,
チップ61内の小領域71を検出して第1のメモリ82に蓄え
る。次に書込み側切換スイッチ81及び読出し側切換スイ
ッチ83を破線の状態に切換えて,信号84から取出される
チップ62内の小領域72の検出信号と,信号線85から取出
される第1のメモリ82内の信号(小領域71の検出信号)
とをオペレータアンプ86で引算を行う。なお切換スイッ
チ81,83は高速で切換えられ,第1のメモリ82の中の信
号が送り出されて,空白が生じた領域に撮像素子56で検
出された信号が信号線84に伝わると共に第1のメモリ82
にも蓄えられる。これは小領域72の検出信号であり,こ
の後に検出する小領域73の検出信号との引算を行うため
に用いられる。
First, an electric circuit for obtaining foreign object candidate coordinates will be described. First, change the write-side selector switch 81 to the solid line state,
The small area 71 in the chip 61 is detected and stored in the first memory 82. Next, the write side changeover switch 81 and the read side changeover switch 83 are changed over to the state of the broken line, and the detection signal of the small area 72 in the chip 62 taken out from the signal 84 and the first memory taken out from the signal line 85. Signal in 82 (Detection signal of small area 71)
And are subtracted by the operator amplifier 86. The changeover switches 81 and 83 are changed over at high speed, the signal in the first memory 82 is sent out, and the signal detected by the image pickup device 56 is transmitted to the signal line 84 in the area where the blank occurs and the first line is also transmitted. Memory 82
Can be stored in This is the detection signal of the small area 72, and is used for subtraction with the detection signal of the small area 73 to be detected thereafter.

オペレータアンプ86を通った信号は,オペレータアンプ
87で2値化されて,結果をチップ内での座標,2値化した
際の符号と共に第4のメモリ88に蓄える。ここでチップ
内での信号の座標は,XYステージ58に取付けた位置検出
器(図示せず)でX座標を求め,撮像素子56の画素番号
からY座標を求めたもので,異物候補の座標となってい
る。
The signal passed through the operator amplifier 86 is
It is binarized at 87, and the result is stored in the fourth memory 88 together with the coordinates in the chip and the code when binarized. Here, the coordinate of the signal in the chip is obtained by obtaining the X coordinate by the position detector (not shown) attached to the XY stage 58 and the Y coordinate from the pixel number of the image pickup device 56. Has become.

この間の信号処理状況を第2図を用いて模式的に説明す
る。第2図(a)は各チップ内の小領域での検出信号で
あり,同図(b)は引算結果をオペレータアンプ87で2
値化して,符号付きで表わしたものである。第3図はメ
モリ88に書き込まれた内容を示した異物候補座標(A)
である。第2図(b)に示した引算結果をチップ内の座
標を付けて書き込んでいる。符号−は異物候補が右側の
チップ(ここではチップNo.62)に存在することを表わ
し,符号+は左側(ここではチップNo.61)に存在する
ことを表わしている。そして当然のことながら左右のチ
ップで同一信号(チップNo.61,62の場合,信号610=62
0)は消えている。
The signal processing situation during this period will be schematically described with reference to FIG. FIG. 2A shows a detection signal in a small area in each chip, and FIG. 2B shows the subtraction result by the operator amplifier 87.
It is a value and is expressed with a sign. FIG. 3 shows foreign substance candidate coordinates (A) showing the contents written in the memory 88.
Is. The subtraction result shown in FIG. 2B is written with the coordinates in the chip. The symbol − indicates that the foreign substance candidate is present on the right side chip (here, chip No. 62), and the symbol + indicates that it is present on the left side (here, chip No. 61). As a matter of course, the left and right chips have the same signal (in the case of chip Nos. 61 and 62, the signal 610 = 62).
0) is gone.

再び第1図に戻り次にパターン交差部・コーナ部座標マ
ップを作成する電気回路を説明する。これはチップ内の
同一箇所に少なくとも2回検出信号が生じた場合をパタ
ーン交差部・コーナ部と見なしてマップを作るものであ
る。
Referring back to FIG. 1 again, an electric circuit for creating the pattern intersection / corner coordinate map will be described. This is to create a map by regarding the case where a detection signal is generated at least twice at the same place in a chip as a pattern intersection / corner.

メモリ82(小領域71の検出信号が蓄えられている)の信
号をオペレータアンプ91で2値化して第2のメモリ92に
蓄える。同時に隣接する小領域72の検出信号をオペレー
タアンプ93で2値化し,メモリ92の内容との論理積をと
って結果を第3のメモリ94に蓄える。この間の信号処理
状況を第2図(c),(d)を用いて説明する。第2図
(c)はメモリ92の内容を示したものであり,撮像素子
56で検出して2値化した結果をすべて蓄えている。第2
図(d)は第3のメモリ94の内容を示したものであり,
同一座標に2値化信号が少なくとも2回発生した場合の
みの検出信号をストアしている。即ち第3のメモリ94に
はチップ内のパターンに起因するパターン交差部・コー
ナ部の信号が蓄えられている。
The signal of the memory 82 (where the detection signal of the small area 71 is stored) is binarized by the operator amplifier 91 and stored in the second memory 92. At the same time, the detection signal of the adjacent small area 72 is binarized by the operator amplifier 93, and the result is stored in the third memory 94 by taking the logical product with the contents of the memory 92. The signal processing situation during this period will be described with reference to FIGS. 2 (c) and 2 (d). FIG. 2C shows the contents of the memory 92.
All the binarized results detected by 56 are stored. Second
Figure (d) shows the contents of the third memory 94,
The detection signal is stored only when the binarized signal is generated at least twice in the same coordinate. That is, the third memory 94 stores signals at the pattern intersection / corner portion due to the pattern in the chip.

再び第1図に戻り,第4のメモリ88に蓄積されている情
報(異物候補座標)(A)から第3のメモリ94に蓄積さ
れている情報(パターン交差部・コーナ部)(B)を除
去することによって,異物の座標の情報95を得ている。
Returning to FIG. 1 again, the information (pattern crossing portion / corner portion) (B) accumulated in the third memory 94 from the information (foreign particle candidate coordinates) (A) accumulated in the fourth memory 88 is changed. The information 95 of the coordinates of the foreign matter is obtained by the removal.

〔発明の効果〕〔The invention's effect〕

本発明によれば,パターン付試料上の異物とパターンと
の区別が可能となり,微小異物の検出が可能となる。
According to the present invention, it is possible to distinguish a foreign material on a patterned sample from a pattern, and it is possible to detect a minute foreign material.

本発明を使用しない時には,パターン交差部・コーナ部
で生じる散乱光以上の大きな散乱光を生ずるような異物
しか検出することができず,多層パターンの形成された
ウェハの場合には3〜4μm以上の異物しか検出するこ
とができなかた。本発明を用いて,パターン交差部・コ
ーナ部を除去すれば,多層パターンの形成されたウェハ
の場合でも1μmの異物が検出可能となり,異物検出性
能が格段に向上する。
When the present invention is not used, only foreign matters that generate scattered light larger than scattered light generated at pattern intersections / corners can be detected, and in the case of a wafer having a multilayer pattern formed, it is 3 to 4 μm or more. Only foreign objects can be detected. If the pattern crossing portion / corner portion is removed by using the present invention, a 1 μm foreign substance can be detected even in the case of a wafer having a multilayer pattern formed, and the foreign substance detection performance is remarkably improved.

本発明を適用する際には第1図に示した82,92,94などの
メモリが必要である。第1図で小領域72の幅を1.5mm,長
さを10mmと仮定すると面積は15mm2となる。画素(画像
検出の最小単位)を5μm角とすると,画素数は0.6×1
06個となり,1Mビット(106ビット)のLSIメモリを使え
ば,1個で十分に記録できる。第1のメモリ82はアナログ
信号をストアする必要があり,1つの信号を64階調にディ
ジタル化してストアすると仮定すると,1画素に対して6
ビット即ち6個の1Mb LSIが必要である。また,第1,第
2のメモリ92,94は2値化信号をストアすれば良いの
で,各々1個の1Mb LSIが必要である。以上を合計して
も1Mb LSIを8個使用すれば以上の処理をすべて行うこ
とができ,このように小さな電気回路で優れた性能を実
現することができる。
When the present invention is applied, memories such as 82, 92, 94 shown in FIG. 1 are required. Assuming that the width of the small region 72 is 1.5 mm and the length is 10 mm in FIG. 1, the area is 15 mm 2 . If the pixel (minimum unit for image detection) is 5 μm square, the number of pixels is 0.6 × 1
0 6 and will, Using LSI memory 1M bits (106 bits) can be sufficiently recorded one by. The first memory 82 needs to store an analog signal, and assuming that one signal is digitized into 64 gradations and stored, 6 pixels per pixel are stored.
Bits or 6 1Mb LSIs are required. Further, since the first and second memories 92 and 94 only need to store the binarized signal, one 1 Mb LSI is required for each. Even if the above is summed up, it is possible to perform all the above processing by using eight 1 Mb LSIs, and it is possible to achieve excellent performance with such a small electric circuit.

〔発明の効果〕〔The invention's effect〕

本発明によれば、ウエハ等の試料上において微細な回路
パターンでもって繰返し形成されたチップの各々におい
て同一パターンを示す微小領域から得られる散乱光に基
づく前チップの濃淡画像信号と後チップの濃淡画像信号
と間の濃淡差を示す濃淡差信号から誤検出することなく
真の異物を高信頼で検出することができる効果を奏す
る。
According to the present invention, the grayscale image signal of the front chip and the grayscale of the rear chip based on the scattered light obtained from the minute area showing the same pattern in each of the chips repeatedly formed with the fine circuit pattern on the sample such as the wafer. There is an effect that a true foreign substance can be detected with high reliability without erroneous detection from a grayscale difference signal indicating a grayscale difference between the image signal and the image signal.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例であるパターン付ウェハ上の
異物検出装置及び検出信号処理回路,第2図は同じく本
発明の実施例となる検出信号処理回路内部の処理状況の
説明図,第3図は第2図(b)の内容をメモリにストア
する時の形式の説明図,第4図は従来のパターン付ウェ
ハ上の異物検出装置の構成図,第5図は従来のパターン
付ウェハ上の異物検出装置の動作原理の説明図,第6図
は異物候補マップから異物のみを抽出する説明図,第7
図は半導体パターン露光時の重ね合せ誤差による位置ず
れの説明図,第8図は位置ずれが少ない時のパターン断
面と検出信号とを示した図,第9図は同じく位置ずれが
中位の時のパターン断面と検出信号とを示した図,そし
て第10図は同じく位置ずれが大きい時のパターン断面と
検出信号とを示した説明図である。 図において, 1……XYステージ、2……試料ウェハ 4……対物レンズ、50……ウェハ 51……小領域、52……レーザ光 53……対物レンズ、54……フィールドレンズ 55……拡大レンズ、56……撮像素子 61,62,63……チップ、71,72,73……小領域 81……書込み側切換スイッチ 83……読出し側切換スイッチ 82,92,94,88……メモリ 86,87,91,93……オペレータアンプ
FIG. 1 is a foreign matter detection device on a patterned wafer and a detection signal processing circuit according to an embodiment of the present invention, and FIG. 2 is an explanatory view of a processing situation inside a detection signal processing circuit according to the embodiment of the present invention. FIG. 3 is an explanatory view of a format when the contents of FIG. 2 (b) are stored in a memory, FIG. 4 is a configuration diagram of a conventional foreign matter detection apparatus on a patterned wafer, and FIG. FIG. 6 is an explanatory view of the operation principle of the foreign matter detection device on a wafer, FIG. 6 is an explanatory view of extracting only foreign matter from a foreign matter candidate map, and FIG.
The figure is an illustration of misregistration due to overlay error during semiconductor pattern exposure, Fig. 8 shows the pattern cross section and detection signal when the misregistration is small, and Fig. 9 is the same when the misregistration is medium. FIG. 10 is a diagram showing the pattern cross section and the detection signal, and FIG. 10 is an explanatory diagram showing the pattern cross section and the detection signal when the positional deviation is also large. In the figure, 1 ... XY stage, 2 ... Sample wafer 4 ... Objective lens, 50 ... Wafer 51 ... Small area, 52 ... Laser light 53 ... Objective lens, 54 ... Field lens 55 ... Enlarge Lens, 56 …… Image sensor 61, 62, 63 …… Chip, 71, 72, 73 …… Small area 81 …… Write side selector switch 83 …… Read side selector switch 82, 92, 94, 88 …… Memory 86 , 87,91,93 …… Operator amplifier

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】試料上における繰り返されるチップの各々
において同一パターンを示す微小領域の各々に順次垂直
方向から所望の傾斜角度で傾斜した斜方向から照明光で
照明し、順次照明された各々の微小領域からの散乱光を
光電変換手段で受光してチップ同士の各々の散乱光に基
づく濃淡画像信号を順次検出し、順次検出された前チッ
プの濃淡画像信号を記憶手段に順次記憶し、順次記憶さ
れた前チップの濃淡画像信号と前記順次検出された後チ
ップの濃淡画像信号と間の濃淡差を示す濃淡差信号を順
次算出して濃淡差信号が所定の値以上の場合、これを異
物候補信号として順次抽出し、異物候補信号の抽出と同
期させて前記順次記憶された前チップの濃淡画像信号お
よび前記順次検出された後チップの濃淡画像信号の各々
について所定の値以上で検出された場合、これをチップ
間において同一パターン信号であるとみなして前記異物
候補信号からこのパターン信号を除去して真の異物を検
出することを特徴とする異物検出方法。
1. A microscopic region showing the same pattern on each of repeated chips on a sample is sequentially illuminated with illumination light from an oblique direction inclined at a desired inclination angle from a vertical direction, and each microscopically illuminated microscopic region is illuminated. The scattered light from the area is received by the photoelectric conversion means, the grayscale image signals based on the scattered light of the chips are sequentially detected, and the sequentially detected grayscale image signals of the previous chip are sequentially stored in the storage means, and sequentially stored. If a gray level difference signal indicating a gray level difference between the gray level image signal of the preceding chip and the gray level image signal of the subsequent chip that are sequentially detected is sequentially calculated and the gray level difference signal is equal to or greater than a predetermined value, this is a foreign substance candidate. A predetermined value for each of the sequentially stored grayscale image signal of the preceding chip and the sequentially detected grayscale image signal of the succeeding chip, which are sequentially extracted as signals and are synchronized with the extraction of the foreign substance candidate signal. If it is detected above, the foreign matter detecting method characterized by detecting a true foreign matter removing the pattern signal from said foreign object candidate signal is regarded to be the same pattern signal between this tip.
【請求項2】上記照明光としてレーザ光を用いることを
特徴とする特許請求の範囲第1項記載の異物検出方法。
2. The foreign matter detecting method according to claim 1, wherein laser light is used as the illumination light.
【請求項3】試料上における繰り返されるチップの各々
において同一パターンを示す微小領域の各々に垂直方向
から所望の傾斜角度で傾斜した斜方向から照明光を照射
する照明光学系と、照明光学系で照明された各々の微小
領域からの散乱光を光電変換手段で受光してチップ同士
の各々の散乱光に基づく濃淡画像信号を検出する検出光
学系と、検出光学系の光電変換手段により検出された前
チップの濃淡画像信号を記憶する第1の記憶手段と、第
1の記憶手段に記憶された前チップの濃淡画像信号と前
記検出光学系の光電変換手段により検出された後チップ
の濃淡画像信号と間の濃淡差を示す濃淡差信号を算出し
て濃淡差信号が所定の値以上の場合、これを異物候補信
号として抽出する異物候補信号抽出手段と、異物候補信
号抽出手段による異物候補信号の抽出と同期させて前記
第1の記憶手段に記憶された前チップの濃淡画像信号お
よび前記検出光学系の光電変換手段により検出された後
チップの濃淡画像信号の各々について所定の値以上で検
出された場合、これをチップ間において同一パターン信
号であるとみなして前記異物候補信号抽出手段によって
抽出された異物候補信号からパターン信号を除去して真
の異物を検出する真の異物検出手段とを備えたことを特
徴とする異物検出装置。
3. An illumination optical system for irradiating each of minute regions showing the same pattern on each of repeated chips on a sample with an illumination light from a vertical direction at a desired inclination angle, and an illumination optical system. A detection optical system that receives scattered light from each illuminated minute area by photoelectric conversion means and detects a grayscale image signal based on each scattered light between chips, and a photoelectric conversion means of the detection optical system. First storage means for storing the grayscale image signal of the front chip, the grayscale image signal of the front chip stored in the first storage means, and the grayscale image signal of the rear chip detected by the photoelectric conversion means of the detection optical system. And a foreign matter candidate signal extracting means for calculating a grayscale difference signal indicating a grayscale difference between A predetermined value for each of the grayscale image signal of the front chip stored in the first storage means and the grayscale image signal of the rear chip detected by the photoelectric conversion means of the detection optical system in synchronization with the extraction of the object candidate signal. When detected above, it is regarded as the same pattern signal between the chips, the pattern signal is removed from the foreign particle candidate signal extracted by the foreign particle candidate signal extraction means, and a true foreign particle is detected. And a means for detecting foreign matter.
【請求項4】上記異物候補信号抽出手段として、抽出さ
れた異物候補信号を記憶する第2の記憶手段を有するこ
とを特徴とする特許請求の範囲第3項記載の異物検出装
置。
4. The foreign matter detecting device according to claim 3, further comprising second storage means for storing the extracted foreign matter candidate signal as the foreign matter candidate signal extracting means.
【請求項5】上記真の異物検出手段として、上記第1の
記憶手段に記憶された前チップの濃淡画像信号について
所定の閾値で2値化して2値化信号に変換する第1の2
値化手段と、上記検出光学系の光電変換手段により検出
された後チップの濃淡画像信号について所定の閾値で2
値して2値化信号に変換する第2の2値化手段と、前記
第1の2値化手段から得られる2値化信号と前記第2の
2値化手段から得られる2値化信号の論理積をとって前
記パターン信号を形成する論理積回路とを備えたことを
特徴とする特許請求の範囲第3項記載の異物検出装置。
5. The first foreign matter detecting means for binarizing the grayscale image signal of the previous chip stored in the first storing means by a predetermined threshold value and converting it into a binarized signal.
The grayscale image signal of the post-chip detected by the value conversion means and the photoelectric conversion means of the detection optical system is set to 2 with a predetermined threshold value.
Second binarizing means for converting the value into a binarized signal, a binarized signal obtained from the first binarizing means, and a binarized signal obtained from the second binarizing means. 4. The foreign matter detection device according to claim 3, further comprising: a logical product circuit that obtains the logical product of the two to form the pattern signal.
【請求項6】上記第1の2値化手段として2値化信号を
記憶する第3の記憶手段を有することを特徴とする特許
請求の範囲第5項記載の異物検出装置。
6. The foreign matter detection device according to claim 5, further comprising a third storage means for storing a binarized signal as the first binarization means.
JP62287392A 1987-11-16 1987-11-16 Foreign object detection method and apparatus Expired - Fee Related JPH0678990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287392A JPH0678990B2 (en) 1987-11-16 1987-11-16 Foreign object detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287392A JPH0678990B2 (en) 1987-11-16 1987-11-16 Foreign object detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH01129143A JPH01129143A (en) 1989-05-22
JPH0678990B2 true JPH0678990B2 (en) 1994-10-05

Family

ID=17716753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287392A Expired - Fee Related JPH0678990B2 (en) 1987-11-16 1987-11-16 Foreign object detection method and apparatus

Country Status (1)

Country Link
JP (1) JPH0678990B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192943A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Defect inspecting device repetitive pattern

Also Published As

Publication number Publication date
JPH01129143A (en) 1989-05-22

Similar Documents

Publication Publication Date Title
US4893346A (en) Apparatus for automatically inspecting objects and identifying or recognizing known and unknown portions thereof, including defects and the like, and method
JP3566470B2 (en) Pattern inspection method and apparatus
CN108362711B (en) Defect inspection method, sorting method and manufacturing method of photomask blank
US8055055B2 (en) Method for inspecting a foreign matter on mirror-finished substrate
US5015097A (en) Method for inspecting filled state of via-holes filled with fillers and apparatus for carrying out the method
JP6675433B2 (en) Defect classification method, photomask blank sorting method, and mask blank manufacturing method
JP2897890B2 (en) Printing accuracy measuring method and its device
JPH01310485A (en) Defect information detecting device
JPH0678990B2 (en) Foreign object detection method and apparatus
JPH1038542A (en) Method and device for object recognition and recording medium
JP2710527B2 (en) Inspection equipment for periodic patterns
JP2004037134A (en) Method and apparatus for inspecting metal mask
JPH0224323B2 (en)
JPH0610815B2 (en) Wiring pattern inspection method and device
JPH0224322B2 (en)
JPS6260075A (en) Shape recognizing device
JP3031069B2 (en) Appearance inspection method
JPH0723845B2 (en) Defect detection method
Ieamsaard et al. Automated optical inspection for solder jet ball joint defects in the head gimbal assembly process
Chin Automated visual inspection algorithms
JPH0785263B2 (en) Pattern scratch detector
JPH0720060A (en) Device for inspecting defective pattern and foreign matter
JPH02108167A (en) Optical inspecting device
JPS5821109A (en) Inspecting device for defect of pattern
JP4720968B2 (en) Scratch detection method and scratch detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees