JPH0678905B2 - Clad material thickness measuring device - Google Patents

Clad material thickness measuring device

Info

Publication number
JPH0678905B2
JPH0678905B2 JP62141797A JP14179787A JPH0678905B2 JP H0678905 B2 JPH0678905 B2 JP H0678905B2 JP 62141797 A JP62141797 A JP 62141797A JP 14179787 A JP14179787 A JP 14179787A JP H0678905 B2 JPH0678905 B2 JP H0678905B2
Authority
JP
Japan
Prior art keywords
thickness
output
amplifier
base material
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62141797A
Other languages
Japanese (ja)
Other versions
JPS63305207A (en
Inventor
繁俊 兵藤
芳文 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62141797A priority Critical patent/JPH0678905B2/en
Publication of JPS63305207A publication Critical patent/JPS63305207A/en
Publication of JPH0678905B2 publication Critical patent/JPH0678905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波を利用したクラッド材の肉厚測定装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to an apparatus for measuring the thickness of a clad material using ultrasonic waves.

〔従来技術〕[Prior art]

クラッド材は相互に異種の金属よりなる母材と合せ材と
の積層構造を有しており、材料強度を高めること、特殊
雰囲気での使用に耐えさせること、腐食代又はライニン
グ代とすること等を目的に使用されるものである。従っ
て合せ材の厚さはクラッド材としての性能を保証する上
で重要な要素となり、これを測定するために磁気的手段
又は電磁誘導法による渦電流を用いた測定装置の開発が
試みられている。
The clad material has a laminated structure consisting of a base material made of different metals and a laminated material, and is used to increase the material strength, to withstand use in a special atmosphere, to be used as a corrosion allowance or lining allowance, etc. It is used for the purpose. Therefore, the thickness of the laminated material is an important factor in guaranteeing the performance as a clad material, and in order to measure this, development of a measuring device using eddy current by magnetic means or electromagnetic induction method has been attempted. .

ところで磁気的な厚さ測定装置においては合せ材及び母
材がいずれも非磁性体あるいは磁性体であるときは無力
であり、また電磁誘導法では電磁気的性質が同一である
材料では適用不可であり、また切断面における観察測定
は全体としての保証が不可能であるという大きな欠点が
ある。
By the way, in the magnetic thickness measuring device, it is useless when the mating material and the base material are both non-magnetic or magnetic, and the electromagnetic induction method cannot be applied to materials having the same electromagnetic properties. Also, there is a big drawback that the observation and measurement on the cut surface cannot be guaranteed as a whole.

更に全厚、母材厚及び合せ材厚の測定には超音波による
全厚測定と組合せる必要があり、2種の計測装置が必要
となり全体の装置のコストが高いという問題もある。
Further, the total thickness, the base material thickness, and the laminated material thickness must be combined with the total thickness measurement by ultrasonic waves, and two types of measuring devices are required, and the cost of the entire device is high.

一方、超音波による厚さ測定には次のような難点があっ
た。すなわち母材と合せ材との積層界面においては両者
が冶金的に接合しており、両者の音響インピーダンス差
が非常に大きなもの以外はこの界面での反射波が得られ
ない。このため、本発明者は超音波利用における上述の
如き問題を解決する装置を実開昭55−137305号公報にお
いて提案している。これは受信信号のうち積層界面での
反射波を含む部分を選択的に取出し、この部分のみに他
の部分とは異なる微分信号処理を施すことによって前記
反射波を明確にするものである。
On the other hand, ultrasonic thickness measurement has the following drawbacks. That is, at the laminated interface between the base material and the laminated material, the two are metallurgically bonded, and no reflected wave can be obtained at this interface except for a very large difference in acoustic impedance between the two. For this reason, the present inventor has proposed a device for solving the above-mentioned problems in the use of ultrasonic waves in Japanese Utility Model Publication No. 55-137305. This is to clarify the reflected wave by selectively extracting a portion of the received signal including the reflected wave at the laminated interface, and subjecting only this portion to differential signal processing different from the other portions.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで前述の本発明者による装置においては、積層界
面での反射波の信号取出しがノイズ信号も同時に検出す
るので前記反射波のみを正確に取出せなかったり、高周
波波形に微分を加えてもS/N比が向上しない等の不具合
が生じ、後の信号処理精度にも影響を与えることが明ら
かになった。
By the way, in the above-mentioned device by the present inventor, since the signal extraction of the reflected wave at the laminated interface also detects the noise signal at the same time, it is not possible to accurately extract only the reflected wave, or even if the differential is added to the high frequency waveform, S / N It became clear that problems such as the ratio not improving occur and affect the accuracy of subsequent signal processing.

本発明は斯かる事情に鑑みてなされたものであり、上述
の如き問題点を改良すべく受信信号を広帯域及び狭帯域
の夫々の増幅器によって増幅し、積層界面での反射波を
含む部分を狭帯域増幅器によってS/N比良く取出す構成
とすることによって該反射波を明確にして合せ材又は母
材の肉厚を正確に測定することを可能としたクラッド材
の肉厚測定装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and in order to improve the above-mentioned problems, a received signal is amplified by a wide band amplifier and a narrow band amplifier, and a portion including a reflected wave at a laminated interface is narrowed. To provide a wall thickness measuring device for a clad material capable of clarifying the reflected wave and accurately measuring the wall thickness of a laminated material or a base material by adopting a structure in which a S / N ratio is taken out by a band amplifier. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るクラッド材の肉厚測定装置は、母材と合せ
材との積層構造を有するクラッド材の全厚及び母材厚又
は合せ材厚を超音波により測定する装置において、超音
波探触子と、該超音波探触子が受信した超音波反射波を
増幅する広帯域増幅器と、前記超音波探触子が受信した
超音波反射波のうち特定の低周波の狭帯域の信号を増幅
する狭帯域増幅器と、該狭帯域増幅器の出力信号を微分
処理して微分波形のしきい値を出力する微分器と、前記
広帯域増幅器の出力より全厚に関する情報を、又前記狭
帯域増幅器の出力及び前記微分器の出力より母材厚又は
合せ材厚に関する情報を夫々抽出して、この抽出結果に
基づいて所要厚を算出する手段とを具備することを特徴
とする。
An apparatus for measuring the thickness of a clad material according to the present invention is an apparatus for ultrasonically measuring the total thickness of a clad material having a laminated structure of a base material and a laminated material and the thickness of the base material or the laminated material. A wideband amplifier for amplifying an ultrasonic reflected wave received by the ultrasonic probe, and a specific low-frequency narrowband signal of the ultrasonic reflected wave received by the ultrasonic probe. A narrow band amplifier, a differentiator for differentiating an output signal of the narrow band amplifier to output a threshold value of a differential waveform, information about the total thickness from the output of the wide band amplifier, and an output of the narrow band amplifier and It further comprises means for extracting information about the base material thickness or the laminated material thickness from the output of the differentiator, and calculating the required thickness based on the extraction result.

〔作用〕[Action]

超音波探触子によって受信される超音波反射波は広帯域
増幅器と狭帯域増幅器とによって夫々増幅され、広帯域
増幅器の出力に関連して全厚に関する情報を抽出する。
狭帯域増幅器の出力信号を微分処理する微分器から微分
波形のしきい値を出力する。狭帯域増幅器の出力と、微
分器から出力したしきい値とに関連して母材厚又は合せ
材厚に関する情報を抽出する。これらの抽出結果に基づ
いてクラッド材の全厚及び母材厚又は合せ材厚を算出す
る。
The reflected ultrasonic wave received by the ultrasonic probe is amplified by a wide band amplifier and a narrow band amplifier, respectively, and information regarding the total thickness is extracted in relation to the output of the wide band amplifier.
The threshold value of the differential waveform is output from the differentiator that differentiates the output signal of the narrow band amplifier. Information about the base material thickness or the laminated material thickness is extracted in relation to the output of the narrow band amplifier and the threshold value output from the differentiator. Based on these extraction results, the total thickness of the clad material and the base material thickness or the combined material thickness are calculated.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき具体的に
説明する。
Hereinafter, the present invention will be specifically described with reference to the drawings illustrating the embodiments.

第1図は本発明に係る肉厚測定装置(以下本発明装置と
いう)を測定対象のクラッド材と共に示す模式図であ
る。今、内面に合せ材を設けてなるクラッド鋼管等を測
定対象クラッド材Cとすると、超音波探触子1は外周側
の母材C1側に臨ませるようにして使用されることにな
る。探触子1は本発明の目的から母材C1と合せ材C2との
積層界面での反射波(以下界面エコーという)を有効に
取出す必要があるのでビーム収束型のものを用い、また
分解能向上のためにショックウエーブ型のものが用いら
れる。1aは水,油等の接触媒質を母材C1と探触子1との
間に介在させておくためのシューであって、探触子1に
嵌着されている。散逸していく接触媒質は給液口1bから
補充される。
FIG. 1 is a schematic diagram showing a wall thickness measuring device according to the present invention (hereinafter referred to as a device of the present invention) together with a clad material to be measured. Now, assuming that a clad steel pipe or the like having a laminated material on the inner surface is the clad material C to be measured, the ultrasonic probe 1 is used so as to face the base material C 1 side on the outer peripheral side. For the purpose of the present invention, the probe 1 should be a beam converging type because it is necessary to effectively extract the reflected wave (hereinafter referred to as interface echo) at the laminated interface between the base material C 1 and the laminated material C 2. A shock wave type is used to improve resolution. Reference numeral 1a is a shoe for interposing a contact medium such as water or oil between the base material C 1 and the probe 1, and is fitted to the probe 1. The dissipative contact medium is replenished from the liquid supply port 1b.

なお超音波ビームの焦点が、予め知られている母材C1
凡その厚さを考慮して母材、合せ材の界面に位置するよ
うに、探触子1及びシュー1aの仕様を選定しておく。
The specifications of the probe 1 and the shoe 1a are selected so that the focus of the ultrasonic beam is located at the interface between the base material and the laminated material in consideration of the approximate thickness of the base material C 1 which is known in advance. I'll do it.

この探触子1には従来装置同様にパルス発振回路2が連
っており、このパルス発振回路2により探触子1内の振
動子が超音波を垂直に発する。そして表面,界面及び合
せ材C2の背面からの反射波は探触子1に捉えられ、受信
回路へ入っていく。本発明装置はこの受信回路に特徴を
有している。即ち探触子1の振動子の音電変換作用によ
り得られた信号は前置増幅器4にて増幅された後、広帯
域増幅器5及び狭帯域増幅器6へ入力される。
A pulse oscillating circuit 2 is connected to the probe 1 as in the conventional device, and the oscillator in the probe 1 vertically emits an ultrasonic wave by the pulse oscillating circuit 2. Then, the reflected waves from the surface, the interface and the back surface of the laminated material C 2 are captured by the probe 1 and enter the receiving circuit. The device of the present invention is characterized by this receiving circuit. That is, the signal obtained by the acoustic-electric conversion action of the transducer of the probe 1 is amplified by the preamplifier 4 and then input to the wideband amplifier 5 and the narrowband amplifier 6.

広帯域増幅器5は第2図(a)に示す如く原波形に忠実に
増幅する。ここでTは探触子1からの発振波、Sは母材
C1の表面からの反射波(以下表面エコーという)、Iは
母材C1と合せ材C2との境界面からの反射波(以下、境界
面エコーという)、Bは合せ材C2の背面からの反射波
(以下、底面エコーという)の波形を夫々表わしてお
り、表面エコーSと境界面エコーIとの大きさの差は例
えば全厚10mmのS45C(母材)、SUS304(合せ材)クラッ
ド材では60dBにも及び表面エコーSに対して境界面エコ
ーIは極めて小さくS/N比も悪い。そして超音波は材料
中の伝播により結晶粒界に散乱して減衰していくが、こ
の散乱波がノイズエコーとなっているものである。これ
は周波数に依存するもので、超音波の伝播と共に高周波
成分が減衰し、中心周波数が低周波側に移行する。そこ
で狭帯域増幅器6を用いることによって特定の信号、即
ち高周波成分がノイズエコーとなって散乱して減衰し、
中心周波数が低周波側へ移行した信号のうち、境界面エ
コーIが良好なS/N比で検出される狭帯域周波数の信号
を増幅することが有効な手段となるのである。
The broadband amplifier 5 faithfully amplifies the original waveform as shown in FIG. Here, T is the oscillation wave from the probe 1, S is the base material
The reflected wave from the surface of C 1 (hereinafter referred to as surface echo), I is the reflected wave from the boundary surface between the base material C 1 and the laminated material C 2 (hereinafter referred to as boundary surface echo), and B is the laminated material C 2 Waveforms of reflected waves from the back surface (hereinafter referred to as bottom surface echoes) are shown, and the difference in size between the surface echo S and the boundary surface echo I is, for example, S45C (base material), SUS304 (composite material) having a total thickness of 10 mm. ) In the clad material, the boundary surface echo I is extremely small with respect to the surface echo S, and the S / N ratio is poor. The ultrasonic waves are scattered and attenuated by the crystal grain boundaries due to the propagation in the material, and the scattered waves are noise echoes. This depends on the frequency, and the high frequency component is attenuated as the ultrasonic wave propagates, and the center frequency shifts to the low frequency side. Therefore, by using the narrow band amplifier 6, a specific signal, that is, a high frequency component is scattered as noise echo and attenuated,
Among the signals whose center frequency has shifted to the low frequency side, it is effective to amplify the narrow band frequency signal in which the boundary surface echo I is detected with a good S / N ratio.

広帯域増幅器5の出力信号(a)はコンパレータ7へ入力
され、コンパレータ7は第2図(a)に示すように発振波
T,表面エコーS及び底面エコーBのピークよりも少し低
いしきい値レベルVTH1(図中一点鎖線)がセットされて
おり、このVTH1を超える信号(b)を論理回路10へ出力す
る。論理回路10は表面エコーSが出力される時間よりも
少し前に立上がり表面エコーSの出力後、少しして立下
がるゲート信号G1を、また底面エコーBが出力される時
間よりも少し前に立上がり底面エコーBの出力後、少し
して立下がるゲート信号G2を夫々予め発振波Tに同期し
超音波伝播速度に基づいて設定しておくことによって、
S−B間のタイミングゲートTG1を構成し、論理回路12
へ出力する。
The output signal (a) of the wide band amplifier 5 is input to the comparator 7, which then oscillates as shown in FIG. 2 (a).
A threshold level V TH1 (one-dot chain line in the figure) which is slightly lower than the peaks of T, surface echo S and bottom echo B is set, and a signal (b) exceeding this V TH1 is output to the logic circuit 10. The logic circuit 10 rises shortly before the time when the surface echo S is output, and rises shortly after the time when the surface echo S is output, and then the gate signal G1 that rises shortly before the time when the bottom surface echo B is output. After the output of the bottom echo B, the gate signal G2 which falls shortly after being output is set in advance in synchronization with the oscillation wave T based on the ultrasonic wave propagation speed.
The timing gate TG1 between S and B is formed, and the logic circuit 12
Output to.

一方、狭帯域増幅器6は、中心周波数が低周波側へ移行
した信号のうち、境界面エコーIが良好なS/N比で検出
される狭帯域の周波数の信号を、第2図(c)に示すよう
に境界面エコーIを所定のレベルに増幅する。これによ
り、境界面エコーIより大きな表面エコーS及び底面エ
コーBが飽和する。なお、ノイズエコーNは増幅される
ものの経時的に減衰する。この狭帯域増幅器6の出力信
号は、コンパレータ8及び微分器9へ入力される。微分
器9はクラッド材の凡その肉厚及び材質に基づいて設定
された時定数を有し、狭帯域増幅器6からの信号を微分
処理して、微分波形のしきい値VTH2(図中二点鎖線)を
コンパレータ8へ出力する。コンパレータ8は、狭帯域
増幅器6から直接入力された信号を微分器9から入力さ
れたしきい値VTH2と大小比較し、このしきい値VTH2を超
える信号(d)を論理回路11へ出力する。ここでVTH2を微
分器9によって設定するのは前述した結晶粒界中へ散乱
波、つまりノイズエコーNを含ませないようにするため
であり、このことは散乱波の強度が経時的に減衰するこ
とに基づいている。これにより界面エコーIの検出の際
のS/N比は良好となる。論理回路11は界面エコーIが出
力される時間よりも少し前に立上がり界面エコーIの出
力後、少しして立下がるゲート信号G3を前述のG1,G2と
同様に予め発振波Tに同期し超音波伝播速度に基づいて
設定しておくことにより、発振波Tから界面エコーIま
でのT−I間のタイミングゲートTG2を構成し、論理回
路12へ出力する。
On the other hand, in the narrow band amplifier 6, the signal of the narrow band frequency in which the boundary surface echo I is detected with a good S / N ratio among the signals whose center frequency is shifted to the low frequency side is shown in FIG. The boundary surface echo I is amplified to a predetermined level as shown in FIG. As a result, the surface echo S and the bottom surface echo B, which are larger than the boundary surface echo I, are saturated. Although the noise echo N is amplified, it is attenuated over time. The output signal of the narrow band amplifier 6 is input to the comparator 8 and the differentiator 9. The differentiator 9 has a time constant set on the basis of the approximate thickness and material of the clad material, and differentiates the signal from the narrow band amplifier 6 to obtain a differential waveform threshold V TH2 (two in the figure). The dotted chain line) is output to the comparator 8. The comparator 8 compares the signal directly input from the narrow band amplifier 6 with the threshold V TH2 input from the differentiator 9, and outputs a signal (d) exceeding this threshold V TH2 to the logic circuit 11. To do. The V TH2 is set by the differentiator 9 in order to prevent the scattered wave, that is, the noise echo N, from being included in the grain boundary described above, which means that the intensity of the scattered wave is attenuated with time. Is based on what you do. This improves the S / N ratio when detecting the interface echo I. The logic circuit 11 synchronizes the gate signal G3, which rises slightly before the time when the interface echo I is output, and then falls slightly after the output of the interface echo I, with the oscillation wave T in advance in the same manner as G1 and G2 described above. By setting based on the sound wave propagation velocity, a timing gate TG2 between the oscillation wave T and the interface echo I is formed, and the timing gate TG2 is output to the logic circuit 12.

論理回路12は前記S−B間のタイミングゲートTG1、即
ち全厚ゲートと、T−I間のタイミングゲートTG2、即
ち界面ゲートとに基づいてその重複部分からS−I間の
母材厚ゲートTG3を構成し、全厚ゲートTG1と母材厚ゲー
トTG3との差からI−B間の合せ材厚ゲートTG4を構成す
る。
The logic circuit 12 is based on the timing gate TG1 between S and B, that is, the full thickness gate, and the timing gate TG2 between T and I, that is, the interface gate, from the overlapping portion to the base material thickness gate TG3 between S and I. And the total material thickness gate TG1 and the base material thickness gate TG3 form a combined material thickness gate TG4 between I and B.

そしてTG1,TG3及びTG4の各出力信号をタイムアナログ変
換回路からなる厚み変換回路13へ出力する。厚み変換回
路13は各入力信号TG1,TG3及びTG4から全肉厚,母材厚及
び合せ材厚に対応するアナログ信号を出力する。
Then, each output signal of TG1, TG3, and TG4 is output to the thickness conversion circuit 13 including a time analog conversion circuit. The thickness conversion circuit 13 outputs analog signals corresponding to the total wall thickness, the base material thickness and the laminated material thickness from the respective input signals TG1, TG3 and TG4.

叙上の如く構成された本発明装置による厚さ測定は従来
同様に探触子1を被測定物にシュー1aが接するようにし
て臨ませることによって行われる。探触子1が発した超
音波は同じく探触子1によって捉えられ、上述の如き構
成の受信系回路によって処理され、広帯域増幅器5の出
力より全肉厚ゲートTG1を、又狭帯域増幅器6の出力よ
り界面ゲートTG2を夫々求め論理回路12によって母材厚
ゲートTG3及び合せ材厚TG4を求め、厚み変換回路13によ
り各ゲート出力が厚みに変換され、クラッド材Cの全肉
厚、母材厚及び合せ材厚が算出される。
The thickness measurement by the device of the present invention configured as described above is performed by exposing the probe 1 to the object to be measured so that the shoe 1a is in contact therewith as in the conventional case. The ultrasonic waves emitted by the probe 1 are also captured by the probe 1 and processed by the reception system circuit having the above-described configuration, and the total thickness gate TG1 and the narrow band amplifier 6 from the output of the wide band amplifier 5 are processed. The interface gate TG2 is obtained from each output, and the base metal thickness gate TG3 and the laminated material thickness TG4 are obtained by the logic circuit 12, and each gate output is converted to the thickness by the thickness conversion circuit 13, and the total thickness of the clad material C and the base material thickness are obtained. And the thickness of the laminated material is calculated.

〔効果〕〔effect〕

本発明に係るクラッド材の肉厚測定装置においては、母
材と合せ材との界面の反射波を狭帯域増幅器によって増
幅し、狭帯域増幅器の出力を微分処理した微分波形と比
較して界面エコーIを求めるため、結晶粒界中への散乱
によるノイズの影響を受けることなく良好なS/N比で界
面エコーIを検出でき、これに基づきクラッド材の全肉
厚,母材厚及び合せ材厚を正確に求めることが可能にな
る。そして本発明装置は超音波を利用するものであるか
ら、クラッド材Cが非磁性体であっても適用でき、また
試料の全長、全面に亘る測定もスキャンニングによりオ
ンラインで行うことが可能であり、本発明がクラッド鋼
等の品質管理技術の向上に寄与する処は多大である等、
本発明は優れた効果を奏する。
In the thickness measuring device for the clad material according to the present invention, the reflected wave at the interface between the base material and the laminated material is amplified by the narrow band amplifier, and the output of the narrow band amplifier is compared with the differential waveform to perform the interface echo. Since I is obtained, the interface echo I can be detected with a good S / N ratio without being affected by noise due to scattering in the crystal grain boundaries, and based on this, the total thickness of the cladding material, the base material thickness and the composite material It is possible to accurately determine the thickness. Since the device of the present invention uses ultrasonic waves, it can be applied even if the clad material C is a non-magnetic material, and the measurement of the entire length and the entire surface of the sample can be performed online by scanning. , There are many places where the present invention contributes to the improvement of quality control technology for clad steel, etc.,
The present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示すものであって、第1図は本
発明装置のブロック図、第2図は各部の信号波形図であ
る。 1……超音波探触子、2……パルス発振回路、5……広
帯域増幅器、6……狭帯域増幅器、9……微分器、10,1
1,12……論理回路
The drawings show an embodiment of the present invention. FIG. 1 is a block diagram of the device of the present invention, and FIG. 2 is a signal waveform diagram of each part. 1 ... Ultrasonic probe, 2 ... Pulse oscillating circuit, 5 ... Wideband amplifier, 6 ... Narrowband amplifier, 9 ... Differentiator, 10,1
1,12 ... Logic circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】母材と合せ材との積層構造を有するクラッ
ド材の全厚及び母材厚又は合せ材厚を超音波により測定
する装置において、 超音波探触子と、 該超音波探触子が受信した超音波反射波を増幅する広帯
域増幅器と、 前記超音波探触子が受信した超音波反射波のうち特定の
低周波の狭帯域の信号を増幅する狭帯域増幅器と、 該狭帯域増幅器の出力信号を微分処理して微分波形のし
きい値を出力する微分器と、 前記広帯域増幅器の出力より全厚に関する情報を、又前
記狭帯域増幅器の出力及び前記微分器の出力より母材厚
又は合せ材厚に関する情報を夫々抽出して、この抽出結
果に基づいて所要厚を算出する手段と を具備することを特徴とするクラッド材の肉厚測定装
置。
1. An apparatus for ultrasonically measuring the total thickness of a clad material having a laminated structure of a base material and a laminated material and the thickness of the base material or the laminated material, the ultrasonic probe and the ultrasonic probe. A wideband amplifier for amplifying an ultrasonic reflected wave received by a child, a narrowband amplifier for amplifying a specific low frequency narrowband signal of the ultrasonic reflected wave received by the ultrasonic probe, and the narrowband amplifier A differentiator for differentiating the output signal of the amplifier to output a threshold value of the differential waveform; information about the total thickness from the output of the wideband amplifier; and a base material from the output of the narrowband amplifier and the output of the differentiator. A device for measuring the thickness of a clad material, comprising: means for extracting information about the thickness or the thickness of the laminated material, and calculating a required thickness based on the extraction result.
JP62141797A 1987-06-05 1987-06-05 Clad material thickness measuring device Expired - Lifetime JPH0678905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141797A JPH0678905B2 (en) 1987-06-05 1987-06-05 Clad material thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141797A JPH0678905B2 (en) 1987-06-05 1987-06-05 Clad material thickness measuring device

Publications (2)

Publication Number Publication Date
JPS63305207A JPS63305207A (en) 1988-12-13
JPH0678905B2 true JPH0678905B2 (en) 1994-10-05

Family

ID=15300360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141797A Expired - Lifetime JPH0678905B2 (en) 1987-06-05 1987-06-05 Clad material thickness measuring device

Country Status (1)

Country Link
JP (1) JPH0678905B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442012A (en) * 1990-06-06 1992-02-12 Sumitomo Metal Ind Ltd Thickness measuring apparatus for clad material
US5271274A (en) * 1991-08-14 1993-12-21 The Board Of Trustees Of The Leland Stanford Junior University Thin film process monitoring techniques using acoustic waves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137305U (en) * 1979-03-23 1980-09-30
JPS57154009A (en) * 1981-03-19 1982-09-22 Sumitomo Metal Ind Ltd Measurement of thickness of composite object composed of zirconium layer and zirconium alloy layer

Also Published As

Publication number Publication date
JPS63305207A (en) 1988-12-13

Similar Documents

Publication Publication Date Title
US4307616A (en) Signal processing technique for ultrasonic inspection
US5119678A (en) Pulse echo and through transmission ultra-sound
JP2000241397A (en) Method and apparatus for detecting surface defect
JPH0678905B2 (en) Clad material thickness measuring device
JP2009058238A (en) Method and device for defect inspection
Fritsch et al. Detecting small flaws near the interface in pulse-echo
CN104412106B (en) The method for evaluating quality and quality evaluation device of steel
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JP4606860B2 (en) Defect identification method and apparatus by ultrasonic inspection
JPH0157738B2 (en)
JP2006162321A5 (en)
JPH07248317A (en) Ultrasonic flaw detecting method
JPH0552461B2 (en)
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP2003294714A (en) Electromagnetic acoustic wave inspection device using cross-correlation method
RU2052769C1 (en) Ultrasonic method of measuring thickness of articles with large attenuation of ultrasound and apparatus for performing the method
JP3043941B2 (en) Surface thickness measurement method for multilayer materials
JPS63241351A (en) Processing of reflected wave of ultrasonic pulse
JPH0442012A (en) Thickness measuring apparatus for clad material
JP2513013B2 (en) Ultrasonic flaw detection method
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH08219750A (en) Method and apparatus for measuring thickness of clad material
JP3058626B2 (en) Non-destructive inspection method for metal
JPS6082855A (en) Ultrasonic flaw detecting apparatus
JPH0587784A (en) Method and apparatus for estimation for quantification of defect