JPH0677310A - Washing method for silicon carbide member - Google Patents

Washing method for silicon carbide member

Info

Publication number
JPH0677310A
JPH0677310A JP25207692A JP25207692A JPH0677310A JP H0677310 A JPH0677310 A JP H0677310A JP 25207692 A JP25207692 A JP 25207692A JP 25207692 A JP25207692 A JP 25207692A JP H0677310 A JPH0677310 A JP H0677310A
Authority
JP
Japan
Prior art keywords
washing
silicon carbide
cleaning
gas
carbide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25207692A
Other languages
Japanese (ja)
Inventor
Fukuji Matsumoto
福二 松本
Yoshihiko Fujima
吉彦 藤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP25207692A priority Critical patent/JPH0677310A/en
Publication of JPH0677310A publication Critical patent/JPH0677310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning In General (AREA)

Abstract

PURPOSE:To make it possible to wash in a short time and with a high washing degree by performing dry type hydrochloride gas washing for a silicon carbide member for producing semiconductors, then reducing pressure, removing a residual gas in the system, and performing oxygen gas flow washing. CONSTITUTION:Wet washing is performed by immersing a silicon carbide member into a 5 to 10% hydrofluoric acid solution for 60 to 120 minutes. Then, it is taken out from said solution and acid is fully removed by fully rinsing it with pure water, and natural drying is performed. When performing dry type washing for a dried silicon carbide member, the silicon carbide member is set in a diffusion furnace and heating is started. Then, after reaching a predetermined temperature, dry hydrochloride gas washing is performed in which oxygen gas and hydrochloride gas flow. Thereafter, the pressure is reduced in the system, hydrochloride gas is applied, the pressure is reduced again and the residual gas in the system is removed. Then, oxygen gas flow washing is performed and dry washing is completed. By doing this, the washing can be performed in a short time with a high degree of washing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種半導体製造用の炭
化珪素質部材の洗浄方法に関し、特に、湿式洗浄に引き
続いて行う乾式洗浄を短時間でかつ高洗浄度で行うこと
ができる炭化珪素質部材の洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a silicon carbide based material for manufacturing various semiconductors, and more particularly to a silicon carbide capable of performing a dry cleaning following a wet cleaning in a short time with a high cleaning degree. The present invention relates to a method for cleaning quality members.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
Siウェハー等の半導体の製造工程において、半導体に
熱処理を施すための拡散炉(酸化炉)には、特に耐熱特
性に優れている点から、均熱管(ライナーチューブ)、
反応管(プロセスチューブ)、治具(ウェハーボート)
等を炭化珪素質にて形成した炭化珪素質部材が多用され
ている。これらの部材を用いてSiウェハーに熱処理を
施す場合、Siウェハーを治具上に載置し、これをプロ
セスチューブ内に装填して熱処理するため、特にプロセ
スチューブ及びボートを形成する炭化珪素質基材は高純
度であり、炭化珪素質部材表面が高洗浄度であることが
要求される。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
In a manufacturing process of semiconductors such as Si wafers, a diffusion furnace (oxidation furnace) for heat-treating semiconductors has a soaking tube (liner tube) because of its excellent heat resistance.
Reaction tube (process tube), jig (wafer boat)
A silicon carbide-based member made of silicon carbide or the like is often used. When a Si wafer is subjected to heat treatment using these members, the Si wafer is placed on a jig and loaded into a process tube for heat treatment. The material is required to have a high degree of purity and the surface of the silicon carbide material to have a high degree of cleaning.

【0003】従って、プロセスチューブや治具等の炭化
珪素質部材には使用前や使用期間中に定期的に十分な洗
浄を施さなければならず、この場合、洗浄方法として
は、湿式弗酸洗浄の後、拡散炉にセットし、高温下で塩
酸ガスを用いて乾式洗浄する方法が一般に採用されてい
る。
Therefore, silicon carbide members such as process tubes and jigs must be sufficiently cleaned before and during the period of use. In this case, the cleaning method is wet hydrofluoric acid cleaning. After that, the method of setting in a diffusion furnace and dry-cleaning at high temperature using hydrochloric acid gas is generally adopted.

【0004】このような洗浄方法について詳述すると、
まず、プロセスチューブやボート等の部材を5〜10%
の弗酸溶液に浸漬した後、純水で十分にリンスする湿式
洗浄を行う。チューブや治具などが石英製の場合は、こ
のような湿式洗浄を行うだけで使用可能となるが、炭化
珪素質部材の場合、湿式洗浄だけでは十分ではなく、炭
化珪素質本来の特性を発揮させるためには、上記湿式洗
浄後、更に拡散炉内で空焼きや塩酸ガス等を用いた乾式
洗浄を行い、炭化珪素質部材の表面に存在する不純物を
塩化物ガスとして除去することが必要である。
A detailed description will be given of such a cleaning method.
First, 5 to 10% of materials such as process tubes and boats
After being dipped in the hydrofluoric acid solution, the wet cleaning is performed by sufficiently rinsing with pure water. If the tube or jig is made of quartz, it can be used simply by performing such wet cleaning, but in the case of silicon carbide-based members, wet cleaning alone is not sufficient, and the original characteristics of silicon carbide are exhibited. In order to do so, after the above-mentioned wet cleaning, it is necessary to carry out dry baking using a baking furnace or hydrochloric acid gas in the diffusion furnace to remove impurities existing on the surface of the silicon carbide material as chloride gas. is there.

【0005】この乾式洗浄は、湿式洗浄したチューブや
治具などを拡散炉にセットし、ドライ酸素ガスを流しな
がら1200℃以上の高温に加熱した後、数%の塩酸ガ
スを24〜48時間以上に亘って流し、更に、残留する
塩化物を除去するために塩酸ガスを止めてから24〜4
8時間以上の空焼きを行う洗浄方法であり、3〜5日以
上、場合により7〜8日間以上の非常に長い時間を要す
るものである。
In this dry cleaning, a tube and a jig that have been wet cleaned are set in a diffusion furnace, heated to a high temperature of 1200 ° C. or higher while flowing dry oxygen gas, and then several percent hydrochloric acid gas is supplied for 24 to 48 hours or more. For 24 to 4 hours, and then the hydrochloric acid gas is turned off to remove residual chloride.
This is a cleaning method in which air baking is performed for 8 hours or more, which requires a very long time of 3 to 5 days or more, and in some cases 7 to 8 days or more.

【0006】更に、乾式洗浄した後、炭化珪素質部材に
ウェハーを実装して汚染評価試験を行い、不合格の場合
は炭化珪素質部材を再度洗浄して評価試験を行わなけれ
ばならず、炭化珪素質部材が使用可能な状態となるまで
この工程を数度繰り返さなければならない場合は長時間
を要するため、乾式洗浄工程が半導体の生産性の低下及
び生産コスト上昇の原因となっている。
Further, after dry-cleaning, the wafer is mounted on the silicon carbide material and a contamination evaluation test is conducted. If the result is not acceptable, the silicon carbide material must be washed again to carry out an evaluation test. If this process has to be repeated several times until the silicon-based member is ready for use, it takes a long time, and the dry cleaning process causes a decrease in semiconductor productivity and an increase in production cost.

【0007】本発明は上記事情に鑑みなされたもので、
炭化珪素質部材の洗浄工程における乾式洗浄を短時間で
かつ高洗浄度で行うことができる半導体製造用炭化珪素
質部材の洗浄方法を提供することを目的とする。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a method for cleaning a silicon carbide based member for semiconductor production, which can perform dry cleaning in a cleaning step of a silicon carbide based member in a short time with a high degree of cleaning.

【0008】[0008]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、半導体製造
用炭化珪素質部材を乾式塩酸ガス洗浄した後、減圧し、
系内の残留ガスを除去した後、酸素ガスフロー洗浄を行
うことにより、短時間でしかも高洗浄度で洗浄が可能と
なることを知見した。
Means and Actions for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventor has conducted a dry hydrochloric acid gas cleaning on a silicon carbide material for semiconductor production, and then reduced the pressure,
It has been found that cleaning the oxygen gas flow cleaning after removing the residual gas in the system enables cleaning in a short time and with a high cleaning degree.

【0009】即ち、本発明者が半導体製造用炭化珪素質
部材の乾式洗浄につき種々検討を行った結果、炭化珪素
質部材の表面には凹凸部やポアが存在するため、塩酸ガ
スが凹部の先端に流れにくく、かつ出にくいこと、この
ため、凹部に塩酸ガスや不純物が塩酸ガスと反応するこ
とにより生成した塩化物ガスが残留しやすく、長時間に
亘る洗浄を要し、また、十分な洗浄を行うことができな
い場合があること、これに対し乾式塩酸ガス洗浄し、次
いで系内を減圧状態とした後、再び酸素ガスフロー洗浄
を行うことにより、炭化珪素質部材表面の凹部やポア中
の塩化物ガス等の残留ガスが容易に除去され、洗浄時間
が大幅に短縮されるのみならず、従来法と比較して高レ
ベルの洗浄度が可能であることことを知見し、本発明を
なすに至った。
That is, as a result of various investigations by the inventor of the present invention on dry cleaning of a silicon carbide-based member for semiconductor production, since the surface of the silicon carbide-based member has irregularities and pores, hydrochloric acid gas causes the tip of the recess to be exposed. The chloride gas generated by the reaction of hydrochloric acid gas and impurities with hydrochloric acid gas is liable to remain in the recesses, which requires long-term cleaning and sufficient cleaning. In some cases, dry hydrochloric acid gas cleaning is performed, and then the system is depressurized, and then oxygen gas flow cleaning is performed again to clean the recesses and pores in the surface of the silicon carbide-based member. It was found that not only the residual gas such as chloride gas is easily removed and the cleaning time is significantly shortened, but also a high level of cleaning degree is possible as compared with the conventional method, and the present invention is made. Came to.

【0010】以下、本発明を更に詳しく説明すると、本
発明の半導体製造用炭化珪素質部材の製造方法は、該部
材を乾式塩酸ガス洗浄した後、減圧し、系内の残留ガス
を除去した後、酸素ガスフロー洗浄を行うものである。
The present invention will be described in more detail below. In the method for producing a silicon carbide-based member for semiconductor production of the present invention, the member is cleaned with dry hydrochloric acid gas, depressurized, and residual gas in the system is removed. , Oxygen gas flow cleaning is performed.

【0011】ここで、本発明の洗浄方法は、反応焼結
法、再結晶法、常圧焼結法などいずれの方法で製造した
炭化珪素質部材に対しても適用することができる。ま
た、炭化珪素質部材としては、ライナーチューブ、ボー
ト、カンチレバー、フォークなどが挙げられる。
Here, the cleaning method of the present invention can be applied to a silicon carbide member manufactured by any method such as a reaction sintering method, a recrystallization method and an atmospheric pressure sintering method. Examples of silicon carbide members include liner tubes, boats, cantilevers, forks and the like.

【0012】本発明の洗浄方法で炭化珪素質部材を洗浄
するには、まず、好ましくは炭化珪素質部材を5〜10
%の弗酸溶液に60〜120分間浸漬することにより、
湿式洗浄を行う。次いで、弗酸溶液中から取り出し、純
水で十分にリンスを行うことにより酸を除去し、自然乾
燥させる。
In order to clean the silicon carbide-based member by the cleaning method of the present invention, first, preferably the silicon carbide-based member is used for 5 to 10 times.
% Hydrofluoric acid solution for 60-120 minutes
Perform wet cleaning. Then, it is taken out of the hydrofluoric acid solution, rinsed with pure water sufficiently to remove the acid, and naturally dried.

【0013】乾燥させた炭化珪素質部材を乾式洗浄する
場合、該部材を拡散炉にセットし、加熱を開始する。こ
の場合、治具をチューブ内に配置することにより、両部
材を同時に洗浄処理することができる。加熱は室温から
開始し、数リットル/分以下、好ましくは1〜5リット
ル/分の流量で酸素を流しながら、約5〜15℃/分の
昇温速度で昇温する。この場合、加熱の途中で約20
0,400,600,800,1000℃の各温度で1
〜4時間保持することが好ましい。加熱の到達温度は1
000〜1200℃でもよいが、高温であるほど洗浄の
効果が大きいので、1200℃以上とすることが好まし
く、また、1280℃を超えると炭化珪素質部材に損耗
をきたすおそれがあるので、1200〜1280℃とす
ることがより好ましい。
When dry-cleaning a dried silicon carbide member, the member is set in a diffusion furnace and heating is started. In this case, both members can be cleaned at the same time by disposing the jig in the tube. The heating is started from room temperature, and the temperature is raised at a heating rate of about 5 to 15 ° C./minute while flowing oxygen at a flow rate of several liters / minute or less, preferably 1 to 5 liters / minute. In this case, about 20 during heating
1 at each temperature of 0,400,600,800,1000 ℃
It is preferable to hold for up to 4 hours. The ultimate temperature for heating is 1
Although the temperature may be 000 to 1200 ° C., the higher the temperature is, the greater the cleaning effect is. Therefore, it is preferable to set the temperature to 1200 ° C. or higher. More preferably, it is set to 1280 ° C.

【0014】次いで、所定の温度に到達した後、乾式ガ
ス洗浄を行う。この乾式塩酸ガス洗浄は酸素ガスと塩酸
ガスとを流すことによって行うことができる。その後、
真空ポンプなどを用いて系内を減圧にすることが好まし
い。この減圧度としては、圧力が低いほど残留ガス除去
の効果が大きいので、圧力は500Torr以下、特に
100Torr以下とすることが好ましい。
Next, after reaching a predetermined temperature, dry gas cleaning is performed. This dry hydrochloric acid gas cleaning can be performed by flowing oxygen gas and hydrochloric acid gas. afterwards,
It is preferable to reduce the pressure in the system using a vacuum pump or the like. As the degree of pressure reduction, the lower the pressure, the greater the effect of removing the residual gas. Therefore, the pressure is preferably set to 500 Torr or less, particularly 100 Torr or less.

【0015】所定の真空度に達した後、真空ポンプを停
止し、酸素ガスと塩酸ガスとを流すが、この場合、酸素
の流量は上記と同量とすることができ、また、塩酸ガス
の流量は0.1〜3リットル/分、特に0.15〜0.
3リットル/分とすることが好ましい。酸素ガスと塩酸
ガスとを流す時間は数時間以下、特に2〜4時間とする
ことが好ましい。また、以上のような減圧から塩酸ガス
洗浄までの工程を1回以上、好ましくは2〜3回行うこ
とが望ましい。
After reaching a predetermined degree of vacuum, the vacuum pump is stopped and oxygen gas and hydrochloric acid gas are caused to flow. In this case, the flow rate of oxygen can be the same as above, and the amount of hydrochloric acid gas The flow rate is 0.1 to 3 liters / minute, especially 0.15 to 0.
It is preferably 3 liters / minute. The time for flowing the oxygen gas and the hydrochloric acid gas is preferably several hours or less, and particularly preferably 2 to 4 hours. In addition, it is desirable that the steps from the pressure reduction to the cleaning with hydrochloric acid gas as described above are performed once or more, preferably 2-3 times.

【0016】塩酸ガス洗浄が終了した後、再度上記と同
様の減圧を行い、系内の残留ガスを除去した後、次いで
上記と同様の流量で酸素ガスを好ましくは数時間流すこ
とによって酸素ガスフロー洗浄を行い、乾式洗浄を終了
する。
After the cleaning with hydrochloric acid gas is completed, the same depressurization as above is carried out again to remove the residual gas in the system, and then the oxygen gas flow is carried out preferably at the same flow rate as above for several hours. Wash and finish dry washing.

【0017】以上のような方法で炭化珪素質部材を洗浄
することにより、従来7〜8日間要していた洗浄工程が
3日間程度に短縮され、かつ高レベルの洗浄が容易とな
るものである。
By cleaning the silicon carbide member by the above-mentioned method, the cleaning process which has conventionally required 7 to 8 days can be shortened to about 3 days, and a high level cleaning can be facilitated. .

【0018】[0018]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0019】[実施例]外径170mm、内径158m
m、長さ2580mmの炭化珪素質プロセスチューブ
(材質:信越化学工業(株)製,SEN−800)と、
長さ150mmの4in.ウェハー用カセットボート
(材質:同上)を7%の弗酸溶液に60分間浸漬した。
この部材を7%の弗酸溶液中から取り出し、純水で十分
にリンスした。
[Example] Outer diameter 170 mm, inner diameter 158 m
m, length 2580 mm silicon carbide process tube (material: Shin-Etsu Chemical Co., Ltd., SEN-800),
Length of 150 mm, 4 in. A wafer cassette boat (material: same as above) was immersed in a 7% hydrofluoric acid solution for 60 minutes.
This member was taken out of the 7% hydrofluoric acid solution and thoroughly rinsed with pure water.

【0020】次いで、クリーンベンチで24時間乾燥し
た後、拡散炉にチューブをセットし、チューブ内にボー
トを挿入し、チューブ内に3リットル/分で酸素ガスを
流しながら、6℃/分の昇温速度で1250℃まで昇温
した。
Then, after drying on a clean bench for 24 hours, the tube was set in a diffusion furnace, the boat was inserted into the tube, and oxygen gas was flown into the tube at 3 liters / minute while increasing the temperature at 6 ° C./minute. The temperature was raised to 1250 ° C. at a temperature rate.

【0021】1250℃に到達した後、ガスフローを停
止し、真空ポンプでチューブ内を90Torrまで減圧
した後、真空ポンプの運転を停止し、酸素ガスを3リッ
トル/分、塩酸ガスを0.15リットル/分で3時間に
亘ってチューブ内に流した。以上のような減圧から酸素
ガス及び塩酸ガスフローまでの工程を2回繰り返し、再
度90Torrまで減圧した後、真空ポンプを停止し、
その後、酸素ガスのみを上記と同様の流量でを4時間流
し、洗浄を終了した。
After reaching 1250 ° C., the gas flow was stopped, the inside of the tube was depressurized to 90 Torr by a vacuum pump, the operation of the vacuum pump was stopped, and oxygen gas was supplied at 3 liter / min and hydrochloric acid gas was added at 0.15. Flowed into the tube at liter / min for 3 hours. The above steps from the pressure reduction to the flow of oxygen gas and hydrochloric acid gas are repeated twice, the pressure is reduced to 90 Torr again, and then the vacuum pump is stopped.
Then, only oxygen gas was flowed at the same flow rate as above for 4 hours to complete the cleaning.

【0022】[比較例]比較のため、実施例と同仕様の
炭化珪素質部材を実施例と同一条件で湿式洗浄した後、
拡散炉にセットし、実施例と同様に3リットル/分で酸
素ガスを流しながら、6℃/分で1250℃まで昇温し
た。1250℃に到達した後、酸素ガスを3リットル/
分で、塩酸ガスを0.15リットル/分で48時間に亘
ってチューブ内に流した。次いで、塩酸ガスを停止し、
酸素ガスのみを48時間に亘って流し、洗浄を終了し
た。
[Comparative Example] For comparison, a silicon carbide member having the same specifications as those of the example was wet-cleaned under the same conditions as those of the example, and then,
It was set in a diffusion furnace and heated to 1250 ° C. at 6 ° C./min while flowing oxygen gas at 3 liters / min in the same manner as in the example. After reaching 1250 ° C, add 3 liters of oxygen gas /
Minutes, hydrochloric acid gas was flowed through the tube at 0.15 l / min for 48 hours. Then stop the hydrochloric acid gas,
Only oxygen gas was flowed for 48 hours to complete the cleaning.

【0023】実施例及び比較例で洗浄したプロセスチュ
ーブ及びウェハーボートにSiウェハー(CZ−P型,
<111>)を装填し、酸素中、1150℃で30分間
熱処理を施した。このときのSiウェハーの汚染度を調
べるため、ウェハーのライフタイムを測定した。結果を
表1に示す。なお、ウェハーのライフタイムは汚染が少
ないほど長い。
Si wafers (CZ-P type, CZ-P type) were attached to the process tubes and wafer boats cleaned in the examples and comparative examples.
<111>) was loaded and heat treatment was performed in oxygen at 1150 ° C. for 30 minutes. In order to examine the contamination degree of the Si wafer at this time, the lifetime of the wafer was measured. The results are shown in Table 1. The lifetime of the wafer is longer as the contamination is smaller.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明によれば、炭化珪素質部材の洗浄
工程における乾式洗浄を短時間でかつ高洗浄度で行うこ
とができ、このため半導体の生産性が向上し、生産コス
トを低下させることができる。
According to the present invention, the dry cleaning in the cleaning step of the silicon carbide material can be performed in a short time and with a high cleaning degree, which improves the productivity of the semiconductor and reduces the production cost. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造用炭化珪素質部材を乾式塩酸
ガス洗浄した後、減圧し、系内の残留ガスを除去した
後、酸素ガスフロー洗浄を行うことを特徴とする炭化珪
素質部材の洗浄方法。
1. Cleaning of a silicon carbide-based member, characterized in that after cleaning a silicon carbide-based member for semiconductor production with a dry hydrochloric acid gas, decompressing the residual gas in the system to remove oxygen gas flow cleaning. Method.
JP25207692A 1992-08-27 1992-08-27 Washing method for silicon carbide member Pending JPH0677310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25207692A JPH0677310A (en) 1992-08-27 1992-08-27 Washing method for silicon carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25207692A JPH0677310A (en) 1992-08-27 1992-08-27 Washing method for silicon carbide member

Publications (1)

Publication Number Publication Date
JPH0677310A true JPH0677310A (en) 1994-03-18

Family

ID=17232219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25207692A Pending JPH0677310A (en) 1992-08-27 1992-08-27 Washing method for silicon carbide member

Country Status (1)

Country Link
JP (1) JPH0677310A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375752B1 (en) * 1999-06-29 2002-04-23 Bridgestone Corporation Method of wet-cleaning sintered silicon carbide
US6419757B2 (en) 1998-12-08 2002-07-16 Bridgestone, Corporation Method for cleaning sintered silicon carbide in wet condition
US6670862B2 (en) 2000-03-22 2003-12-30 Murata Manufacturing Co., Ltd. Nonreciprocal circuit device and communication apparatus
CN101979160A (en) * 2010-05-21 2011-02-23 北京天科合达蓝光半导体有限公司 Method for cleaning pollutants on surface of silicon carbide wafer
WO2014163703A3 (en) * 2013-03-13 2014-11-20 Rolls-Royce Corporation Method for making gas turbine engine composite structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6419757B2 (en) 1998-12-08 2002-07-16 Bridgestone, Corporation Method for cleaning sintered silicon carbide in wet condition
US6375752B1 (en) * 1999-06-29 2002-04-23 Bridgestone Corporation Method of wet-cleaning sintered silicon carbide
US6670862B2 (en) 2000-03-22 2003-12-30 Murata Manufacturing Co., Ltd. Nonreciprocal circuit device and communication apparatus
CN101979160A (en) * 2010-05-21 2011-02-23 北京天科合达蓝光半导体有限公司 Method for cleaning pollutants on surface of silicon carbide wafer
WO2014163703A3 (en) * 2013-03-13 2014-11-20 Rolls-Royce Corporation Method for making gas turbine engine composite structure
US9328620B2 (en) 2013-03-13 2016-05-03 Rolls-Royce Corporation Method for making gas turbine engine composite structure

Similar Documents

Publication Publication Date Title
JP5281027B2 (en) Method of processing semiconductor processing components and components formed by this method
US5380370A (en) Method of cleaning reaction tube
JPH118216A (en) Method of cleaning semiconductor manufacturing member
JPH0677310A (en) Washing method for silicon carbide member
JPH08148552A (en) Semiconductor thermal treatment jig and its surface treatment method
JP3058909B2 (en) Cleaning method
JP6471631B2 (en) Method for regenerating member in silicon single crystal pulling apparatus
JP3042659B2 (en) Method for oxidizing semiconductor wafer
US6063205A (en) Use of H2 O2 solution as a method of post lap cleaning
JPH11283924A (en) Semiconductor wafer manufacture
JPH06163675A (en) Jig for semiconductor
JP3595681B2 (en) Manufacturing method of epitaxial wafer
JPH06211575A (en) Silicon carbide member
JP2001250785A (en) Washing method of member for semiconductor heat treatment covered with silicon carbide
JP3036366B2 (en) Processing method of semiconductor silicon wafer
JPH06128036A (en) Silicon carbide part for semiconductor
JP2648556B2 (en) Surface treatment method for silicon wafer
JPH0585502B2 (en)
CN116525416B (en) Pretreatment method of silicon epitaxial wafer
JPH1126413A (en) Manufacture of semiconductor device
JP2006187680A (en) Method for cleaning sintered compact of silicon carbide
KR100226549B1 (en) Cleaning apparatus for semiconductor process
JPS5939029A (en) Purifying method for manufacturing device of semiconductor
JPH09260328A (en) Silicon wafer surface treating method
JP2011009597A (en) Method of cleaning jig for heat treatment