JPH0675256A - Waveguide type optical modulator - Google Patents

Waveguide type optical modulator

Info

Publication number
JPH0675256A
JPH0675256A JP25067492A JP25067492A JPH0675256A JP H0675256 A JPH0675256 A JP H0675256A JP 25067492 A JP25067492 A JP 25067492A JP 25067492 A JP25067492 A JP 25067492A JP H0675256 A JPH0675256 A JP H0675256A
Authority
JP
Japan
Prior art keywords
waveguide
optical modulator
layer
refractive index
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25067492A
Other languages
Japanese (ja)
Other versions
JP2847660B2 (en
Inventor
Yoshito Shudo
義人 首藤
Makoto Hikita
真 疋田
Michiyuki Amano
道之 天野
Haruki Ozawaguchi
治樹 小沢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25067492A priority Critical patent/JP2847660B2/en
Publication of JPH0675256A publication Critical patent/JPH0675256A/en
Application granted granted Critical
Publication of JP2847660B2 publication Critical patent/JP2847660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the optical modulator of low loss and low voltage driving by forming a single mode waveguide structure consisting of an org. high-polymer material exhibiting a high primary electrooptical effect. CONSTITUTION:This optical modulator has the structure disposed with a coplanar electrode 11 consisting of metal on the uppermost part (or oxide silicon film of the lower part) and is constituted by using the org. high-polymer material exhibiting the primary electrooptical effect as the material of core layers 8, optimizing the difference in the specific refractive index from the materials of the ambient clad layers 7, 9, 10 to constitute the single mode waveguides and providing the surface of the silicon oxide layer (or upper clad layer) in the lower part with another grounding electrode 6. The confinement of electric fields is thereby increased and the modulation operation with the low voltage is executed. Then, the org. high-polymer material having the high primary electrooptical effect is used as the material of the waveguide layer and the difference in the specific refractive index from the material of the ambient clad layers is optimized to form the single mode waveguide. In addition, the grounding electrode 6 is separately provided in order to increase the confinement of the electric fields of coplanar line type electrodes 11. Further, the spacing between the upper and lower electrodes is narrowed and, therefore, the modulation operation is executed with the extremely low driving voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導波路型光変調器、さら
に詳細には電気光学効果を応用し、特に低電圧で駆動す
る光変調器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical modulator, and more particularly to an optical modulator which applies an electro-optical effect and is driven at a low voltage.

【0002】[0002]

【従来の技術】電気光学効果は、光学媒体に電界を印加
した場合に、この媒体の屈折率が変化する現象であり、
二次の光非線形性に起因する線形電気光学効果(ポッケ
ルス効果)と、三次の光非線形性に起因する二次電気光
学効果(カー効果)とがある。実用的には、二次の非線
形定数の方が三次の非線形定数に比べて数桁も大きいた
め、二次の非線形性を利用した電気光学効果が多く用い
られている。この効果を利用した導波路型光変調器は光
集積回路に組み入れられ、半導体レーザなどの高速外部
変調に応用できるため、動作速度の速い(変調帯域の広
い)光変調器が強く求められている。この種の外部変調
器としては、光強度変調器、光位相変調器などがある。
The electro-optic effect is a phenomenon in which the refractive index of an optical medium changes when an electric field is applied to the medium.
There are a linear electro-optic effect (Pockels effect) caused by the second-order optical nonlinearity and a second-order electro-optic effect (Kerr effect) caused by the third-order optical nonlinearity. Practically, since the second-order nonlinear constant is several orders of magnitude larger than the third-order nonlinear constant, the electro-optic effect utilizing the second-order nonlinearity is often used. A waveguide type optical modulator utilizing this effect is incorporated in an optical integrated circuit and can be applied to high-speed external modulation of a semiconductor laser or the like. Therefore, an optical modulator having a high operation speed (wide modulation band) is strongly demanded. . Examples of this type of external modulator include a light intensity modulator and an optical phase modulator.

【0003】従来の外部変調器の例として、図5にその
斜視図を示す無機強誘電性結晶LiNbO3(LN)を
用いた光強度変調器(文献:井筒ら、電子通信学会論文
誌、J64-C巻、4号、264頁、1981年)がある。
ここで、変調用電極1はAuもしくはCuなどの金属層
からなる進行波電極であり、対称もしくは非対称平面ス
トリップ線路が使用されている。光導波路部分2は、適
当な方位で切り出されたLN結晶3に、Tiイオンなど
を内部拡散させて屈折率を増加させた部分である。入射
光は入口付近のY分岐で2つのボートに分岐され、片方
のボートを伝搬する光は電極1により印加されるマイク
ロ波と相互作用して位相変化を起こす。この位相変化を
生じた光波は他のボートを伝搬してきた(位相変化のな
い)光波と出口付近のY分岐で合流し、重ね合わせられ
た光波は位相変化に起因する強度変化を引き起こす。
As an example of a conventional external modulator, a light intensity modulator using an inorganic ferroelectric crystal LiNbO 3 (LN) whose perspective view is shown in FIG. 5 (reference: Izutsu et al., IEICE Transactions, J64 -Vol. C, No. 4, 264, 1981).
Here, the modulation electrode 1 is a traveling wave electrode made of a metal layer such as Au or Cu, and a symmetrical or asymmetrical flat strip line is used. The optical waveguide portion 2 is a portion in which Ti ions and the like are internally diffused in the LN crystal 3 cut out in an appropriate orientation to increase the refractive index. The incident light is branched into two boats at the Y branch near the entrance, and the light propagating in one boat interacts with the microwave applied by the electrode 1 to cause a phase change. The light wave having the phase change merges with the light wave propagating through another boat (without the phase change) at the Y branch near the exit, and the superposed light wave causes the intensity change due to the phase change.

【0004】この光変調器の場合、電極1は進行波電極
として構成されているため、理想的には電気回路的な帯
域幅の制限はない。また、電極1を伝搬するマイクロ波
と光波の伝搬速度が一致する限りは、入射光が光導波路
2を走行する時間の影響による帯域幅の制限もないの
で、一般に高速動作の光変調器に使用される。
In the case of this optical modulator, since the electrode 1 is constructed as a traveling wave electrode, ideally, there is no limitation on the bandwidth of an electric circuit. Further, as long as the propagation speeds of the microwave propagating through the electrode 1 and the light wave are the same, there is no limitation on the bandwidth due to the influence of the time during which the incident light travels through the optical waveguide 2. To be done.

【0005】しかし、実際にはマイクロ波と光の速度差
があり、これによって帯域幅が制限される。マイクロ波
と光に対するLN結晶の等価屈折率をそれぞれnm
o、導波路上の電極の長さをlと表すと、この速度差
によって生じる帯域幅BWは、
In reality, however, there is a speed difference between the microwave and light, which limits the bandwidth. The equivalent refractive index of the LN crystal for microwave and light is n m ,
Assuming that n o is the length of the electrode on the waveguide and l is the bandwidth BW caused by this velocity difference,

【0006】 BW=1.4c/(π1|nm−no|) (1) ただし、cは光速[0006] BW = 1.4c / (π1 | n m -n o |) (1) where, c is the speed of light

【0007】となる。ここでnoは1.3μm帯で約
2.3であり、nmは近似的に次式で見積ることができ
約4.2である。
[0007] Here, n o is approximately 2.3 in the 1.3 μm band, and n m can be approximately estimated by the following equation and is approximately 4.2.

【0008】 nm=[(1+εg)/2]1/2 (2) ただし、εgは導波路を構成する結晶の誘電率N m = [(1 + ε g ) / 2] 1/2 (2) where ε g is the dielectric constant of the crystal forming the waveguide.

【0009】このように従来の光変調器では導波路を構
成する結晶自体の誘電率(約34)が大きいために、マ
イクロ波の等価屈折率が結晶の屈折率を大きく上回り、
マイクロ波と光波の位相速度差による帯域制限を受け
る。また、この速度不整合を改善するには、(1)式か
らわかるように、マイクロ波と光波の相互作用長(電極
長)lを短くする必要がある。しかし、電極長lを短く
すると、駆動電圧が大きくなるため変調効率が低下する
という欠点を有していた。
As described above, in the conventional optical modulator, since the dielectric constant (about 34) of the crystal itself that constitutes the waveguide is large, the equivalent refractive index of the microwave greatly exceeds the refractive index of the crystal,
Bandwidth is limited by the phase velocity difference between microwaves and light waves. Further, in order to improve this velocity mismatch, it is necessary to shorten the interaction length (electrode length) l of the microwave and the light wave, as can be seen from the equation (1). However, when the electrode length 1 is shortened, the driving voltage increases, and the modulation efficiency decreases.

【0010】これに対し、有機高分子材料からなる非線
形光学材料は、誘電率が無機材料に比べて小さく、上記
の速度不整合の問題を大幅に改善できる見込がある上
に、薄膜化などの加工性に富み、しかも広い波長域で二
次の非線形光学系数χ(2)が大きいなど、高性能な光
変調器用材料として期待されている。
On the other hand, a nonlinear optical material made of an organic polymer material has a smaller dielectric constant than an inorganic material, and it is expected that the above-mentioned problem of speed mismatch can be greatly improved, and in addition, a thin film is required. It is expected to be used as a high-performance optical modulator material because it has excellent workability and has a large second-order nonlinear optical coefficient χ (2) in a wide wavelength range.

【0011】[0011]

【発明が解決しようとする課題】上述のように、光変調
器用材料として有機高分子材料は種々の利点を有する
が、現実には変調効率の向上に有効な単一モード導波路
構造を有し、マイクロ波と光の速度整合が達成されるよ
うに電極構造を最適化した光変調器について、有機高分
子材料を用いた例はほとんどない。さらに、このような
有機高分子材料を用いた低損失で5V以下の低い電圧で
駆動する導波路型光変調器は報告されていない。
As described above, the organic polymer material has various advantages as a material for an optical modulator, but in reality, it has a single mode waveguide structure effective for improving the modulation efficiency. As for the optical modulator in which the electrode structure is optimized so that the velocity matching between the microwave and the light is achieved, there are few examples using an organic polymer material. Further, there has been no report of a waveguide type optical modulator using such an organic polymer material and having a low loss and driven at a low voltage of 5 V or less.

【0012】本発明はこのような背景の下になされたも
のであり、その目的は現状の光変調器が抱える上記の問
題点を解決し、低損失で低電圧駆動の光変調器を提供す
ることにある。
The present invention has been made under such a background, and an object thereof is to solve the above problems of the existing optical modulator and to provide an optical modulator of low loss and low voltage drive. Especially.

【0013】[0013]

【問題点を解決するための手段】本発明においては、最
上部(もしくは下部の酸化シリコン膜)上に金属からな
るコプレーナ電極を配した構造をとる光変調器におい
て、一次電気光学効果を示す有機高分子材料をコア層材
料に用い、周囲のクラッド層材料との比屈折率差を最適
化して単一モード導波路とし、かつ下部の酸化シリコン
膜(もしくは上部クラッド層)上に別の接地電極を設け
ることで電界の閉じ込めを強くして、低電圧で変調動作
を行なうことを特徴とする。
According to the present invention, in an optical modulator having a structure in which a coplanar electrode made of a metal is disposed on the uppermost (or lower silicon oxide film), an organic modulator showing a primary electro-optical effect is obtained. A polymer material is used for the core layer material, the relative refractive index difference with the surrounding cladding layer material is optimized to form a single mode waveguide, and another ground electrode is placed on the lower silicon oxide film (or upper cladding layer). Is provided to strengthen the confinement of the electric field and perform the modulation operation at a low voltage.

【0014】従来の技術とは、大きな一次電気光学効果
を示す有機高分子材料からなる単一モード導波路構造を
有している点と、コプレーナ線路型電極とは別に下部の
酸化シリコン膜(もしくは上部クラッド層)上に接地電
極を配した点が異なる。
The conventional technique has a single-mode waveguide structure made of an organic polymer material exhibiting a large first-order electro-optical effect, and a silicon oxide film (or a lower silicon oxide film) in addition to the coplanar line type electrode. The difference is that a ground electrode is arranged on the upper clad layer).

【0015】[0015]

【作用】本発明のコプレーナ線路型電極と接地電極の両
方を配した構造をとる光変調器では、図5に記載したよ
うな従来の対称もしくは非対称のコプレーナ電極のみを
有する光変調器に比べて、変調用電気信号の電界の閉じ
込めが大きく、電界と導波光との重なりが大きいため、
駆動電圧の低減化が容易である。
The optical modulator having a structure in which both the coplanar line type electrode and the ground electrode of the present invention are arranged, compared with the conventional optical modulator having only symmetrical or asymmetrical coplanar electrodes as shown in FIG. , Because the electric field of the modulating electric signal is largely confined and the electric field and the guided light overlap each other,
It is easy to reduce the drive voltage.

【0016】図1はコプレーナ線路型電極を伝搬するマ
イクロ波と光波の重なり積分Γと、上部クラッド層と上
部接地電極とのエアギャップgの関係を計算した結果で
ある。計算に際しては、該コプレーナ電極は下部の酸化
シリコン膜上に形成し、導波路の膜厚を2μm、該導波
路と上下のクラッド層を併せた膜厚を10μmと仮定し
ている。図から明らかなように、ギャップgが小さくな
るにつれてΓは大きくなり、上部クラッド層上に接地電
極を形成した場合(g=0μm)に最もΓが大きくな
る。重なり積分Γは駆動電圧と逆比例の関係にあるた
め、Γが大きいほうが駆動電圧は低くなる。同様な駆動
電圧低減の効果は、コプレーナ電極を上部クラッド層上
に形成し、接地電極を下部の酸化シリコン膜上に形成し
ても認められる。
FIG. 1 shows the result of calculation of the relationship between the overlap integral Γ of the microwave and the light wave propagating through the coplanar line type electrode and the air gap g between the upper cladding layer and the upper ground electrode. In the calculation, it is assumed that the coplanar electrode is formed on the lower silicon oxide film, the thickness of the waveguide is 2 μm, and the total thickness of the waveguide and the upper and lower cladding layers is 10 μm. As is clear from the figure, Γ increases as the gap g decreases, and Γ becomes maximum when the ground electrode is formed on the upper clad layer (g = 0 μm). Since the overlap integral Γ is inversely proportional to the drive voltage, the larger Γ, the lower the drive voltage. The same effect of reducing the driving voltage can be recognized even when the coplanar electrode is formed on the upper clad layer and the ground electrode is formed on the lower silicon oxide film.

【0017】また、本発明の光変調器では、一次電気光
学効果を示す有機高分子材料をコア層材料に用い、周囲
のクラッド層材料との比屈折率差を最適化して単一モー
ド導波路としている。このため上下の電極間隔を狭くし
ても、電極を構成する金属による光損失を実用上問題に
ならない範囲に抑えることが可能となり、本発明の目的
である低電圧駆動を行なうことができるようになる。本
発明の光変調器では、該有機高分子からなる導波路の膜
厚を2μm以下、該導波路と上下のクラッド層を併せた
膜厚を10μm以下とする。図2は単一モード条件を満
たす方形光導波路の寸法wおよびdと、導波路とそれに
接する上下クラッド層の比屈折率差Δn2との関係を、
等価屈折率方で計算した結果である。ここでΔn3は該
導波路とそれに接する左右クラッド層の比屈折率差であ
る。図からわかるように、導波路の膜厚を2μm以下、
該導波路と上下クラッド層を併せた膜厚を10μm以下
とする場合には、該導波路と左右のクラッド層の比屈折
率差Δn3を0.5%以下、該導波路と上下のクラッド
層の比屈折率差Δn2を2%とすれば、導波路幅wが細
径(5μm径)偏波保持ファイバとのモードマッチング
が最適となる4〜6μmで、単一モード導波路となる。
Further, in the optical modulator of the present invention, an organic polymer material exhibiting a primary electro-optical effect is used as the core layer material, and the relative refractive index difference with the surrounding clad layer material is optimized to make the single mode waveguide. I am trying. Therefore, even if the distance between the upper and lower electrodes is narrowed, it is possible to suppress the optical loss due to the metal forming the electrodes to a range that does not pose a practical problem, so that the low voltage driving which is the object of the present invention can be performed. Become. In the optical modulator of the present invention, the thickness of the waveguide made of the organic polymer is 2 μm or less, and the thickness of the waveguide and the upper and lower clad layers is 10 μm or less. FIG. 2 shows the relationship between the dimensions w and d of the rectangular optical waveguide satisfying the single mode and the relative refractive index difference Δn 2 between the waveguide and the upper and lower clad layers in contact with it.
It is the result calculated by the equivalent refractive index method. Here, Δn 3 is the relative refractive index difference between the waveguide and the left and right cladding layers in contact with it. As can be seen from the figure, the film thickness of the waveguide is 2 μm or less,
When the total thickness of the waveguide and the upper and lower clad layers is 10 μm or less, the relative refractive index difference Δn 3 between the waveguide and the left and right clad layers is 0.5% or less, and the clad between the waveguide and the upper and lower clad layers is 0.5% or less. If the relative refractive index difference Δn 2 of the layer is 2%, the waveguide width w is 4 to 6 μm, which is the optimum mode matching with the polarization maintaining fiber having a small diameter (5 μm diameter), and the waveguide becomes a single mode waveguide. .

【0018】本発明の光変調器では導波路を構成する有
機高分子自体の誘電率(約3.6)が小さいために、マ
イクロ波の等価屈折率が有機高分子の屈折率とほぼ等し
くなり、マイクロ波と光波の位相速度差による帯域制限
を受けない。このため、マイクロ波と光波の相互作用長
(電極長)lを短くする必要がない。
In the optical modulator of the present invention, since the dielectric constant (about 3.6) of the organic polymer itself which constitutes the waveguide is small, the equivalent refractive index of microwave becomes almost equal to the refractive index of the organic polymer. , The band is not limited by the phase velocity difference between the microwave and the light wave. Therefore, it is not necessary to shorten the interaction length (electrode length) l of the microwave and the light wave.

【0019】さらに、本発明の光変調器ではコプレーナ
線路型電極の中心導体幅と、水平方向の接地電極とのギ
ャップを最適化して、同軸ケーブルとのインピーダンス
整合をとることができ、広い周波数帯域のマイクロ波を
変調用電気信号として使用することができる。
Further, in the optical modulator of the present invention, the central conductor width of the coplanar line type electrode and the gap between the ground electrode in the horizontal direction can be optimized to achieve impedance matching with the coaxial cable, and a wide frequency band. Can be used as an electric signal for modulation.

【0020】本発明の用いる二次光非線形感受率の大き
な物質が溶解している、もしくは結合している高分子材
料としては、低損失化が容易で加工の自由度が大きいと
いう理由から、ポリメチルメタクリレート(PMMA)
を代表とするアクリル酸エステル系樹脂、ポリスチレン
系樹脂、これらの樹脂の重水素置換体、あるいは特願平
3−269728号の記載されているようなフッ素原子
を含有する樹脂に、特願平3−184080号もしくは
特願平4−20074号に記載されているようなスチル
ベン化合物、アゾ化合物あるいはアゾメチン化合物から
なる有機色素化合物を高分子中に分散、もしくは高分子
の側鎖に結合させた材料を用いることができる。
As a polymer material in which a substance having a large second-order optical non-linear susceptibility used in the present invention is dissolved or bonded, a polymer material can be easily made into a low loss and has a high degree of processing freedom. Methyl methacrylate (PMMA)
Acrylic ester resins, polystyrene resins, deuterium-substituted products of these resins, or resins containing a fluorine atom as described in Japanese Patent Application No. 3-269728, and Japanese Patent Application No. No. 184080 or Japanese Patent Application No. 4-20074, a material in which an organic dye compound composed of a stilbene compound, an azo compound or an azomethine compound is dispersed in a polymer or bonded to a side chain of the polymer. Can be used.

【0021】本発明の光変調器において、導波路の上下
左右のクラッド層に使用される材料としては、コア層を
構成する上記のような有機高分子材料よりも屈折率の小
さいものであれば特に限定するものでないが、例えばエ
ポキシ系あるいはアクリル系の紫外線硬化樹脂を挙げる
ことができる。
In the optical modulator of the present invention, the material used for the clad layers on the upper, lower, left and right sides of the waveguide is such that it has a smaller refractive index than the above organic polymer material constituting the core layer. Although not particularly limited, for example, an epoxy-based or acrylic-based ultraviolet curable resin can be used.

【0022】本発明の光変調器に使用される上記の有機
高分子に分極処理を施す場合には、光変調器を一対の電
極間に挟み込み、該有機高分子のガラス転移温度(約1
00〜150℃)以上に加熱し、電極間に高電圧を印加
して、該有機高分子の電場配向を行なう。その後、高電
圧を印加したまま徐々に冷却して配向を凍結させる。こ
のようにすることにより、導波路のコア部に一次電気化
学効果を付与、発現させることができる。
When the above-mentioned organic polymer used in the optical modulator of the present invention is subjected to polarization treatment, the optical modulator is sandwiched between a pair of electrodes and the glass transition temperature of the organic polymer (about 1
(100 to 150 ° C.) or higher, and a high voltage is applied between the electrodes to perform electric field orientation of the organic polymer. After that, the orientation is frozen by gradually cooling while applying the high voltage. By doing so, the primary electrochemical effect can be imparted to the core portion of the waveguide to be exhibited.

【0023】次に実施例に従い、本発明の導波路型光変
調器を具体的に説明する。
Next, the waveguide type optical modulator of the present invention will be specifically described with reference to Examples.

【0024】[0024]

【実施例1】図3は本発明の導波路型光強度変調器の断
面図である。図3に示すように、酸化シリコン膜5を熱
酸化法で形成したシリコン基板4上に、金からなる下部
接地電極6をメッキ法で該酸化シリコン膜5上に形成し
た後、エポキシ系紫外線硬化樹脂を4μm厚に塗布し
て、下部クラッド層7を形成した。この上に化1の有機
高分子をスピンコート法により2μm厚に塗布した後、
マッハツェンダー干渉計型の導波路パターンマスクを用
いて、特願平3−254352号に記載の手法により、
2×5μmの寸法を有するチャネル導波路層8を形成し
た。次に、この上にエポキシ系紫外線硬化樹脂を厚めに
塗布した後、反応性イオンエッチングにより導波路と同
じ高さまでエッチングし、導波路の左右のクラッド層9
を形成した。この時、左右のクラッド層に用いたエポキ
シ系紫外線硬化樹脂は、チャネル導波路層8との比屈折
率差が0.3%のものを用いた。この上にエピキシ系紫
外線硬化樹脂を4μm厚に塗布して上部クラッド層10
を形成した。ここで、上下のクラッド層7および10に
用いたエポキシ系紫外線硬化樹脂は、チャネル導波路層
8との比屈折率差が2%のものを用いた。さらに、該上
部クラッド層10の上に、マッハツェンダー干渉計型チ
ャネル導波路8の一方のアームの上に重なるように、金
からなる中心導体幅20μm、厚さ5μm、ギャップ1
0μmのコプレーナ線路型電極11をメッキ法で形成し
た。チャネル導波路と重なったコプレーナ線路型電極1
1の長さは15mmとした。
Embodiment 1 FIG. 3 is a sectional view of a waveguide type optical intensity modulator of the present invention. As shown in FIG. 3, a lower ground electrode 6 made of gold is formed on the silicon oxide film 5 by a plating method on a silicon substrate 4 on which a silicon oxide film 5 is formed by a thermal oxidation method, and then epoxy-based ultraviolet curing is performed. The resin was applied to a thickness of 4 μm to form the lower clad layer 7. After coating the organic polymer of Chemical formula 1 on this with a thickness of 2 μm by spin coating,
By using a Mach-Zehnder interferometer type waveguide pattern mask, by the method described in Japanese Patent Application No. 3-254352,
A channel waveguide layer 8 having a size of 2 × 5 μm was formed. Next, an epoxy-based ultraviolet curable resin is applied thickly on this, and is etched to the same height as the waveguide by reactive ion etching to form the clad layers 9 on the left and right of the waveguide.
Was formed. At this time, the epoxy-based ultraviolet curable resin used for the left and right clad layers had a relative refractive index difference of 0.3% from that of the channel waveguide layer 8. The upper clad layer 10 is formed by applying an epixy ultraviolet curing resin to a thickness of 4 μm.
Was formed. Here, the epoxy-based UV curable resin used for the upper and lower clad layers 7 and 10 had a relative refractive index difference of 2% from that of the channel waveguide layer 8. Further, on the upper clad layer 10, a central conductor width of 20 μm, a thickness of 5 μm, and a gap 1 made of gold are formed so as to overlap with one arm of the Mach-Zehnder interferometer type channel waveguide 8.
A 0 μm coplanar line type electrode 11 was formed by a plating method. Coplanar line type electrode 1 overlapping with channel waveguide
The length of 1 was 15 mm.

【0025】この導波路型光変調器に平行平板電極によ
る分極処理を施した後、波長1.55μmのレーザ光を
端面より入射して出射光の近視野像を測定したところ、
単一モードのみが伝搬していることが確認できた。さら
に、同軸ケーブルを介してマイクロ波を入力したとこ
ろ、20GHzまで約4Vの駆動電圧で光強度変調がで
きることがわかった。
This waveguide type optical modulator was subjected to polarization treatment by parallel plate electrodes, and then laser light having a wavelength of 1.55 μm was incident from the end face to measure a near-field image of the emitted light.
It was confirmed that only a single mode propagated. Furthermore, when microwaves were input via the coaxial cable, it was found that the light intensity could be modulated up to 20 GHz with a driving voltage of about 4V.

【0026】[0026]

【化1】 [Chemical 1]

【0027】[0027]

【実施例2】図4は本発明の導波路型光強度変調器の断
面図である。図4に示すように、酸化シリコン膜13を
熱酸化法で形成したシリコン基板12上に、金からなる
中心導体幅7μm、厚さ5μm、ギャップ8μmのコプ
レーナ線路型電極14をメッキ法で形成した。この上に
エポキシ系紫外線硬化樹脂を4μm厚に塗布して、下部
クラッド層15を形成した。この上に化2の有機高分子
をスピンコート法により2μm厚に塗布した後、マッハ
ツェンダー干渉計型の導波路パターンマスクを上から重
ねて紫外線で露光し、2×5μmの寸法を有するチャネ
ル導波路層16と、この導波路層の左右のクラッド層1
7とを形成した。この時、紫外線の露光量を調整して、
チャネル導波路層16と左右のクラッド層17との比屈
折率差が、0.2%〜0.5%になるようにした。ま
た、チャネル導波路と重なったコプレーナ線路型電極1
4の長さは15mmとした。次に、この上にエポキシ系
紫外線硬化樹脂を4μm厚に塗布して上部クラッド層1
8を形成した。ここで、上下のクラッド層15および1
8に用いたエポキシ系紫外線硬化樹脂は、チャネル導波
路層16との比屈折率差が2%のものを用いた。さら
に、該上部クラッド層18の上に、上部接地電極19を
メッキ法で形成した。
[Embodiment 2] FIG. 4 is a sectional view of a waveguide type optical intensity modulator of the present invention. As shown in FIG. 4, a coplanar line type electrode 14 made of gold and having a central conductor width of 7 μm, a thickness of 5 μm and a gap of 8 μm was formed on a silicon substrate 12 on which a silicon oxide film 13 was formed by a thermal oxidation method by a plating method. . An epoxy-based ultraviolet curable resin was applied to the above to a thickness of 4 μm to form the lower clad layer 15. After the organic polymer of Chemical formula 2 was applied thereon to a thickness of 2 μm by a spin coating method, a Mach-Zehnder interferometer type waveguide pattern mask was overlaid and exposed with ultraviolet rays to expose a channel guide having dimensions of 2 × 5 μm. Waveguide layer 16 and clad layers 1 on the left and right of this waveguide layer
7 and 7 were formed. At this time, adjust the amount of UV exposure,
The relative refractive index difference between the channel waveguide layer 16 and the left and right cladding layers 17 was set to 0.2% to 0.5%. In addition, a coplanar line type electrode 1 overlapping the channel waveguide 1
The length of 4 was 15 mm. Next, an epoxy-based UV-curable resin is applied to this to a thickness of 4 μm to form an upper clad layer 1
8 was formed. Here, the upper and lower clad layers 15 and 1
The epoxy-based ultraviolet curable resin used in No. 8 had a relative refractive index difference of 2% from the channel waveguide layer 16. Further, an upper ground electrode 19 was formed on the upper clad layer 18 by a plating method.

【0028】この導波路型光変調器に平行平板電極によ
る分極処理を施した後、波長1.55μmのレーザ光を
端面より入射して出射光の近視野像を測定したところ、
単一モードのみが伝搬していることが確認できた。さら
に、同軸ケーブルを介してマイクロ波を入力したとこ
ろ、20GHzまで約3Vの駆動電圧で光強度変調がで
きることがわかった。
This waveguide type optical modulator was polarized by a parallel plate electrode, and then laser light having a wavelength of 1.55 μm was made incident from the end face to measure a near-field image of the emitted light.
It was confirmed that only a single mode propagated. Furthermore, when microwaves were input through the coaxial cable, it was found that the light intensity could be modulated up to 20 GHz with a driving voltage of about 3V.

【0029】[0029]

【化2】 [Chemical 2]

【0030】[0030]

【発明の効果】以上説明したように、本発明による導波
路型光変調器は、一次電気光学効果が大きな有機高分子
材料をチャネル導波路層材料に用い、周囲のクラッド層
材料との比屈折率差を最適化して単一モード導波路と
し、かつコプレーナ線路型電極の電界の閉じ込めを大き
くするために、別に接地電極を設けている。さらに、上
下の電極間を狭くしているために、極めて低い駆動電圧
で変調動作を実現できる。
As described above, in the waveguide type optical modulator according to the present invention, an organic polymer material having a large primary electro-optic effect is used as the channel waveguide layer material, and the relative refractive index with the surrounding cladding layer material is increased. A ground electrode is additionally provided in order to optimize the index difference to form a single mode waveguide and to increase the electric field confinement of the coplanar line type electrode. Further, since the space between the upper and lower electrodes is narrowed, the modulation operation can be realized with an extremely low drive voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明導波路型光変調器のマイクロ波・光波の
重なり特性図。
FIG. 1 is an overlapping characteristic diagram of a microwave and a light wave of a waveguide type optical modulator of the present invention.

【図2】本発明導波路型光変調器の単一モード条件を与
える導波路パラメータ特性図。
FIG. 2 is a waveguide parameter characteristic diagram which gives a single mode condition of the waveguide type optical modulator of the present invention.

【図3】本発明による導波路型光強度変調器の構成。FIG. 3 is a configuration of a waveguide type optical intensity modulator according to the present invention.

【図4】本発明による導波路型光強度変調器の構成。FIG. 4 is a configuration of a waveguide type optical intensity modulator according to the present invention.

【図5】従来の導波路型光強度変調器の斜視図。FIG. 5 is a perspective view of a conventional waveguide type optical intensity modulator.

【符号の説明】[Explanation of symbols]

1 変調用電極 2 光導波路部 3 LN結晶 4 シリコン基板 5 酸化シリコン膜 6 下部接地電極 7 下部クラッド層 8 チャネル導波路層 9 クラッド層 10 上部クラッド層 11 コプレーナ導波路型電極 12 シリコン基板 13 酸化シリコン膜 14 コプレーナ線路型電極 15 下部クラッド層 16 チャネル導波路層 17 クラッド層 18 上部クラッド層 19 上部接地電極 1 Modulation Electrode 2 Optical Waveguide Section 3 LN Crystal 4 Silicon Substrate 5 Silicon Oxide Film 6 Lower Ground Electrode 7 Lower Cladding Layer 8 Channel Waveguide Layer 9 Cladding Layer 10 Upper Cladding Layer 11 Coplanar Waveguide Type Electrode 12 Silicon Substrate 13 Silicon Oxide Film 14 Coplanar line type electrode 15 Lower clad layer 16 Channel waveguide layer 17 Clad layer 18 Upper clad layer 19 Upper ground electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小沢口 治樹 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Haruki Ozawaguchi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸化シリコン膜を上部に形成したシリコン
基板上に、二次光非線形感受率の大きな物質が溶解して
いる、もしくは結合している高分子を分極処理した材料
からなるチャネル導波路層と、この導波路層の左右およ
び上下に、導波路層よりも低屈折率なクラッド層を配
し、該上部クラッド層の上に金属からなるコプレーナ線
路型電極を配した構造をとる導波路型光変調器におい
て、下部の酸化シリコン膜上に、金属からなる下部接地
電極を配したことを特徴とする導波路型光変調器。
1. A channel waveguide made of a material obtained by polarization-processing a polymer in which a substance having a large second-order nonlinear susceptibility is dissolved or bound to a silicon substrate on which a silicon oxide film is formed. And a waveguide having a structure in which a clad layer having a refractive index lower than that of the waveguide layer is disposed on the left and right and above and below the waveguide layer, and a coplanar line type electrode made of metal is disposed on the upper clad layer. 1. A waveguide type optical modulator, wherein a lower ground electrode made of metal is disposed on a lower silicon oxide film in the type optical modulator.
【請求項2】該導波路の膜厚を2μm以下、該導波路と
上下のクラッド層を併せた膜厚を10μm以下とし、該
導波路と左右のクラッド層の比屈折率差を0.2%〜
0.5%、該導波路と上下のクラッド層の比屈折率差を
2%以上とし、下部のコプレーナ線路型電極の中心体の
幅を該導波路とクラッド層を併せた膜厚の約2倍にする
ことを特徴とする請求項1記載の導波路型光変調器。
2. The thickness of the waveguide is 2 μm or less, the thickness of the waveguide and the upper and lower clad layers is 10 μm or less, and the relative refractive index difference between the waveguide and the left and right clad layers is 0.2. % ~
0.5%, the relative refractive index difference between the waveguide and the upper and lower clad layers is set to 2% or more, and the width of the central body of the lower coplanar line type electrode is about 2 of the film thickness of the waveguide and the clad layer combined. The waveguide type optical modulator according to claim 1, wherein the number is doubled.
【請求項3】酸化シリコン膜を上部に形成したシリコン
基板上に、金属からなるコプレーナ線路型電極を配し、
この上に二次光非線形感受率の大きな物質が溶解してい
る、もしくは結合している高分子を分極処理した材料か
らなるチャネル導波路層と、この導波路層の左右および
上下に、導波路層よりも低屈折率なクラッド層を配した
構造をとる導波路型光変調器において、該上部クラッド
層の上に金属からなる上部接地電極を配したことを特徴
とする導波路型光変調器。
3. A metal coplanar line type electrode is provided on a silicon substrate having a silicon oxide film formed thereon,
A channel waveguide layer made of a material in which a polymer having a high second-order nonlinear susceptibility dissolved or bound thereto is polarized, and the waveguides are formed on the left, right, top, and bottom of the waveguide layer. In a waveguide type optical modulator having a structure in which a clad layer having a refractive index lower than that of the layer is arranged, an upper ground electrode made of metal is arranged on the upper clad layer. .
【請求項4】該導波路の膜厚を2μm以下、該導波路と
上下のクラッド層を併せた膜厚を10μm以下とし、該
導波路と左右のクラッド層の比屈折率差を0.2%〜
0.5%、該導波路と上下のクラッド層の比屈折率差を
2%以上とし、下部のコプレーナ線路型電極の中心体の
幅を該導波路とクラッド層を併せた膜厚の約2倍にする
ことを特徴とする請求項3記載の導波路型光変調器。
4. The thickness of the waveguide is 2 μm or less, the thickness of the waveguide and upper and lower cladding layers is 10 μm or less, and the relative refractive index difference between the waveguide and the left and right cladding layers is 0.2. % ~
0.5%, the relative refractive index difference between the waveguide and the upper and lower clad layers is set to 2% or more, and the width of the central body of the lower coplanar line type electrode is about 2 of the film thickness of the waveguide and the clad layer combined. 4. The waveguide type optical modulator according to claim 3, wherein the number is doubled.
JP25067492A 1992-08-26 1992-08-26 Waveguide type optical modulator Expired - Fee Related JP2847660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25067492A JP2847660B2 (en) 1992-08-26 1992-08-26 Waveguide type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25067492A JP2847660B2 (en) 1992-08-26 1992-08-26 Waveguide type optical modulator

Publications (2)

Publication Number Publication Date
JPH0675256A true JPH0675256A (en) 1994-03-18
JP2847660B2 JP2847660B2 (en) 1999-01-20

Family

ID=17211363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25067492A Expired - Fee Related JP2847660B2 (en) 1992-08-26 1992-08-26 Waveguide type optical modulator

Country Status (1)

Country Link
JP (1) JP2847660B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071960A (en) * 2000-08-29 2002-03-12 Institute Of Tsukuba Liaison Co Ltd Hologram light diffusing body and method of manufacturing the same
US7046872B2 (en) 2002-02-19 2006-05-16 Fujikura Ltd. Optical switch, optical add-drop module, and optical communication system
JP2006243145A (en) * 2005-03-01 2006-09-14 Fuji Xerox Co Ltd Vertically laminated waveguide device and polling method, driving method, and waveguide module
WO2006104902A1 (en) * 2005-03-25 2006-10-05 University Of Dayton Characterization technique for dielectric properties of polymers
JP2007293239A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Optical module
WO2008120718A1 (en) * 2007-03-30 2008-10-09 Sumitomo Osaka Cement Co., Ltd. Light control element
JP2008250258A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Optical control device
WO2010009105A1 (en) * 2008-07-14 2010-01-21 University Of Dayton Resonant sensor capable of wireless interrogation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071960A (en) * 2000-08-29 2002-03-12 Institute Of Tsukuba Liaison Co Ltd Hologram light diffusing body and method of manufacturing the same
US7046872B2 (en) 2002-02-19 2006-05-16 Fujikura Ltd. Optical switch, optical add-drop module, and optical communication system
JP2006243145A (en) * 2005-03-01 2006-09-14 Fuji Xerox Co Ltd Vertically laminated waveguide device and polling method, driving method, and waveguide module
WO2006104902A1 (en) * 2005-03-25 2006-10-05 University Of Dayton Characterization technique for dielectric properties of polymers
JP2008534930A (en) * 2005-03-25 2008-08-28 ユニバーシティ・オブ・デイトン Characterization techniques for dielectric properties of polymers
JP2007293239A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Optical module
WO2008120718A1 (en) * 2007-03-30 2008-10-09 Sumitomo Osaka Cement Co., Ltd. Light control element
JP2008250258A (en) * 2007-03-30 2008-10-16 Sumitomo Osaka Cement Co Ltd Optical control device
EP2136241A1 (en) * 2007-03-30 2009-12-23 Sumitomo Osaka Cement Co., Ltd. Light control element
JP4589354B2 (en) * 2007-03-30 2010-12-01 住友大阪セメント株式会社 Light modulation element
EP2136241A4 (en) * 2007-03-30 2012-06-27 Sumitomo Osaka Cement Co Ltd Light control element
US8600197B2 (en) 2007-03-30 2013-12-03 Sumitomo Osaka Cement Co., Ltd. Optical control device
WO2010009105A1 (en) * 2008-07-14 2010-01-21 University Of Dayton Resonant sensor capable of wireless interrogation
US7922975B2 (en) 2008-07-14 2011-04-12 University Of Dayton Resonant sensor capable of wireless interrogation

Also Published As

Publication number Publication date
JP2847660B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US7502530B2 (en) Optical waveguide devices and traveling wave type optical modulators
US7088875B2 (en) Optical modulator
Mitomi et al. Design of ultra-broad-band LiNbO/sub 3/optical modulators with ridge structure
US7389030B2 (en) Optically functional device
US10921682B1 (en) Integrated optical phase modulator and method of making same
US7693355B2 (en) Hybrid electro-optic polymer/sol-gel modulator
JPH08122722A (en) Waveguide type optical device
Chang et al. Improved electrooptic modulator with ridge structure in X-cut LiNbO/sub 3
JP2022549711A (en) Coplanar waveguide guidewire electrode structure and modulator
US7079714B2 (en) Electro-optic devices having flattened frequency response with reduced drive voltage
US7460739B2 (en) Lithium niobate optical modulator
JP2847660B2 (en) Waveguide type optical modulator
Anwar et al. The effect of fabrication parameters on a ridge Mach-Zehnder interferometric (MZI) modulator
JPH05216079A (en) Waveguide type nonlinear optical element and production thereof
JP2805027B2 (en) Waveguide type optical modulator
US20230007949A1 (en) Optical Device
JP2013037243A (en) Optical modulator
US7088874B2 (en) Electro-optic devices, including modulators and switches
US6363189B1 (en) Directional coupler
JP4267544B2 (en) Light modulator
JP7480648B2 (en) Optical devices and optical transceivers
JP2007033894A (en) Optical modulator
JPH0756199A (en) Polarization-independent waveguide type optical switch
JP2868046B2 (en) Light modulator
JPH01201609A (en) Optical device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees