JPH0675191A - Axis aligning device and axis aligning method using it - Google Patents

Axis aligning device and axis aligning method using it

Info

Publication number
JPH0675191A
JPH0675191A JP22870792A JP22870792A JPH0675191A JP H0675191 A JPH0675191 A JP H0675191A JP 22870792 A JP22870792 A JP 22870792A JP 22870792 A JP22870792 A JP 22870792A JP H0675191 A JPH0675191 A JP H0675191A
Authority
JP
Japan
Prior art keywords
optical axis
movable mirror
fine adjustment
mirror device
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22870792A
Other languages
Japanese (ja)
Other versions
JP3142386B2 (en
Inventor
Yoshio Kita
好夫 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04228707A priority Critical patent/JP3142386B2/en
Publication of JPH0675191A publication Critical patent/JPH0675191A/en
Application granted granted Critical
Publication of JP3142386B2 publication Critical patent/JP3142386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To quickly and accurately align optical axes when a laser beam is transmitted in a long distance. CONSTITUTION:As a movable mirror device, a mirror holder 12e which is rotatably provided at the upper part of a supporter 12c made to stand on the supporting table 12b of a laser axis and which axially supports a mirror 12d with a recessed upper inside part as a holding part, an interlocking arm 12g which is provided so as to be interlocked with the mirror 12d on the upper outside of the holding part and whose lower end is faced to the holder 12e, a fixed arm 12h fixed to the supporter 12c, a rough adjustment mechanism 37 which turns the holder 12e by making a rod 37a moving forward and backward by an adjustment signal abut on the arms 12g and 12h and plural fine adjustment mechanisms 38 which are made to intervene between the mechanism 37 and the surface of the mirror holder opposite to both arms 12g, 12h and cylindrically formed so as to be finely made to contract or elongate by receiving the adjustment signal are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光の長距離伝送
に利用される軸合せ装置およびその軸合せ方法に係り、
特に粗調整と微調整とを連動させて、迅速,かつ精度よ
く光軸を合せる技術を設けた軸合せ装置およびそれを用
いた軸合せ方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alignment device used for long-distance transmission of laser light and an alignment method therefor,
In particular, the present invention relates to an axis alignment device provided with a technique for aligning optical axes quickly and accurately by interlocking rough adjustment and fine adjustment, and an axis alignment method using the same.

【0002】[0002]

【従来の技術】従来、レーザ光を用いて、例えば遠隔地
間の距離を測定するとき、長距離を隔てた目標位置に対
してレーザ光の光軸を合せる軸合せ装置が広く用いられ
ている。
2. Description of the Related Art Conventionally, when measuring a distance between remote places using a laser beam, an axis aligning device for aligning an optical axis of the laser beam with a target position separated by a long distance has been widely used. .

【0003】図11はかかる軸合せ装置の構成を示す図
である。この軸合せ装置は、レーザ光源(図示せず)で
発生したレーザ光1を粗調整可動ミラー装置2、微調整
可動ミラー装置3および全反射ミラー4の順に反射させ
ることにより、この全反射ミラー4から長距離の位置に
あるハーフミラー5に送信し、このハーフミラー5の反
射によって所定の照射対象(図示せず)に伝送するレー
ザ光伝送系を有し、さらに、ハーフミラー5を透過した
レーザ光の光軸位置を検出する位置検出器6と、この光
軸位置測定信号が位置検出器インタフェイス7を介して
入力されると所定の目標値に基づいてレーザ光軸の調整
信号を発する計算機8と、この調整信号を,粗調整可動
ミラー装置2のあおりおよび回転方向(以下、縦および
横方向という)の角度を粗調整する粗調整アクチュエー
タ2aまたは微調整可動ミラー3の縦および横方向の角
度を微調整する微調整アクチュエータ3aに入力するア
クチュエータインタフェイス9とが設けられている。
FIG. 11 is a view showing the arrangement of such an axis aligning device. This axis-aligning device reflects a laser beam 1 generated by a laser light source (not shown) in the order of a coarse adjustment movable mirror device 2, a fine adjustment movable mirror device 3 and a total reflection mirror 4 to make the total reflection mirror 4 Has a laser light transmission system for transmitting to a half mirror 5 at a long distance position and transmitting it to a predetermined irradiation target (not shown) by reflection of the half mirror 5, and further, a laser transmitted through the half mirror 5. A position detector 6 for detecting the optical axis position of light, and a computer for issuing an adjustment signal for the laser optical axis based on a predetermined target value when the optical axis position measurement signal is input via a position detector interface 7. 8 and this adjustment signal are used as a coarse adjustment actuator 2a or a fine adjustment movable mirror for coarsely adjusting the tilt and rotation directions (hereinafter, referred to as vertical and horizontal directions) of the coarse adjustment movable mirror device 2. An actuator interface 9 is provided for inputting the longitudinal and lateral angle of over 3 in the fine adjustment actuator 3a for fine adjustment.

【0004】次に、図12は従来の他の軸合せ装置を示
す構成図である。この装置は、レーザ光軸の位置と角度
を別々に検出して軸合せを行うもので、具体的には、レ
ーザ光源(図示せず)で発生したレーザ光11を反射す
るとともに制御信号を受けてアクチュエータ12aによ
り縦および横方向に回動可能な第1の可動ミラー装置1
2と、この可動ミラー装置12から受けたレーザ光を反
射するとともにアクチュエータ13aにより縦および横
方向に回動可能な第2の可動ミラー装置13と、第2の
可動ミラー装置13で反射されて図示しない照射対象へ
伝送されるレーザ光11の光軸方向をハーフミラー1
4,ハーフミラー15,全反射ミラー16およびレンズ
17を介して検出する方向検出器18と、このレーザ光
の光軸位置をハーフミラー15からレンズ19を介して
検出する位置検出器20と、これら両検出器18,20
が検出した位置又は方向デ−タをアンプ21又はアンプ
22およびインタフェイス23を介して取り込むと共
に、予め保持した所定の目標値に基づいてレーザ光軸の
調整信号を発する計算機24と、この調整信号を第1の
可動ミラー装置12のアクチュエータ12a又は第2の
可動ミラー装置13のアクチュエータ13aに入力する
アクチュエータドライバ25とで構成されている。
Next, FIG. 12 is a block diagram showing another conventional alignment device. This device separately detects the position and angle of the laser beam axis and performs axis alignment. Specifically, the device reflects the laser beam 11 generated by a laser light source (not shown) and receives a control signal. First movable mirror device 1 that can be vertically and horizontally rotated by an actuator 12a
2, a second movable mirror device 13 that reflects the laser light received from the movable mirror device 12 and is rotatable in the vertical and horizontal directions by an actuator 13a, and is reflected by the second movable mirror device 13 to be illustrated. The optical axis direction of the laser light 11 transmitted to the irradiation target is set to the half mirror 1.
4, a direction detector 18 for detecting via the half mirror 15, the total reflection mirror 16 and the lens 17, and a position detector 20 for detecting the optical axis position of this laser light from the half mirror 15 via the lens 19. Both detectors 18, 20
The position or direction data detected by the amplifier 21 or the amplifier 22 and the interface 23 are taken in, and a computer 24 for issuing an adjustment signal of the laser optical axis based on a predetermined target value held in advance, and this adjustment signal Is input to the actuator 12a of the first movable mirror device 12 or the actuator 13a of the second movable mirror device 13 with the actuator driver 25.

【0005】次に、このようなアクチュエータ12a,
13aを備えた第1および第2の可動ミラー装置12,
13の構成について図13(a)〜(c)を参照して説
明するが、ここでは説明の便宜上,第1の可動ミラー装
置12を例にとって述べる。この可動ミラー装置12
は、支持台12bに垂直に立設された支柱12cと、支
柱上部に当該支柱を回転中心として回転可能に取り付け
られ、かつ、その上部が凹状に形成され、その凹状部の
上部内側を保持部として反射ミラー12dを回転可能に
保持するミラーホルダ12eと、ミラーホルダ12eの
両保持部のうち,ある保持部の上部外側で反射ミラー1
2dに連動するように当該反射ミラー12dの水平軸1
2fに固定して取り付けられ、かつ、その下端部12
g′がミラーホルダ12eと対面する連動アーム12g
と、支柱胴部より連動アーム12gとは反対側位置に固
着された先端上向きのL字状の固定アーム12hと、前
記計算機24からの調整信号を受けて連動アーム12g
を押圧して反射ミラー12dを回動させるアクチュエー
タ12aと、同じく計算機24からの信号を受けて固定
アーム12hを押圧してミラーホルダ12eを回動させ
るアクチュエータ12a′とを備えている。
Next, such an actuator 12a,
First and second movable mirror device 12 including 13a,
The configuration of 13 will be described with reference to FIGS. 13A to 13C, but here, for convenience of description, the first movable mirror device 12 will be described as an example. This movable mirror device 12
Is a column 12c standing upright on the support base 12b, and is rotatably attached to the upper part of the column around the column, and the upper part is formed in a concave shape, and the inside of the upper part of the concave part is a holding part. As a mirror holder 12e that rotatably holds the reflecting mirror 12d, the reflecting mirror 1 is provided on the outside of an upper part of a holding portion of both holding portions of the mirror holder 12e.
The horizontal axis 1 of the reflection mirror 12d is linked to 2d.
It is fixedly attached to 2f, and its lower end 12
Interlocking arm 12g in which g'faces the mirror holder 12e
And an L-shaped fixed arm 12h having a tip upwardly fixed to a position opposite to the interlocking arm 12g from the column body, and the interlocking arm 12g receiving an adjustment signal from the computer 24.
An actuator 12a that presses to rotate the reflection mirror 12d and an actuator 12a 'that also receives a signal from the computer 24 to press the fixed arm 12h to rotate the mirror holder 12e are provided.

【0006】これらアクチュエータ12a,12a′
は、小型モータで駆動されるモータ付マイクロメータで
あって、調整信号に基づいて進退ロッド12k先端部が
図13(c)(d)のようにアーム12g,12hを押
すことにより、反射ミラー12dの縦および横方向の角
度を制御するものであって、6μm程度の最小送りをも
って進退ロッド12kを制御することができる。
These actuators 12a and 12a '
Is a micrometer with a motor driven by a small motor. The tip of the advancing / retreating rod 12k pushes the arms 12g and 12h as shown in FIGS. It controls the angle in the vertical and horizontal directions, and the advancing / retreating rod 12k can be controlled with a minimum feed of about 6 μm.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、以上の
ような軸合せ装置は、アクチュエータ12a,13aに
よる最小送りが0.6μm程度では、可動ミラー装置1
2,13の角度の変化が小さくても長距離伝送後には大
きく光軸の位置ずれが生じ、軸合せ作業に時間がかかる
という問題がある。
However, in the above-described axis aligning device, when the minimum feed by the actuators 12a and 13a is about 0.6 μm, the movable mirror device 1 is used.
Even if the change in the angles of 2 and 13 is small, there is a problem that the optical axis is largely displaced after long-distance transmission, and it takes a long time for the axis alignment work.

【0008】また、周囲温度の変化によりミラーホルダ
12eの微小な変形、支持台12bなどの微小な変形等
が発生するので、初期の光軸の目標値に基づいて軸合せ
制御を行なっていると、光軸が合わなくなってくる問題
がある。
Further, since a slight deformation of the mirror holder 12e, a slight deformation of the support base 12b, etc. occur due to a change in ambient temperature, it is assumed that the axis alignment control is performed based on the initial target value of the optical axis. , There is a problem that the optical axis is not aligned.

【0009】本発明は上記実情を考慮してなされたもの
で、レーザ光を長距離伝送するときに、迅速,かつ高精
度に光軸合せを可能とする軸合せ装置を提供することを
目的とする。また、他の発明の目的は、周囲温度等によ
り光軸系が変化しても、常に正確な位置に光軸を合せる
軸合せ方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an axis aligning device which enables quick and highly accurate optical axis alignment when transmitting laser light over a long distance. To do. Another object of the present invention is to provide an axis aligning method for always aligning the optical axis to an accurate position even if the optical axis system changes due to ambient temperature or the like.

【0010】[0010]

【課題を解決するための手段】請求項1に対応する発明
は、レーザ光源からのレーザ光を反射させて軸合せ部に
導くとともに、この軸合せ部によって得られた前記レー
ザ光の反射光軸と目標光軸との偏差を零とする調整信号
を受けて前記反射レーザ光軸の軸合せを行う可動ミラー
装置を持った軸合せ装置において、前記可動ミラー装置
は、前記レーザ光の光軸上に設けられた支持台に立設さ
れた支柱と、この支柱上部に当該支柱を回転中心として
回転可能に取り付けられ、かつ、その上部が凹状に形成
され、その凹状部の上部内側を保持部としてミラーを回
転可能に保持するミラーホルダと、前記ミラーホルダの
両保持部のうち,ある保持部の上部外側で前記ミラーに
連動するように取り付けられ、かつ、その下端部が前記
ミラーホルダと対面する連動アームと、前記連動アーム
とは反対側に位置して前記支柱に固着された固定アーム
と、前記軸合せ部から受けた前記調整信号に基づいて進
退動作する進退ロッドを前記連動アームおよび前記固定
アームに当接して前記ミラーを回動させる粗調整機構
と、この粗調整機構の本体と前記両アームとは反対側の
前記ミラーホルダ面との間に介在され、前記軸合せ部か
らの調整信号を受けて微小伸縮する筒状に形成された複
数の微調整機構とを備え、同一の可動ミラー装置で光軸
を粗調整および微調整する軸合せ装置である。
According to a first aspect of the present invention, a laser beam from a laser light source is reflected and guided to an alignment section, and a reflection optical axis of the laser beam obtained by the alignment section. And an optical axis of the laser light, wherein the movable mirror device has a movable mirror device that receives the adjustment signal to make the deviation between the target optical axis and the target optical axis zero. And a support erected on a support stand provided on the base, rotatably attached to the upper part of the support about the support as a center of rotation, and the upper part is formed in a concave shape, and the inside of the upper part of the concave part is used as a holding part. A mirror holder that holds the mirror rotatably, and one of both holding portions of the mirror holder is attached so as to interlock with the mirror on the outside of an upper portion of a certain holding portion, and the lower end portion of the holding portion faces the mirror holder. Interlocking arm, a fixed arm located on the opposite side of the interlocking arm and fixed to the column, and an advancing / retreating rod for advancing / retreating based on the adjustment signal received from the axis alignment section. A coarse adjustment mechanism for contacting a fixed arm to rotate the mirror, and a coarse adjustment mechanism interposed between the main body of the coarse adjustment mechanism and the mirror holder surface on the opposite side of the both arms, and adjusting from the axis alignment section. This is an axis aligning device that includes a plurality of fine adjustment mechanisms formed in a tubular shape that slightly expands and contracts in response to a signal, and that roughly adjusts and finely adjusts the optical axis with the same movable mirror device.

【0011】請求項2に対応する発明は、レーザ光源か
ら可動ミラー装置を介して得られる反射レーザ光の光軸
を測定し、この測定光軸と目標光軸との偏差に基づいて
反射光軸の軸合せを行う軸合せ方法において、偏差が所
定の微調整範囲以上のとき、前記反射光軸がこの微調整
範囲内に入るような調整信号を前記可動ミラー装置に与
えて当該可動ミラー装置の粗調整機構を動作させ、その
後、再度前記反射光軸位置を測定し、前記偏差が前記所
定の微調整範囲内に入ったとき、前記反射光軸が予め定
めた微調整の最小値内に入るような調整信号を前記可動
ミラー装置に与えて当該可動ミラー装置の微調整機構を
動作させ、この微調整中に前記反射光軸位置が前記所定
の微調整範囲を越えたとき、その位置に基づく調整信号
を前記可動ミラー装置に与えて当該可動ミラー装置の粗
調整機構と微調整機構とを動作させ、粗調整と微調整と
を相殺させながら微調整範囲の中心領域に入るようにす
る軸合せ方法である。
The invention according to claim 2 measures the optical axis of the reflected laser light obtained from the laser light source through the movable mirror device, and based on the deviation between the measured optical axis and the target optical axis, the reflected optical axis is measured. When the deviation is equal to or larger than a predetermined fine adjustment range, an adjustment signal that causes the reflected light axis to fall within the fine adjustment range is given to the movable mirror device to adjust the axis of the movable mirror device. The coarse adjustment mechanism is operated, then the reflected light axis position is measured again, and when the deviation falls within the predetermined fine adjustment range, the reflected light axis falls within the predetermined minimum value of fine adjustment. Such an adjustment signal is given to the movable mirror device to operate the fine adjustment mechanism of the movable mirror device, and when the reflected optical axis position exceeds the predetermined fine adjustment range during this fine adjustment, based on the position. Adjusting signal to the movable mirror Giving the location by operating the coarse adjustment mechanism and a fine adjustment mechanism of the movable mirror device, a shaft mating method to enter the central region of the fine adjustment range while offsetting the coarse and fine adjustment.

【0012】請求項3に対応する発明は、レーザ光源か
ら可動ミラー装置を介して得られる反射レーザ光を所定
の照射対象に対して送信するとともに、前記反射レーザ
光の光軸を測定し、この測定光軸と目標光軸との偏差に
基づいて反射光軸の軸合せを行う軸合せ方法において、
前記レーザ光源に近い送信側では、前記可動ミラー装置
からの前記反射レーザ光の送信側光軸方向および送信側
光軸位置を測定し、前記送信側光軸方向および送信側光
軸位置を前記目標光軸と比較して送信側光軸方向偏差お
よび送信側光軸位置偏差を求め、前記両送信側光軸偏差
を解消するような調整信号を前記可動ミラー装置に与え
て当該可動ミラー装置の粗調整機構および微調整機構を
動作させ、その後、前記照射対象に近い受信側では、前
記可動ミラー装置からの前記反射レーザ光の受信側光軸
位置を測定し、前記受信側光軸位置を前記目標光軸と比
較して受信側光軸位置偏差を求め、前記受信側光軸位置
偏差を解消するような調整信号を前記可動ミラー装置に
与えて当該可動ミラー装置の微調整機構を動作させ、こ
の微調整後に前記反射レーザ光の送信側光軸方向および
送信側光軸位置を前記目標光軸として更新し、かつ、再
度前記反射レーザ光の受信側光軸位置を測定して、粗調
整と微調整とを連動させつつ常に光軸を調整する軸合せ
方法である。
In the invention corresponding to claim 3, the reflected laser light obtained from the laser light source via the movable mirror device is transmitted to a predetermined irradiation target, and the optical axis of the reflected laser light is measured. In the axis alignment method for aligning the reflection optical axis based on the deviation between the measurement optical axis and the target optical axis,
On the transmission side near the laser light source, the transmission side optical axis direction and the transmission side optical axis position of the reflected laser light from the movable mirror device are measured, and the transmission side optical axis direction and the transmission side optical axis position are set to the target. The transmission side optical axis direction deviation and the transmission side optical axis position deviation are obtained by comparison with the optical axis, and an adjustment signal for canceling both the transmission side optical axis deviations is given to the movable mirror device and the coarse mirror of the movable mirror device is given. The adjustment mechanism and the fine adjustment mechanism are operated, and then, on the reception side close to the irradiation target, the reception side optical axis position of the reflected laser light from the movable mirror device is measured, and the reception side optical axis position is set to the target. The receiving side optical axis position deviation is obtained by comparing with the optical axis, and an adjustment signal for eliminating the receiving side optical axis position deviation is given to the movable mirror device to operate the fine adjustment mechanism of the movable mirror device. After fine adjustment The transmission side optical axis direction and the transmission side optical axis position of the reflected laser light are updated as the target optical axis, and the reception side optical axis position of the reflected laser light is measured again, and coarse adjustment and fine adjustment are linked. This is an axial alignment method that constantly adjusts the optical axis while performing the above.

【0013】[0013]

【作用】従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、同一の可動ミラー装置に粗
調整機構と微調整機構とが一体的に設けられているの
で、光軸を調整するときに、粗調整と微調整を連動して
行うことができる。しかも、微調整機構を付加している
ので粗調整機構しか設けられていない場合と比べ、可動
ミラー装置の軸合せ精度を格段に向上させることができ
る。
Therefore, according to the invention corresponding to the first aspect, since the coarse adjusting mechanism and the fine adjusting mechanism are integrally provided on the same movable mirror device by taking the above means, the optical axis When adjusting, the coarse adjustment and the fine adjustment can be performed in conjunction with each other. Moreover, since the fine adjustment mechanism is added, it is possible to remarkably improve the axial alignment accuracy of the movable mirror device, as compared with the case where only the coarse adjustment mechanism is provided.

【0014】また、請求項2に対応する発明は、まず、
測定光軸と目標光軸との偏差が所定の微調整範囲内に入
るように可動ミラー装置の粗調整機構を動作させ、その
後、上記偏差を微調整の最小値内に入れるように上記可
動ミラー装置の微調整機構を動作させ、この微調整中に
上記偏差が微調整範囲を越えたときには、上記可動ミラ
ー装置の粗調整機構と微調整機構とを連動させて、常に
微調整範囲の中心領域で微調整を行うので、常に正確な
位置に光軸を合せることができる。
The invention corresponding to claim 2 is as follows.
The coarse adjustment mechanism of the movable mirror device is operated so that the deviation between the measurement optical axis and the target optical axis falls within a predetermined fine adjustment range, and then the movable mirror is moved so that the deviation falls within the minimum value for fine adjustment. When the fine adjustment mechanism of the device is operated and the deviation exceeds the fine adjustment range during this fine adjustment, the coarse adjustment mechanism and the fine adjustment mechanism of the movable mirror device are interlocked with each other so that the central region of the fine adjustment range is constantly maintained. Since the fine adjustment is performed with, the optical axis can always be adjusted to an accurate position.

【0015】請求項3に対応する発明は、受信側に比べ
て軸合せ精度に影響されにくい送信側で、予め反射レー
ザ光の送信側光軸方向および送信側光軸位置を検出して
可動ミラー装置により光軸を調整し、その後、受信側で
検出した受信側光軸位置に基づいて上記可動ミラー装置
により光軸を微調整するので、迅速に、かつ精度よく長
距離の光軸調整を行うことができる。
The invention according to claim 3 is a movable mirror which detects the transmitting side optical axis direction and the transmitting side optical axis position of the reflected laser light in advance on the transmitting side which is less affected by the alignment accuracy than the receiving side. The optical axis is adjusted by the device, and then the optical axis is finely adjusted by the movable mirror device based on the receiving side optical axis position detected on the receiving side, so that the optical axis can be adjusted quickly and accurately over a long distance. be able to.

【0016】また、受信側で微調整した後の送信側光軸
方向および送信側光軸位置で、常に目標光軸を更新して
いるので、周囲の温度変化により光軸系が微小変位して
目標光軸が変化したときにも正確に軸合せをすることが
できる。
Further, since the target optical axis is constantly updated in the transmitting side optical axis direction and the transmitting side optical axis position after fine adjustment on the receiving side, the optical axis system is slightly displaced due to the ambient temperature change. Accurate alignment can be performed even when the target optical axis changes.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明に係る軸合せ装置の第1の実
施例の構成を示す図である。この軸合せ装置は、図示し
ないレーザ光源から発生したレーザ光を反射するととも
にこの反射の縦および横方向の角度をアクチュエータ3
1aにより粗調整および微調整する可動ミラー装置31
と、この可動ミラー装置31と長距離隔たった場所に配
置されて可動ミラー装置31で反射されたレーザ光を図
示しない照射対象へ反射させるとともに一部透過させる
ハーフミラー32と、このハーフミラー32を透過した
レーザ光の光軸位置を検出する位置検出器33と、この
位置検出器33からインタフェイス34を介して前記光
軸位置を取り込み,予め保持する目標光軸値に基づいて
光軸の調整信号を発生する軸合せ部としての計算機35
と、この光軸調整信号を前記アクチュエータ31bに入
力するアクチュエータインタフェイス36で構成されて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a first embodiment of an alignment device according to the present invention. This axis aligning device reflects a laser beam generated from a laser light source (not shown) and determines the vertical and horizontal angles of this reflection by the actuator 3
Movable mirror device 31 for coarse and fine adjustment by 1a
A half mirror 32, which is arranged at a long distance from the movable mirror device 31, reflects the laser light reflected by the movable mirror device 31 to an irradiation target (not shown) and partially transmits it, and the half mirror 32. A position detector 33 for detecting the optical axis position of the transmitted laser light, and the optical axis position is fetched from the position detector 33 via an interface 34, and the optical axis is adjusted based on a target optical axis value held in advance. Calculator 35 as an axis alignment unit that generates a signal
And an actuator interface 36 for inputting this optical axis adjustment signal to the actuator 31b.

【0018】可動ミラー装置31は、すでに図13で示
す第1および第2の可動ミラー装置とほぼ同様な構成で
あるが、アクチュエータ12a,13aに代えて新たな
第1のアクチュエータ31aおよび第2のアクチュエー
タ31a′として図2および図3のような複数の粗調整
機構37および微調整機構38を備えた構成となってい
る。なお、同図において図13と同一部分には同一符号
を付してその詳しい説明を省略し、ここでは異なる部分
についてのみ述べる。
The movable mirror device 31 has substantially the same structure as the first and second movable mirror devices shown in FIG. 13, but instead of the actuators 12a and 13a, a new first actuator 31a and a new second actuator 31a are provided. As the actuator 31a ', a plurality of coarse adjustment mechanisms 37 and fine adjustment mechanisms 38 as shown in FIGS. 2 and 3 are provided. In the figure, the same parts as those in FIG. 13 are designated by the same reference numerals and detailed description thereof will be omitted, and only different parts will be described here.

【0019】すなわち、これらアクチュエータ31a,
31a′の構成について図2および図3を参照して説明
するが、ここでは説明の便宜上、第1のアクチュエータ
31aを例にとって述べる。このアクチュエータ31a
は、前記計算機35から受けた調整信号に基づいて進退
動作する進退ロッド37aを連動アーム12gおよび固
定アーム12hに当接して反射ミラー12dを回動させ
る複数の粗調整機構37と、この粗調整機構37の本体
と前記両アーム12g,12hとは反対側のミラーホル
ダ面との間に介在され、前記計算機35からの調整信号
を受けて微小伸縮する筒状に形成された複数の微調整機
構38とで構成されている。
That is, these actuators 31a,
The configuration of 31a 'will be described with reference to FIGS. 2 and 3, but here, for convenience of description, the first actuator 31a will be described as an example. This actuator 31a
Is a plurality of coarse adjustment mechanisms 37 for rotating the reflection mirror 12d by abutting an advancing / retreating rod 37a that moves forward / backward on the basis of an adjustment signal received from the computer 35 with the interlocking arm 12g and the fixed arm 12h, and the coarse adjusting mechanism. A plurality of fine adjustment mechanisms 38 are formed between the main body of 37 and the mirror holder surface on the opposite side of the arms 12g and 12h, and receive the adjustment signal from the computer 35 to be expanded and contracted minutely. It consists of and.

【0020】前記粗調整機構37は、例えばアクチュエ
ータ12aのようなモータ付マイクロメータであって、
調整信号に基づいて進退ロッド37aを進退自在に制御
することにより連動アーム12gとミラーホルダ12e
との距離を可変して当該ミラーホルダ12eに保持され
た反射ミラー12dを縦方向に回動させる。
The coarse adjustment mechanism 37 is a micrometer with a motor such as the actuator 12a,
The interlocking arm 12g and the mirror holder 12e are controlled by controlling the advancing / retreating rod 37a so that the advancing / retreating rod 37a can freely move back and forth.
The distance between the reflection mirror 12d and the reflection mirror 12d held by the mirror holder 12e is changed in the vertical direction.

【0021】前記微調整機構38は、例えば筒状のチタ
ン酸バリウム等の圧電素子に電圧を印加することにより
長さを微小量変化させるものであって、光軸調整信号に
基づいて微小に伸縮して粗調整機構37のミラーホルダ
12eに対する距離を変えることにより,ミラーホルダ
12eから突出するロッド37aの突出具合を変化さ
せ、図4(a)のようにミラーホルダ12eと連動ア−
ム12gとの距離を変えて反射ミラー12dの縦方向の
回動を制御し、且つ図4(b)のようにミラーホルダ1
2eと固定アーム12hとの距離を変えてミラーホルダ
12eの横方向の回動を制御する機能をもっている。
The fine adjustment mechanism 38 changes the length by a minute amount by applying a voltage to a piezoelectric element such as a cylindrical barium titanate. The minute adjustment mechanism 38 expands and contracts slightly based on the optical axis adjustment signal. By changing the distance of the coarse adjustment mechanism 37 to the mirror holder 12e, the projecting condition of the rod 37a protruding from the mirror holder 12e is changed, and as shown in FIG.
The rotation of the reflecting mirror 12d in the vertical direction is controlled by changing the distance from the mirror holder 1g and the mirror holder 1 as shown in FIG.
It has a function of controlling the lateral rotation of the mirror holder 12e by changing the distance between the 2e and the fixed arm 12h.

【0022】前記位置検出器33は、例えば4分割検出
器(QPD)であって、口径が約60mmのレーザ光を
凸レンズにより検出器の口径である10mmの半分の5
mmに集光し、レーザ光のずれを約1/12にして測定
する。この検出器の位置分解能は約40μmであるの
で、レーザ光の位置ずれを約0.5mmの精度で測定す
ることができる。
The position detector 33 is, for example, a four-divided detector (QPD), and a laser beam having a diameter of about 60 mm is formed by a convex lens, which is a half of 10 mm which is the diameter of the detector.
The measurement is performed with the laser beam condensed to mm and the laser beam shift being about 1/12. Since the position resolution of this detector is about 40 μm, the positional deviation of the laser light can be measured with an accuracy of about 0.5 mm.

【0023】次に、第1の実施例における軸合せ装置を
用いた軸合せ方法について図5のフロ−チャ−トを用い
て説明する。なお、光軸の測定位置xと目標位置に対す
る測定位置の偏差とは、目標位置を基準にとると同じ値
になるので、ここでは測定位置xとして述べる。
Next, an axis aligning method using the axis aligning device in the first embodiment will be described with reference to the flow chart of FIG. Since the measurement position x of the optical axis and the deviation of the measurement position from the target position have the same value when the target position is taken as a reference, they will be described here as the measurement position x.

【0024】まず、照射対象に近い受信側に配置された
位置検出器33では、反射レーザ光の光軸の測定位置x
を測定する(ST1)。次に、計算機35では、光軸の
目標位置に対して測定位置xが所定の微調整範囲の最大
値χm 以上か否かを判断し(ST2)、微調整範囲以上
のときには測定位置xがこの微調整範囲内に入るような
調整信号を可動ミラー装置31へ与える。
First, in the position detector 33 arranged on the reception side near the irradiation target, the measurement position x of the optical axis of the reflected laser light is measured.
Is measured (ST1). Next, the computer 35 determines whether or not the measurement position x is greater than or equal to the maximum value χ m of the predetermined fine adjustment range with respect to the target position of the optical axis (ST2). An adjustment signal that falls within this fine adjustment range is given to the movable mirror device 31.

【0025】可動ミラー装置31では、当該調整信号に
基づいて粗調整機構37を動作させて、反射ミラー12
dからの反射レーザ光の光軸を粗調整する(ST3)。
その後、再度ST1へ戻る。
In the movable mirror device 31, the coarse adjustment mechanism 37 is operated based on the adjustment signal, and the reflection mirror 12 is moved.
The optical axis of the reflected laser light from d is roughly adjusted (ST3).
Then, it returns to ST1 again.

【0026】ST2で、測定位置xが所定の微調整範囲
内にあるとき、計算機35では、測定位置xと微調整の
最小値χo とを比較し(ST4)、微調整の最小値χo
以上のときには測定位置xが微調整の最小値χo 内に入
るような調整信号を可動ミラー装置31へ与える。
In ST2, when the measurement position x is within the predetermined fine adjustment range, the computer 35 compares the measurement position x with the fine adjustment minimum value χ o (ST4), and the fine adjustment minimum value χ o.
In the above case, the movable mirror device 31 is provided with an adjustment signal such that the measurement position x falls within the fine adjustment minimum value χ o .

【0027】この可動ミラー装置31では、当該調整信
号に基づいて微調整機構を動作させて、反射ミラー12
dからの反射レーザ光の光軸を微調整する(ST5)。
ここで、測定位置xが微調整の最小値χo 内に入ったと
きには、ST1へ戻る。
In the movable mirror device 31, the fine adjustment mechanism is operated based on the adjustment signal, and the reflection mirror 12 is moved.
The optical axis of the reflected laser light from d is finely adjusted (ST5).
Here, when the measurement position x is within the minimum value χ o of the fine adjustment, the process returns to ST1.

【0028】また、ST5の微調整中に光軸の測定位置
xが所定の微調整範囲χr を越えたとき(ST6)、計
算機35では、その位置に基づく調整信号を可動ミラー
装置31へ与える。当該可動ミラー装置31では、当該
調整信号に基づいて粗調整機構37と微調整機構38と
を動作させて、粗調整と微調整とを相殺させながら測定
位置xが微調整範囲χr の中心領域に入るように調整す
る(ST7)。この調整後には、再度ST1へ戻り、反
射レーザ光軸の位置測定を継続する。
When the measurement position x of the optical axis exceeds the predetermined fine adjustment range χ r during the fine adjustment of ST5 (ST6), the computer 35 gives an adjustment signal based on the position to the movable mirror device 31. . In the movable mirror device 31, the coarse adjustment mechanism 37 and the fine adjustment mechanism 38 are operated based on the adjustment signal to cancel the coarse adjustment and the fine adjustment while the measurement position x is the central region of the fine adjustment range χ r . Adjust to enter (ST7). After this adjustment, the process returns to ST1 again, and the position measurement of the reflected laser optical axis is continued.

【0029】上述したように、第1の実施例によれば、
同一の可動ミラー装置31内に粗調整機構37と微調整
機構38とを設けたことにより,軸合せ精度を格段に向
上させることができる。例えば、従来の軸合せ精度は、
10m先で1mm程度である。これに対して本実施例の
可動ミラー装置31では、連動アーム12gの上下方向
のアーム長60mm、アクチュエータ31aの最小送り
0.25μmとすると、250m先の軸合せ精度は、 250×103 mm×0.25×10-3mm/60mm
=1mm 程度となる。
As described above, according to the first embodiment,
By providing the coarse adjustment mechanism 37 and the fine adjustment mechanism 38 in the same movable mirror device 31, it is possible to remarkably improve the alignment accuracy. For example, the conventional alignment accuracy is
It is about 1 mm at 10 m. On the other hand, in the movable mirror device 31 of the present embodiment, when the vertical arm length of the interlocking arm 12g is 60 mm and the minimum feed of the actuator 31a is 0.25 μm, the alignment accuracy 250 m ahead is 250 × 10 3. mm x 0.25 x 10 -3 mm / 60 mm
= About 1 mm.

【0030】また、微調整専用の微調整可動ミラー装置
3を余分に必要としないので、構成要素が少なくなり、
信頼性の向上、迅速な調整、および微調整可動ミラー装
置3のミラーの反射による光の伝送損失を低減させるこ
とができる。
Further, since no extra fine adjustment movable mirror device 3 dedicated for fine adjustment is required, the number of constituent elements is reduced,
It is possible to improve reliability, perform quick adjustment, and reduce light transmission loss due to reflection of the mirror of the fine adjustment movable mirror device 3.

【0031】さらに、粗調整と微調整を相互に関連づけ
ることにより、常に微調整を可能とし、周囲温度等の変
化による光軸系の系時変化等が起きても常に正確な位置
に光軸を合せるようにしているので、長時間の伝送にお
ける信頼性も向上する。
Further, by correlating the coarse adjustment and the fine adjustment with each other, fine adjustment is always possible, and the optical axis is always placed at the correct position even if the optical axis system changes with time due to changes in ambient temperature. Since they are matched, the reliability in long-term transmission is also improved.

【0032】次に、本発明の第2の実施例について説明
する。図6は本発明に係る軸合せ装置の第2の実施例の
構成を示す図である。この軸合せ装置は、図示しないレ
ーザ光源から発生されるレーザ光の光軸上に配置される
とともに光軸調整用にアクチュエータ41aを有する第
1の可動ミラー装置41と、この第1の可動ミラー装置
41と対向配置されて可動ミラー装置41からのレーザ
光を反射するとともに光軸調整用のアクチュエータ42
aを有する第2の可動ミラー装置42と、この第2の可
動ミラー装置42で反射されたレーザ光の光軸上に配置
された送信側ハーフミラー43と、この送信側ハーフミ
ラー43から所定の伝送距離だけ隔たって配置されて前
記送信側ハーフミラー43を透過したレーザ光を図示し
ない照射対象へ反射する受信側ハーフミラー44とでレ
ーザ光を伝送し、前記送信側ハーフミラー43で反射さ
れたレーザ光を反射および透過させる検出用ハーフミラ
ー45と、この検出用ハーフミラー45を透過したレー
ザ光の光軸方向を全反射ミラー46および凸レンズ47
を介して検出する方向検出器48と、この方向検出器4
8で検出した光軸方向を増幅するアンプ49と、前記検
出用ハーフミラー45で反射されたレーザ光の光軸位置
を凸レンズ50を介して検出する第1の位置検出器51
と、この位置検出器51で検出した光軸位置を増幅する
アンプ52とで送信側でのレーザ光軸の方向および位置
を検出し、且つ前記受信側ハーフミラー44を透過した
レーザ光の光軸位置を凸レンズ53を介して検出する第
2の位置検出器54と、この位置検出器54が検出した
光軸位置を増幅するアンプ55とで受信側の光軸位置を
検出し、これらアンプ49,52,55からインタフェ
イス56を介して光軸の方向および位置のデ−タを取り
込むとともに所定の目標値に基づいて光軸調整信号を発
生する計算機57と、この光軸調整信号に基づいてアク
チュエータ41aおよびアクチュエータ42aを駆動す
るアクチュエータドライバ58とで構成されている。前
記第1および第2の可動ミラー装置41,42は、可動
ミラー装置31と同様の構成である。
Next, a second embodiment of the present invention will be described. FIG. 6 is a view showing the configuration of the second embodiment of the axis aligning device according to the present invention. This axis alignment device is arranged on the optical axis of laser light generated from a laser light source (not shown) and has a first movable mirror device 41 having an actuator 41a for adjusting the optical axis, and the first movable mirror device. And an actuator 42 for reflecting the laser light from the movable mirror device 41 and adjusting the optical axis.
a second movable mirror device 42 having a, a transmission side half mirror 43 arranged on the optical axis of the laser beam reflected by the second movable mirror device 42, and a predetermined side from the transmission side half mirror 43. The laser light transmitted by the transmission half mirror 43 is transmitted by the reception half mirror 44 that reflects the laser light transmitted through the transmission half mirror 43 to an irradiation target (not shown) and is reflected by the transmission half mirror 43. A detection half mirror 45 that reflects and transmits the laser light, and a total reflection mirror 46 and a convex lens 47 in the optical axis direction of the laser light that has passed through the detection half mirror 45.
Direction detector 48 for detecting via the direction detector 4 and this direction detector 4
An amplifier 49 that amplifies the optical axis direction detected in 8 and a first position detector 51 that detects the optical axis position of the laser light reflected by the detection half mirror 45 via a convex lens 50.
And the amplifier 52 that amplifies the optical axis position detected by the position detector 51, detects the direction and position of the laser optical axis on the transmission side, and the optical axis of the laser light transmitted through the receiving side half mirror 44. The second position detector 54, which detects the position via the convex lens 53, and the amplifier 55, which amplifies the position of the optical axis detected by the position detector 54, detect the optical axis position on the receiving side. A computer 57 which takes in the data of the direction and position of the optical axis from 52 and 55 via an interface 56 and generates an optical axis adjustment signal based on a predetermined target value, and an actuator based on the optical axis adjustment signal. 41a and an actuator driver 58 that drives the actuator 42a. The first and second movable mirror devices 41 and 42 have the same configuration as the movable mirror device 31.

【0033】前記方向検出器48は、ハーフミラーの後
段に配置された凸レンズ47の焦点に設けられ、位置ず
れをΔr、焦点距離をaとしたとき、方向ずれΔθを
(1)式により求めるものであって、例えばPSD検出
器を用いる。 Δθ=Δr/a …(1)
The direction detector 48 is provided at the focal point of the convex lens 47 arranged at the rear stage of the half mirror, and the direction deviation Δθ is obtained by the equation (1), where the positional deviation is Δr and the focal length is a. And, for example, a PSD detector is used. Δθ = Δr / a (1)

【0034】ここで、方向検出器48の精度を約20μ
m程度、また凸レンズ47の焦点距離を600mmとす
ると、Δθ=3.3×10-5となるので、レーザ光を2
50m先に伝送したときの精度は、約8.3mmとな
る。
Here, the accuracy of the direction detector 48 is about 20 μm.
If the focal length of the convex lens 47 is 600 mm, Δθ = 3.3 × 10 −5 , so that the laser light is 2
The accuracy when transmitted 50 m ahead is about 8.3 mm.

【0035】次に、このような軸合せ装置の軸合せ方法
について図7のフロ−チャ−トを用いて説明する。ま
ず、図示しないレーザ光源より発生されたレーザ光が、
第1の可動ミラー装置41、第2の可動ミラー装置4
2、送信側ハーフミラー43および受信側ハーフミラー
44により図示しない照射対象へ伝搬され、これら光学
系のレーザ光軸が形成される。ここで、送信側ハーフミ
ラー43で一部反射された送信側のレーザ光軸の方向を
示す角度θを方向検出器48により測定する(ST1
1)。計算機57は、この測定角度θに対して予め保持
する角度目標値θo から送信側光軸方向偏差としての送
信側光軸角度偏差|θ−θo |を求め、この送信側光軸
角度偏差と予め保持する角度許容幅Δθo とを比較して
(ST12)、送信側光軸角度偏差が角度許容幅Δθo
より小さくなるように第2の可動ミラー装置42を調整
し(ST13)、再度ST1へ戻る。
Next, a method of aligning such an aligning device will be described with reference to the flowchart of FIG. First, the laser light generated from the laser light source (not shown)
First movable mirror device 41, second movable mirror device 4
2. The transmission side half mirror 43 and the reception side half mirror 44 propagate the laser beam to an irradiation target (not shown) to form laser optical axes of these optical systems. Here, the angle θ indicating the direction of the laser optical axis on the transmission side, which is partially reflected by the transmission half mirror 43, is measured by the direction detector 48 (ST1.
1). The calculator 57 obtains the transmission side optical axis angle deviation | θ−θ o | as the transmission side optical axis direction deviation from the angle target value θ o held in advance for this measured angle θ, and this transmission side optical axis angle deviation And the angle allowable width Δθ o held in advance are compared (ST12), and the transmission side optical axis angle deviation is calculated as the angle allowable width Δθ o.
The second movable mirror device 42 is adjusted to be smaller (ST13), and the process returns to ST1 again.

【0036】次に、ST12で送信側光軸角度偏差が角
度許容幅Δθo より小さいと判断された場合、送信側ハ
ーフミラー43で一部反射されたレーザ光軸の位置xを
位置検出器51で測定する(ST14)。計算機57
は、この測定位置xに対して予め保持する位置目標値x
o から送信側光軸位置偏差|x−xo |を求め、この送
信側光軸位置偏差と予め保持する位置許容幅Δxo とを
比較して(ST15)、送信側光軸位置偏差が位置許容
幅Δxo より小さくなるように、第1および第2の可動
ミラー装置41,42が平行の関係を保つように移動さ
せて角度θを保存したまま、光軸の位置を調整し(ST
16)、再度ST4へ戻る。
Next, when it is judged in ST12 that the transmission side optical axis angle deviation is smaller than the allowable angle width Δθ o , the position detector 51 detects the position x of the laser optical axis partially reflected by the transmission side half mirror 43. (ST14). Calculator 57
Is the target position value x held in advance for this measurement position x.
The transmission side optical axis position deviation | x−x o | is obtained from o, and the transmission side optical axis position deviation is compared with the position allowable width Δx o held in advance (ST15). The position of the optical axis is adjusted while keeping the angle θ by moving the first and second movable mirror devices 41 and 42 so as to maintain the parallel relationship so as to be smaller than the allowable width Δx o (ST
16) Then, the process returns to ST4 again.

【0037】さらに、ST15で送信側光軸位置偏差が
位置許容幅Δxo より小さいと判断された場合には、受
信側で光軸の位置を微調整する。すなわち、まず受信側
ハーフミラー44を一部透過したレーザ光軸の位置Xを
位置検出器54で測定する(ST17)。ここで測定位
置Xが位置検出器54の測定範囲外のときには、光軸を
測定できないのでST11に戻り再度送信側で光軸を調
整し、測定位置Xが位置検出器54の測定範囲内のとき
には、次の処理に進む(ST18)。
Further, when it is determined in ST15 that the transmission side optical axis position deviation is smaller than the position allowable width Δx o , the reception side finely adjusts the optical axis position. That is, first, the position detector 54 measures the position X of the laser optical axis that has partially passed through the receiving half mirror 44 (ST17). When the measurement position X is outside the measurement range of the position detector 54, the optical axis cannot be measured, so the process returns to ST11 and the optical axis is adjusted again on the transmitting side. When the measurement position X is within the measurement range of the position detector 54, , And proceeds to the next process (ST18).

【0038】次に計算機は、この受信側の測定位置Xに
対して予め保持する位置目標値Xoから受信側光軸位置
偏差|X−Xo |を求め、この受信側光軸位置偏差と予
め保持する位置許容幅ΔXo を比較して(ST19)、
受信側光軸位置偏差が位置許容幅ΔXo より小さくなる
ように、第1および第2の可動ミラー装置41,42を
微調整し(ST20)、再度ST17へ戻る。
Next, the computer obtains the receiving side optical axis position deviation | X−X o | from the position target value X o held in advance for this receiving side measurement position X, and obtains this receiving side optical axis position deviation. By comparing the position allowable width ΔX o held in advance (ST19),
The first and second movable mirror devices 41, 42 are finely adjusted so that the receiving side optical axis position deviation becomes smaller than the position allowable width ΔX o (ST20), and the process returns to ST17 again.

【0039】微調整が終り、ST19で受信側光軸位置
偏差が位置許容幅ΔXo 以下であると判断されると、こ
のときの送信側の測定角度θおよび測定位置xの値を、
計算機57が保持している送信側の角度目標値θo およ
び位置目標値xo として目標値のデ−タを更新し(ST
21)、再度ST17に戻り、受信側での光軸位置を監
視する。このようにして軸合せ装置40は、光学系全体
の光軸を合せることができる。
When the fine adjustment is finished and it is determined in ST19 that the position deviation of the optical axis on the receiving side is less than the allowable position width ΔX o , the values of the measuring angle θ and the measuring position x on the transmitting side at this time are
The data of the target value is updated as the angle target value θ o and the position target value x o on the transmission side held by the computer 57 (ST
21) Then, the process returns to ST17 again to monitor the optical axis position on the receiving side. In this way, the axis aligning device 40 can align the optical axes of the entire optical system.

【0040】上述したように、第2の実施例によれば、
光軸合せの際に、まず、レーザ光源に近い送信側でレー
ザ光軸を目標値に調整するので、レーザ光軸を迅速に粗
調整できるとともに、この粗調整後に照射対象に近い受
信側でレーザ光軸を微調整するので、高精度に光軸を合
せることができる。また、始めに光軸位置の影響を受け
にくい送信側で光軸を粗調整することから、光軸の初期
位置が大きく外れていても迅速に光軸合せをすることが
できる。
As described above, according to the second embodiment,
When aligning the optical axis, first, the laser optical axis is adjusted to the target value on the transmitting side close to the laser light source, so that the laser optical axis can be quickly and roughly adjusted, and after this coarse adjustment, the laser on the receiving side near the irradiation target is adjusted. Since the optical axis is finely adjusted, the optical axis can be aligned with high accuracy. Further, since the optical axis is first roughly adjusted on the transmitting side, which is less affected by the optical axis position, the optical axis can be quickly adjusted even if the initial position of the optical axis is largely deviated.

【0041】さらに、送信側で検出器を2台設けるとと
もに可動ミラー装置を2台設けて、光軸の角度と位置を
別々に調整できるようにしたので、所定の手順で効率的
に光軸を合せることができる。次に、本発明の第3の実
施例について説明する。軸合せ装置の構成は、第2の実
施例と同様である。
Further, since two detectors and two movable mirror devices are provided on the transmitting side so that the angle and position of the optical axis can be adjusted separately, the optical axis can be efficiently adjusted by a predetermined procedure. Can be combined. Next, a third embodiment of the present invention will be described. The configuration of the axis alignment device is similar to that of the second embodiment.

【0042】次に、この軸合せ装置の軸合せ方法を図8
のフローチャートを用いて説明する。このフロ−チャ−
トは、前記ST15とST17との間に、ST15a、
ST15bおよびST15cを設け、受信側で光軸の角
度θと位置xとを調整した後に、再度角度θを調整して
から受信側で光軸の位置を微調整する軸合せ方法を示し
ている。
Next, the method of aligning the axis aligning device will be described with reference to FIG.
This will be described with reference to the flowchart of. This flow
Between ST15 and ST17, ST15a,
The figure shows an axial alignment method in which ST15b and ST15c are provided, the angle θ of the optical axis and the position x are adjusted on the receiving side, the angle θ is adjusted again, and then the position of the optical axis is finely adjusted on the receiving side.

【0043】すなわち、受信側で光軸の角度および位置
を調整し(ST11〜16)、ST15で位置偏差が位
置許容幅Δxo より小さいと判断された場合に、再度方
向検出器48で光軸角度θを測定する(ST5a)。計
算機57は、この測定角度θに対して予め保持する角度
目標値θo から送信側光軸角度偏差|θ−θo |を求
め、この送信側光軸角度偏差と予め保持する角度許容幅
Δθo とを比較して(ST15b)、送信側光軸角度偏
差が角度許容幅Δθo より小さくなるように第2の可動
ミラー装置42を調整し(ST15c)、再度ST15
aへ戻る。
That is, the angle and position of the optical axis are adjusted on the receiving side (ST11 to 16), and when it is determined in ST15 that the positional deviation is smaller than the allowable position width Δx o , the direction detector 48 again determines the optical axis. The angle θ is measured (ST5a). The calculator 57 obtains the transmission side optical axis angle deviation | θ−θ o | from the angle target value θ o held in advance for this measured angle θ, and the transmission side optical axis angle deviation and the angle allowable width Δθ held in advance. o is compared (ST15b), the second movable mirror device 42 is adjusted so that the transmission-side optical axis angle deviation is smaller than the allowable angle width Δθ o (ST15c), and ST15 is again set.
Return to a.

【0044】次に、ST15bで送信側光軸角度偏差が
角度許容幅Δθo より小さいと判断された場合、前述同
様に受信側で光軸の位置を測定して(ST17)、微調
整し(ST18〜20)、微調整後の角度θおよび位置
xで目標値を更新する(ST21)とともに光軸の位置
を監視し続ける。
Next, when it is judged in ST15b that the transmission side optical axis angle deviation is smaller than the angle permissible width Δθ o , the receiving side measures the optical axis position in the same manner as described above (ST17), and fine adjustment ( In ST18 to 20), the target value is updated with the angle θ and the position x after the fine adjustment (ST21) and the position of the optical axis is continuously monitored.

【0045】上述したように、第3の実施例によれば、
送信側で光軸の角度θおよび位置xを調整した後に、再
度角度θを調整する手順を入れているので、受信側で光
軸位置を調整するときの初期位置をさらに目標値に近づ
けることができ、受信側の微調整を効率よく行うことが
できる。
As described above, according to the third embodiment,
Since the procedure for adjusting the angle θ again after adjusting the angle θ and the position x of the optical axis on the transmitting side is included, it is possible to bring the initial position when adjusting the optical axis position on the receiving side closer to the target value. Therefore, fine adjustment on the receiving side can be efficiently performed.

【0046】次に、本発明の第4の実施例について図9
を用いて説明する。この軸合せ装置61は、第2および
第3の実施例の軸合せ装置において、検出用ハーフミラ
ー45を省略するとともに第2の可動ミラー装置42の
反射ミラーをハーフミラーとし、このハーフミラーを透
過したレ−ザ光軸を全反射ミラー61により反射して光
軸位置を凸レンズ50を介して位置検出器51が検出
し、この光軸位置がアンプ52およびインタフェイス5
6を介して計算機57に入力されるようにした構成とな
っている。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
Will be explained. The axis aligning device 61 is different from the axis aligning devices of the second and third embodiments in that the detection half mirror 45 is omitted, the reflecting mirror of the second movable mirror device 42 is a half mirror, and the half mirror is transmitted. The laser optical axis is reflected by the total reflection mirror 61, and the position of the optical axis is detected by the position detector 51 via the convex lens 50. This optical axis position is detected by the amplifier 52 and the interface 5.
The configuration is such that it is input to the computer 57 via 6.

【0047】次に、このような軸合せ装置の軸合せ方法
について図10のフロ−チャ−トにより説明する。ま
ず、送信側の位置検出器51により光軸位置xを測定す
る(ST31)。次に、この光軸位置xと位置目標値x
o との送信側光軸位置偏差|x−xo |を求めて位置許
容幅Δxo より大きいか否かを判断し(ST32)、偏
差がΔxo より大きい場合には第1の可動ミラー装置4
1が光軸位置を調整する(ST33)。
Next, a method of aligning such an aligning device will be described with reference to the flowchart of FIG. First, the position detector 51 on the transmission side measures the optical axis position x (ST31). Next, this optical axis position x and position target value x
sender optical axis position deviation between o | x-x o | a seeking to determine whether the position is greater than the allowable width Δx o (ST32), deviation first movable mirror device is greater than [Delta] x o Four
1 adjusts the optical axis position (ST33).

【0048】ST32で、送信側光軸位置偏差がΔxo
より小さい場合には、送信側の方向検出器48がレーザ
光軸の角度θを測定する(ST34)。同様に、この測
定角度θと角度目標値θo との送信側光軸角度偏差|θ
−θo |を求め、この送信側光軸角度偏差が角度許容幅
Δθo より大きいか否かを判断する(ST35)。
At ST32, the transmission side optical axis position deviation is Δx o.
If it is smaller, the direction detector 48 on the transmitting side measures the angle θ of the laser optical axis (ST34). Similarly, the angle deviation | θ of the optical axis on the transmission side between the measured angle θ and the target angle value θ o
−θ o | is determined, and it is determined whether or not the transmission side optical axis angle deviation is larger than the angle allowable width Δθ o (ST35).

【0049】ST35で偏差が角度許容幅Δθo より大
きい場合には、第2の可動ミラー装置42を調整して送
信側光軸角度偏差を小さくし(ST36)、送信側光軸
角度偏差が角度許容幅Δθo より小さくなった場合に
は、受信側の位置検出器54が光軸位置の測定を開始す
る(ST37)。
If the deviation is larger than the allowable angle width Δθ o in ST35, the second movable mirror device 42 is adjusted to reduce the transmission-side optical axis angle deviation (ST36), and the transmission-side optical axis angle deviation is set to the angle. When the width becomes smaller than the allowable width Δθ o , the position detector 54 on the receiving side starts measuring the optical axis position (ST37).

【0050】ここで、光軸位置が受信側の検出器の測定
範囲内にあるか否かを判断し(ST38)、測定範囲内
にない場合には、再度ST31から光軸を合せ、測定範
囲内にある場合には、測定を行う。
Here, it is judged whether or not the optical axis position is within the measurement range of the detector on the receiving side (ST38). If it is not within the measurement range, the optical axis is aligned again from ST31 and the measurement range is determined. If yes, take a measurement.

【0051】受信側も同様に、測定した測定位置xと位
置目標値xo との受信側光軸位置偏差を求め、この受信
側光軸位置偏差が位置許容幅Δxo より大きいか否かを
判断し(ST39)、受信側光軸位置偏差が位置許容幅
Δxo より大きい場合には、第1および第2の可動ミラ
ー装置41,42が互いに平行の関係を保ちつつ光軸位
置xを微調整する(ST40)。
Similarly, the receiving side obtains the receiving side optical axis position deviation between the measured position x and the position target value x o, and determines whether this receiving side optical axis position deviation is larger than the position allowable width Δx o. If it is determined (ST39) and the optical axis position deviation on the receiving side is larger than the position allowable width Δx o, the optical axis position x is slightly reduced while the first and second movable mirror devices 41 and 42 maintain the parallel relationship. Adjust (ST40).

【0052】また、ST39で、受信側光軸位置偏差が
位置許容幅Δxo より小さい場合には、そのときの測定
位置xと測定角度θを新たな位置目標値xo および角度
目標値θo として更新し(ST41)、これらの目標値
により光軸系を監視し続ける。
Further, in ST39, if the optical axis position deviation on the receiving side is smaller than the allowable position width Δx o , the measured position x and the measured angle θ at that time are set as a new target position value x o and a new target angle value θ o. (ST41), and the optical axis system is continuously monitored by these target values.

【0053】上述したように、第4の実施例によれば、
送信側で第1の可動ミラー装置41の変化には位置検出
器51を、第2の可動ミラー装置42の変化には方向検
出器48を、それぞれ1対1対応するように設けたこと
により、容易に光軸を調整することができる。
As described above, according to the fourth embodiment,
By providing the position detector 51 for the change of the first movable mirror device 41 and the direction detector 48 for the change of the second movable mirror device 42 on the transmitting side so as to have a one-to-one correspondence, The optical axis can be easily adjusted.

【0054】なお、第1から第4の実施例は、常に所定
の目標値で光軸を一定とする場合について説明したが、
これに限らず、計算機57内の所定の目標値をプログラ
ム等により適宜入れ替えて光軸を追従させるようにして
も、本発明を同様に実施できる。その他、本発明はその
要旨を逸脱しない範囲で種々変形して実施できる。
Although the first to fourth embodiments have been described for the case where the optical axis is always kept constant at a predetermined target value,
The present invention is not limited to this, and the present invention can be similarly implemented even if a predetermined target value in the computer 57 is appropriately replaced by a program or the like so as to follow the optical axis. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

【0055】[0055]

【発明の効果】以上説明したように本発明によれば、次
のような効果を奏する。
As described above, the present invention has the following effects.

【0056】請求項1の発明は、同一の可動ミラーに粗
調整機構と微調整機構とを一体的に設けることにより、
粗調整と微調整を連動させて光軸を調整するので、レー
ザ光を長距離伝送するときに、迅速,かつ高精度に光軸
を合せることができる軸合せ装置を提供できる。
According to the invention of claim 1, the coarse adjustment mechanism and the fine adjustment mechanism are integrally provided on the same movable mirror.
Since the optical axis is adjusted by interlocking the rough adjustment and the fine adjustment, it is possible to provide an axis aligning device which can quickly and accurately align the optical axis when transmitting laser light over a long distance.

【0057】また、請求項2の発明は、測定光軸と目標
光軸との偏差が所定の微調整範囲内に入るように可動ミ
ラー装置の粗調整機構を動作させ、その後、上記偏差を
微調整の最小値内に入れるように上記可動ミラー装置の
微調整機構を動作させ、この微調整中に上記偏差が微調
整範囲を越えたときには、上記可動ミラー装置の粗調整
機構と微調整機構とを連動させて、常に微調整範囲の中
心領域で微調整を行うので、周囲温度等により光軸系が
変化しても、常に正確な位置に光軸を合せることができ
る軸合せ方法を提供できる。
According to the second aspect of the invention, the coarse adjustment mechanism of the movable mirror device is operated so that the deviation between the measurement optical axis and the target optical axis falls within a predetermined fine adjustment range, and then the deviation is finely adjusted. The fine adjustment mechanism of the movable mirror device is operated so as to be within the minimum value of the adjustment, and when the deviation exceeds the fine adjustment range during this fine adjustment, the coarse adjustment mechanism and the fine adjustment mechanism of the movable mirror device are Since the fine adjustment is always performed in the central region of the fine adjustment range by interlocking with, it is possible to provide an axis alignment method that can always align the optical axis to an accurate position even if the optical axis system changes due to ambient temperature or the like. .

【0058】請求項3の発明は、受信側に比べて軸合せ
精度に影響されにくい送信側で、予め反射レーザ光の送
信側光軸方向および送信側光軸位置を検出して可動ミラ
ー装置により光軸を調整し、その後受信側で検出した受
信側光軸位置に基づいて上記可動ミラー装置により光軸
を微調整するので、迅速に、かつ精度よく長距離の光軸
調整を行うことができると共に、光軸の微調整後の光軸
方向および光軸位置で、常に粗調整の目標値を更新する
ことにより、周囲温度等により光軸系が変化しても、常
に正確な位置に光軸を合せることができる軸合せ方法を
提供できる。
According to the third aspect of the present invention, the transmitting side, which is less affected by the alignment accuracy than the receiving side, detects the transmitting side optical axis direction and the transmitting side optical axis position of the reflected laser light in advance and uses the movable mirror device. Since the optical axis is adjusted and then the optical axis is finely adjusted by the movable mirror device based on the optical axis position on the receiving side detected on the receiving side, the optical axis can be adjusted quickly and accurately over a long distance. Also, by constantly updating the target value for coarse adjustment in the optical axis direction and optical axis position after fine adjustment of the optical axis, even if the optical axis system changes due to ambient temperature etc., the optical axis will always be in the correct position. It is possible to provide an axis aligning method capable of aligning.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る軸合せ装置の第1の実施例の構成
を示す図。
FIG. 1 is a diagram showing the configuration of a first embodiment of an alignment device according to the present invention.

【図2】同実施例における可動ミラー装置の構成を示す
図。
FIG. 2 is a diagram showing a configuration of a movable mirror device in the embodiment.

【図3】同実施例における可動ミラー装置のアクチュエ
ータの構成を示す図。
FIG. 3 is a diagram showing a configuration of an actuator of a movable mirror device in the embodiment.

【図4】同実施例における可動ミラーの動作を模式的に
示す図。
FIG. 4 is a diagram schematically showing the operation of the movable mirror in the same embodiment.

【図5】同実施例における軸合わせ方法を示すフロ−チ
ャ−ト。
FIG. 5 is a flowchart showing an axis aligning method in the embodiment.

【図6】本発明に係る軸合わせ装置の第2の実施例の構
成を示す図
FIG. 6 is a diagram showing a configuration of a second embodiment of an axis aligning device according to the present invention.

【図7】同実施例における軸合わせ方法を示すフロ−チ
ャ−ト。
FIG. 7 is a flowchart showing an axis aligning method in the embodiment.

【図8】本発明に係る軸合わせ方法の第3の実施例を示
すフロ−チャ−ト。
FIG. 8 is a flowchart showing a third embodiment of the axis aligning method according to the present invention.

【図9】本発明に係る軸合わせ装置の第4の実施例の構
成を示す図。
FIG. 9 is a diagram showing the configuration of a fourth embodiment of the axis aligning device according to the present invention.

【図10】同実施例における軸合わせ方法を示すフロ−
チャ−ト。
FIG. 10 is a flow chart showing an axis alignment method in the same embodiment.
Chart.

【図11】従来の軸合わせ装置の構成を示す図。FIG. 11 is a diagram showing a configuration of a conventional axis aligning device.

【図12】従来の軸合わせ装置の構成を示す図。FIG. 12 is a diagram showing a configuration of a conventional axis aligning device.

【図13】従来の可動ミラー装置の構成を示す図。FIG. 13 is a diagram showing a configuration of a conventional movable mirror device.

【符号の説明】[Explanation of symbols]

12b…支持台、12c…支柱、12d…反射ミラー、
12e…ミラーホルダ、12f…水平軸、12g…連動
アーム、12h…固定アーム、31,41,42…可動
ミラー装置、31a,31a′,41a,42a…アク
チュエータ、37…粗調整機構、37a…進退ロッド、
38…微調整機構。
12b ... support base, 12c ... posts, 12d ... reflection mirror,
12e ... Mirror holder, 12f ... Horizontal axis, 12g ... Interlocking arm, 12h ... Fixed arm, 31, 41, 42 ... Movable mirror device, 31a, 31a ', 41a, 42a ... Actuator, 37 ... Coarse adjusting mechanism, 37a. rod,
38 ... Fine adjustment mechanism.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源からのレーザ光を反射させて
軸合せ部に導くとともに、この軸合せ部によって得られ
た前記レーザ光の反射光軸と目標光軸との偏差を零とす
る調整信号を受けて前記反射レーザ光軸の軸合せを行う
可動ミラー装置を持った軸合せ装置において、 前記可動ミラー装置は、 前記レーザ光の光軸上に設けられた支持台に立設された
支柱と、 この支柱上部に当該支柱を回転中心として回転可能に取
り付けられ、かつ、その上部が凹状に形成され、その凹
状部の上部内側を保持部としてミラーを回転可能に保持
するミラーホルダと、 前記ミラーホルダの両保持部のうち,ある保持部の上部
外側で前記ミラーに連動するように取り付けられ、か
つ、その下端部が前記ミラーホルダと対面する連動アー
ムと、 前記連動アームとは反対側に位置して前記支柱に固着さ
れた固定アームと、 前記軸合せ部から受けた前記調整信号に基づいて進退動
作する進退ロッドを前記連動アームおよび前記固定アー
ムに当接して前記ミラーを回動させる粗調整機構と、 この粗調整機構の本体と前記両アームとは反対側の前記
ミラーホルダ面との間に介在され、前記軸合せ部からの
調整信号を受けて微小伸縮する筒状に形成された複数の
微調整機構とを備え、 同一の可動ミラー装置で光軸を粗調整および微調整する
ことを特徴とする軸合せ装置。
1. An adjustment signal for reflecting a laser beam from a laser light source to guide it to an axis-aligning section, and for making a deviation between a reflection optical axis of the laser beam obtained by the axis-aligning section and a target optical axis zero. In the alignment device having a movable mirror device for receiving and aligning the reflected laser optical axis, the movable mirror device includes a support provided upright on a support table provided on the optical axis of the laser light. A mirror holder that is rotatably attached to the upper part of the pillar around the pillar as a center of rotation, and has an upper part formed in a concave shape, and a mirror holder that rotatably holds the mirror with the inside of the upper part of the concave part being a holding part; Of the two holding parts of the holder, the interlocking arm that is attached to the outside of the upper part of a certain holding part so as to interlock with the mirror and has its lower end facing the mirror holder, and the interlocking arm. A fixed arm, which is located on the opposite side and fixed to the column, and an advancing / retreating rod that moves forward / backward based on the adjustment signal received from the axis aligning unit are brought into contact with the interlocking arm and the fixed arm to rotate the mirror. A coarse adjustment mechanism to be moved, and a main body of the coarse adjustment mechanism and the mirror holder surface on the opposite side of the both arms, and is made into a cylindrical shape which receives an adjustment signal from the axis alignment portion and slightly expands and contracts. An axis aligning device comprising a plurality of formed fine adjustment mechanisms, wherein the optical axis is roughly adjusted and finely adjusted by the same movable mirror device.
【請求項2】 レーザ光源から可動ミラー装置を介して
得られる反射レーザ光の光軸を測定し、この測定光軸と
目標光軸との偏差に基づいて反射光軸の軸合せを行う軸
合せ方法において、 偏差が所定の微調整範囲以上のとき、前記反射光軸がこ
の微調整範囲内に入るような調整信号を前記可動ミラー
装置に与えて当該可動ミラー装置の粗調整機構を動作さ
せ、 その後、再度前記反射光軸位置を測定し、前記偏差が前
記所定の微調整範囲内に入ったとき、前記反射光軸が予
め定めた微調整の最小値内に入るような調整信号を前記
可動ミラー装置に与えて当該可動ミラー装置の微調整機
構を動作させ、 この微調整中に前記反射光軸位置が前記所定の微調整範
囲を越えたとき、その位置に基づく調整信号を前記可動
ミラー装置に与えて当該可動ミラー装置の粗調整機構と
微調整機構とを動作させ、粗調整と微調整とを相殺させ
ながら微調整範囲の中心領域に入るようにすることを特
徴とする軸合せ方法。
2. An axis alignment for measuring an optical axis of a reflected laser beam obtained from a laser light source through a movable mirror device and aligning the reflected optical axis based on a deviation between the measured optical axis and a target optical axis. In the method, when the deviation is equal to or larger than a predetermined fine adjustment range, an adjustment signal that causes the reflected optical axis to fall within the fine adjustment range is given to the movable mirror device to operate the coarse adjustment mechanism of the movable mirror device. After that, the position of the reflected light axis is measured again, and when the deviation is within the predetermined fine adjustment range, the adjustment signal that causes the reflected light axis to fall within a predetermined fine adjustment minimum value is moved. When the reflected optical axis position exceeds the predetermined fine adjustment range during the fine adjustment, the adjustment signal based on the position is given to the movable mirror device. Give to the movable Mira -A method for aligning an axis, characterized in that the coarse adjustment mechanism and the fine adjustment mechanism of the device are operated so that the coarse adjustment and the fine adjustment are canceled to enter the center region of the fine adjustment range.
【請求項3】 レーザ光源から可動ミラー装置を介して
得られる反射レーザ光を所定の照射対象に対して送信す
るとともに、前記反射レーザ光の光軸を測定し、この測
定光軸と目標光軸との偏差に基づいて反射光軸の軸合せ
を行う軸合せ方法において、 前記レーザ光源に近い送信側では、前記可動ミラー装置
からの前記反射レーザ光の送信側光軸方向および送信側
光軸位置を測定し、前記送信側光軸方向および送信側光
軸位置を前記目標光軸と比較して送信側光軸方向偏差お
よび送信側光軸位置偏差を求め、前記両送信側光軸偏差
を解消するような調整信号を前記可動ミラー装置に与え
て当該可動ミラー装置の粗調整機構および微調整機構を
動作させ、 その後、前記照射対象に近い受信側では、前記可動ミラ
ー装置からの前記反射レーザ光の受信側光軸位置を測定
し、前記受信側光軸位置を前記目標光軸と比較して受信
側光軸位置偏差を求め、前記受信側光軸位置偏差を解消
するような調整信号を前記可動ミラー装置に与えて当該
可動ミラー装置の微調整機構を動作させ、 この微調整後に前記反射レーザ光の送信側光軸方向およ
び送信側光軸位置を前記目標光軸として更新し、かつ、
再度前記反射レーザ光の受信側光軸位置を測定して、 粗調整と微調整とを連動させつつ常に光軸を調整するこ
とを特徴とする軸合せ方法。
3. A reflected laser light obtained from a laser light source through a movable mirror device is transmitted to a predetermined irradiation target, and the optical axis of the reflected laser light is measured, and the measurement optical axis and the target optical axis are measured. In the axial alignment method for aligning the reflected optical axis based on the deviation between, the transmitting side near the laser light source, the transmitting side optical axis direction and the transmitting side optical axis position of the reflected laser light from the movable mirror device. By comparing the transmission side optical axis direction and the transmission side optical axis position with the target optical axis to determine the transmission side optical axis direction deviation and the transmission side optical axis position deviation, and eliminate the both transmission side optical axis deviations. Is supplied to the movable mirror device to operate the coarse adjustment mechanism and the fine adjustment mechanism of the movable mirror device, and then, on the receiving side near the irradiation target, the reflected laser light from the movable mirror device. of The receiving side optical axis position is measured, the receiving side optical axis position is compared with the target optical axis to obtain the receiving side optical axis position deviation, and the adjustment signal for eliminating the receiving side optical axis position deviation is moved. The fine adjustment mechanism of the movable mirror device is operated by giving it to the mirror device, and after the fine adjustment, the transmission side optical axis direction and the transmission side optical axis position of the reflected laser light are updated as the target optical axis, and
An axis aligning method characterized in that the position of the optical axis of the reflected laser beam on the receiving side is measured again and the optical axis is constantly adjusted while the coarse adjustment and the fine adjustment are linked.
JP04228707A 1992-08-27 1992-08-27 Axis alignment device and axis alignment method using the same Expired - Fee Related JP3142386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04228707A JP3142386B2 (en) 1992-08-27 1992-08-27 Axis alignment device and axis alignment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04228707A JP3142386B2 (en) 1992-08-27 1992-08-27 Axis alignment device and axis alignment method using the same

Publications (2)

Publication Number Publication Date
JPH0675191A true JPH0675191A (en) 1994-03-18
JP3142386B2 JP3142386B2 (en) 2001-03-07

Family

ID=16880549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04228707A Expired - Fee Related JP3142386B2 (en) 1992-08-27 1992-08-27 Axis alignment device and axis alignment method using the same

Country Status (1)

Country Link
JP (1) JP3142386B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096714A (en) * 2006-10-12 2008-04-24 National Institute Of Advanced Industrial & Technology Method and device for adjusting optical axis of optical transmission path
WO2010098363A1 (en) * 2009-02-26 2010-09-02 株式会社 日立製作所 Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
WO2010146974A1 (en) * 2009-06-19 2010-12-23 株式会社日立製作所 Optical scanning image display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096714A (en) * 2006-10-12 2008-04-24 National Institute Of Advanced Industrial & Technology Method and device for adjusting optical axis of optical transmission path
WO2010098363A1 (en) * 2009-02-26 2010-09-02 株式会社 日立製作所 Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
JP2010197864A (en) * 2009-02-26 2010-09-09 Hitachi Ltd Optical axis adjusting apparatus, optical axis adjusting method, and projection display apparatus
CN102326114A (en) * 2009-02-26 2012-01-18 株式会社日立制作所 Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
KR101257586B1 (en) * 2009-02-26 2013-04-23 가부시키가이샤 히타치세이사쿠쇼 Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
US8562150B2 (en) 2009-02-26 2013-10-22 Hitachi, Ltd. Optical axis adjustment device, method for adjusting optical axis and projection-type display apparatus
WO2010146974A1 (en) * 2009-06-19 2010-12-23 株式会社日立製作所 Optical scanning image display device
JP5292464B2 (en) * 2009-06-19 2013-09-18 株式会社日立製作所 Optical scanning image display device

Also Published As

Publication number Publication date
JP3142386B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US6147748A (en) Tracking system
JP3860121B2 (en) Apparatus and method for decoupling and measuring movement in a measuring device
KR20180020207A (en) Scanner head with integrated beam position sensor and adjuster for off-line adjustment
US3797908A (en) Optical arrangements and apparatus
US10338096B2 (en) Metrological scanning probe microscope
US5861550A (en) Scanning force microscope
JPS60219744A (en) Projection exposure device
JPH02155589A (en) Optical path adjusting system
JPH0675191A (en) Axis aligning device and axis aligning method using it
JP5171108B2 (en) 3D shape measuring device
US4140398A (en) Laser autoalignment system using distortion compensated reflection grating
JPH10186215A (en) High output laser transmission mirror driving device
JP2678485B2 (en) Drawing surface adjustment mechanism of scanning type drawing device
JP2709949B2 (en) Drawing surface adjustment mechanism of scanning type drawing device
JP2006501462A (en) Laser system
US10705114B2 (en) Metrological scanning probe microscope
JP3662099B2 (en) Parallel link mechanism
US20190064211A1 (en) Scanning probe microscope
JP2993450B2 (en) Optical tracking device for optical communication system between mobile units
JPH10289457A (en) Optical head device and master disk recorder
US6606339B1 (en) Auto-alignment of a high energy laser
JPH03152490A (en) Controlling apparatus for direction of laser beam
JP2004340868A (en) Stabilizing method of pressure control of contact type probe
JP3353965B2 (en) Scanner system and scanning microscope using the same
JP3542182B2 (en) Microscope focus adjustment mechanism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees