JP2993450B2 - Optical tracking device for optical communication system between mobile units - Google Patents

Optical tracking device for optical communication system between mobile units

Info

Publication number
JP2993450B2
JP2993450B2 JP8350002A JP35000296A JP2993450B2 JP 2993450 B2 JP2993450 B2 JP 2993450B2 JP 8350002 A JP8350002 A JP 8350002A JP 35000296 A JP35000296 A JP 35000296A JP 2993450 B2 JP2993450 B2 JP 2993450B2
Authority
JP
Japan
Prior art keywords
optical
sensor
field
light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8350002A
Other languages
Japanese (ja)
Other versions
JPH10190582A (en
Inventor
和宏 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8350002A priority Critical patent/JP2993450B2/en
Publication of JPH10190582A publication Critical patent/JPH10190582A/en
Application granted granted Critical
Publication of JP2993450B2 publication Critical patent/JP2993450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動体間光通信シ
ステムの光追尾装置に係り、特に、衛星間光通信システ
ムに好適な光追尾装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical tracking device for an optical communication system between mobile units, and more particularly to an optical tracking device suitable for an optical communication system between satellites.

【0002】[0002]

【従来の技術】衛星間光通信のように装置の一方又は両
方が移動している空間伝搬光通信においては、通信リン
クの確立のためにどちらか一方又は双方の送信光をラス
タースキャンすることが一般的である。
2. Description of the Related Art In space-propagation optical communication in which one or both devices are moving, such as inter-satellite optical communication, it is necessary to raster-scan one or both of the transmitted lights to establish a communication link. General.

【0003】また、相手装置の光を捕捉可能な範囲を広
く確保しつつ高精度の追尾も実現する、という相反する
要求を満足するために、捕捉追尾範囲は広いが応答が遅
い粗捕捉追尾系と、逆に捕捉追尾範囲は狭いが応答の速
い精捕捉追尾系との2種類の捕捉追尾系を装備すること
が必要であり、従来の空間伝搬光通信システムでは図5
に示す光追尾装置を備えている。
Further, in order to satisfy the conflicting demands of realizing high-precision tracking while securing a wide range in which light of a partner device can be captured, a coarse capture tracking system having a wide capture tracking range but a slow response is required. Conversely, it is necessary to equip two types of acquisition and tracking systems, a narrow acquisition and tracking range but a quick response and accurate acquisition and tracking system.
The optical tracking device shown in FIG.

【0004】この図5に示す光追尾装置は、相手光を受
信する光アンテナ51と、この光アンテナ51で受信さ
れた光信号の光軸を外部操作量に応じて調整する光学系
52と、この光学系52からの出力光を比較的広い視野
で受光する粗追尾センサ53と、光学系52からの出力
光を比較的狭い視野で受光する精追尾センサ54と、光
学系52からの出力光軸を粗追尾センサ53の略中心に
導くように当該光学系52に操作量を入力すると共に光
学系52からの出力光軸を精追尾センサ54の略中心に
導くように当該光学系52に操作量を入力する追尾制御
回路55とを備えている。
The optical tracking device shown in FIG. 5 includes an optical antenna 51 for receiving a partner light, an optical system 52 for adjusting an optical axis of an optical signal received by the optical antenna 51 according to an external operation amount, A coarse tracking sensor 53 that receives the output light from the optical system 52 in a relatively wide field of view, a fine tracking sensor 54 that receives the output light from the optical system 52 in a relatively narrow field of view, and an output light from the optical system 52 An operation amount is input to the optical system 52 so as to guide the axis to the approximate center of the coarse tracking sensor 53, and the optical system 52 is operated to guide the output optical axis from the optical system 52 to the approximate center of the fine tracking sensor 54. A tracking control circuit 55 for inputting an amount.

【0005】光アンテナ51は前面にミラーを備え、外
部駆動信号に応じて当該ミラーの向きを調整することで
入射光軸の傾きを調整できるようになっている。光学系
52は、光アンテナ51からの入力光を2分するビーム
スプリッタ52aと、光アンテナ51の前面ミラーの傾
きを変化させて光学系52への入射光軸向きを設定する
粗追尾機構52bと、外部信号に応じて向きを自在に可
変可能なミラーを備えビームスプリッタ52aからの分
光を所定方向に反射する精追尾機構52cとが含まれ
る。粗追尾センサ53及び精追尾センサ54は、共に光
の入射位置に応じた検出信号を出力可能な光センサであ
って、光を検出する視野は粗追尾センサ53の方が広く
設定されている。追尾制御回路55は、粗追尾センサ5
3への入射光軸が当該センサの中心に来るように光アン
テナの向きを制御する粗追尾制御部55aと、精追尾セ
ンサ54への入射光軸が当該センサの中心に来るように
精追尾機構52cの反射ミラーの向きを制御する精追尾
制御部55bとを備えている。符号56は、光アンテナ
51の向きを機械的に検出する粗追尾機構角度検出器で
あって、検出値を粗追尾制御部55aにフィードバック
する。一方、符号57は、精追尾機構52cの反射ミラ
ーの向きを検出する精追尾機構角度検出器であって、検
出値を精追尾制御部55bにフィードバックする。これ
らの検出器には、一般的に機械的な検出器であるポテン
ショメータ等が採用される。
[0005] The optical antenna 51 has a mirror on the front surface, and the inclination of the incident optical axis can be adjusted by adjusting the direction of the mirror in accordance with an external drive signal. The optical system 52 includes a beam splitter 52a that divides the input light from the optical antenna 51 into two, and a coarse tracking mechanism 52b that changes the inclination of the front mirror of the optical antenna 51 to set the direction of the optical axis incident on the optical system 52. And a fine tracking mechanism 52c that includes a mirror whose direction can be freely changed according to an external signal and reflects the spectrum from the beam splitter 52a in a predetermined direction. Each of the coarse tracking sensor 53 and the fine tracking sensor 54 is an optical sensor capable of outputting a detection signal according to the incident position of light, and the field of view for detecting light is set wider in the coarse tracking sensor 53. The tracking control circuit 55 includes the coarse tracking sensor 5
A coarse tracking control unit 55a for controlling the direction of the optical antenna so that the optical axis incident on the sensor 3 is at the center of the sensor; and a fine tracking mechanism such that the optical axis incident on the fine tracking sensor 54 is at the center of the sensor. And a fine tracking control unit 55b for controlling the direction of the reflection mirror 52c. Reference numeral 56 denotes a coarse tracking mechanism angle detector that mechanically detects the direction of the optical antenna 51, and feeds back a detected value to the coarse tracking control unit 55a. On the other hand, reference numeral 57 denotes a fine tracking mechanism angle detector that detects the direction of the reflection mirror of the fine tracking mechanism 52c, and feeds back the detected value to the fine tracking control unit 55b. Generally, a potentiometer or the like, which is a mechanical detector, is employed as these detectors.

【0006】そして、光アンテナ51で相手装置から受
光した光ビームの一部は、ビームスプリッタ52aで分
割され、粗追尾センサ53に入力される。粗追尾センサ
53は、センサ中心位置から光入射位置に向かうずれベ
クトルを追尾制御回路55に出力する。このずれベクト
ルの大きさは、光アンテナ51の指向中心(粗追尾セン
サ53の受光素子の中心)と光ビーム入射方向との成す
角(以下、粗追尾誤差角という)を表す。追尾制御回路
55に装備された粗追尾制御部55aは、粗追尾誤差角
を0にするように粗追尾機構52cを駆動制御する。こ
の際、角度検出器56の出力は、制御部55aにフィー
ドバックされ粗追尾機構52bの制御に反映される。粗
追尾機構52cは、光アンテナ51の前面に置いたミラ
ーの駆動により装置全体の光軸を調整する。
[0006] A part of the light beam received from the partner device by the optical antenna 51 is split by the beam splitter 52 a and input to the coarse tracking sensor 53. The coarse tracking sensor 53 outputs a shift vector from the sensor center position to the light incident position to the tracking control circuit 55. The magnitude of the shift vector represents an angle between the directional center of the optical antenna 51 (the center of the light receiving element of the coarse tracking sensor 53) and the incident direction of the light beam (hereinafter, referred to as a coarse tracking error angle). The coarse tracking control unit 55a provided in the tracking control circuit 55 drives and controls the coarse tracking mechanism 52c so that the coarse tracking error angle is set to zero. At this time, the output of the angle detector 56 is fed back to the control unit 55a and is reflected in the control of the coarse tracking mechanism 52b. The coarse tracking mechanism 52c adjusts the optical axis of the entire apparatus by driving a mirror placed in front of the optical antenna 51.

【0007】他方、上述のビームスプリッタ52で分割
された光のもう一方は、精追尾機構52cを介し、精追
尾センサ54に入力される。ここで、上述のように精追
尾機構52cは、ミラーの傾きを調整することで入射光
の光軸をより精密に調整する機能を備えている。精追尾
センサ54は、精追尾機構52cから受光した光軸位置
のセンサ中心位置からのずれベクトルを精追尾制御部5
5bに出力する。このずれベクトルの大きさは、精追尾
機構52cに装備されたミラーの基準位置からの傾き角
(以下、精追尾誤差角という)を表す。精追尾制御部5
5bは、精追尾誤差角を0にするように精追尾機構52
cを駆動制御する。この際、角度検出器,57の出力
は、制御部55bにフィードバックされ精追尾機構52
cの制御に反映される。この種の従来例には、特開平6
−160916号公報等がある。
On the other hand, the other of the light split by the above-mentioned beam splitter 52 is input to a fine tracking sensor 54 via a fine tracking mechanism 52c. Here, as described above, the fine tracking mechanism 52c has a function of more precisely adjusting the optical axis of the incident light by adjusting the tilt of the mirror. The fine tracking sensor 54 calculates a deviation vector of the optical axis position received from the fine tracking mechanism 52c from the sensor center position,
5b. The magnitude of this displacement vector indicates the angle of inclination of the mirror provided in the fine tracking mechanism 52c from the reference position (hereinafter referred to as the fine tracking error angle). Fine tracking control unit 5
5b is a fine tracking mechanism 52 for setting the fine tracking error angle to zero.
c is driven and controlled. At this time, the output of the angle detector 57 is fed back to the control unit 55b, and the fine tracking mechanism 52
This is reflected in the control of c. Conventional examples of this type include Japanese Unexamined Patent Publication No.
-160916.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来例にあっては、自装置と相手装置の一方又は両方がス
キャンしており、補足追尾センサの視野に光が入った場
合その光を見失わないうちに速やかにラスタースキャン
を停止して追尾状態へと移行し、さらには相手装置のラ
スタースキャンを停止させるために相手側に光ビームを
照射しなければならない不都合があった。その理由は、
捕捉後速やかにスキャンを停止しなければ、再度リンク
が断たれてしまうためである。
However, in the above conventional example, one or both of the own apparatus and the other apparatus scan, and if light enters the field of view of the supplementary tracking sensor, the light is not lost. There was a disadvantage that the raster scan was immediately stopped to shift to the tracking state, and further, a light beam had to be emitted to the other party to stop the raster scan of the other apparatus. The reason is,
If the scanning is not stopped immediately after the capturing, the link is disconnected again.

【0009】また、相手光を粗追尾センサで受光した後
は粗追尾機構を駆動して受信光を精追尾センサの視野に
入れる必要があるが、従来の捕捉追尾系では追尾可能範
囲を広げるために一般に2軸ジンバルを用いてミラー角
を制御するので、駆動速度が遅いところ、精追尾センサ
に光を受光させるまでに時間がかかり、これを短縮すべ
きとの要請に応えることが困難である不都合があった。
After receiving the other party's light with the coarse tracking sensor, it is necessary to drive the coarse tracking mechanism so that the received light enters the field of view of the fine tracking sensor. In general, since the mirror angle is controlled using a two-axis gimbal, it takes a long time for the fine tracking sensor to receive light in a place where the driving speed is slow, and it is difficult to respond to a request to shorten this. There was an inconvenience.

【0010】[0010]

【発明の目的】本発明は、上記従来例の有する不都合を
改善し、特に、相手光を受光してから捕捉動作を完了し
追尾状態へ移行するまでにかかる時間(捕捉時間)を短
縮した移動体間光通信システムの光追尾装置を提供する
ことを、その目的とする。
An object of the present invention is to improve the disadvantages of the prior art described above, and in particular, to reduce the time (capturing time) required to complete the capturing operation and shift to the tracking state after receiving the partner light. It is an object of the present invention to provide an optical tracking device for an interbody optical communication system.

【0011】[0011]

【課題を解決するための手段】本発明の光通信装置は、
粗追尾センサで相手光を受光後、粗追尾機構を動かすの
と同時に精追尾機構を動かして相手光の方向へ精追尾セ
ンサの視野を移動させることにより、捕捉時間のうち粗
追尾センサ受光後精追尾センサで受光するまでにかかる
時間を短縮するものであって、以下の構成を採る。
An optical communication apparatus according to the present invention comprises:
After receiving the other light with the coarse tracking sensor, the coarse tracking mechanism is moved at the same time as the fine tracking mechanism is moved to move the field of view of the fine tracking sensor in the direction of the other light. This is for shortening the time required until light is received by the tracking sensor, and employs the following configuration.

【0012】請求項1記載の発明では、相手光を受信す
る光アンテナと、この光アンテナで受信された光信号の
光軸を外部操作量に応じて調整する光学系と、この光学
系からの出力光を比較的広い視野で受光する広視野光セ
ンサと、光学系からの出力光を比較的狭い視野で受光す
る狭視野光センサと、光学系からの出力光軸を広視野光
センサの略中心に導くように当該光学系に操作量を入力
すると共に光学系からの出力光軸を狭視野光センサの略
中心に導くように当該光学系に操作量を入力する制御部
とを備える。また、制御部は、光学系からの出力光軸を
広視野光センサの略中心に導くための操作量に基づいて
光学系からの出力光軸を狭視野光センサの略中心に導く
ための操作量を予測し、光学系からの出力光軸を広視野
光センサの略中心に導く間に、予測操作量を光学系に入
力する、という構成を採っている。
According to the first aspect of the present invention, there is provided an optical antenna for receiving a partner light, an optical system for adjusting an optical axis of an optical signal received by the optical antenna in accordance with an external operation amount, and A wide-field optical sensor that receives output light in a relatively wide field of view, a narrow-field optical sensor that receives output light from an optical system in a relatively narrow field of view, and a wide-field optical sensor that outputs the optical axis from the optical system A control unit that inputs an operation amount to the optical system so as to guide the optical system to the center, and inputs an operation amount to the optical system so as to guide the output optical axis from the optical system to substantially the center of the narrow-field optical sensor. Further, the control unit controls the operation for guiding the output optical axis from the optical system to the approximate center of the narrow-field optical sensor based on the amount of operation for guiding the optical axis output from the optical system to the approximate center of the wide-field optical sensor. While the amount is predicted and the output optical axis from the optical system is guided to the approximate center of the wide-field optical sensor, the predicted operation amount is input to the optical system.

【0013】また、請求項2記載の発明では、制御部
は、広視野光センサの出力に基づいて予測操作量を算出
する、という構成を採っている。
Further, the invention according to claim 2 employs a configuration in which the control unit calculates a predicted operation amount based on an output of the wide-field light sensor.

【0014】更に、請求項3記載の発明では、制御部
は、狭視野光センサに相手光が受信されるまで予測操作
量に基づく狭視野光センサへの入射光軸の制御を継続す
る、という構成を採っている。
Further, according to the third aspect of the present invention, the control unit continues to control the optical axis incident on the narrow-field optical sensor based on the predicted operation amount until the partner light is received by the narrow-field optical sensor. It has a configuration.

【0015】これらにより、前述した目的を達成しよう
とするものである。
[0015] With the above, the above-mentioned object is achieved.

【0016】これらの発明では、広視野光センサで相手
光が受光されると、制御部は、当該受光位置の中心から
のずれに基づいて受光位置を中心に導くように光学系に
操作量を入力する。また、これと同時に、制御部は、光
軸を広視野光センサの中心に導くための操作量に基づい
て狭視野光センサ上での光軸の移動方向及び移動量を予
測し、移動後の光軸が狭視野光センサの中心で受光され
るための光学系の操作量を予め予測し、この予測操作量
を光学系に入力する。
In these inventions, when the partner light is received by the wide-field optical sensor, the control unit controls the optical system to control the optical system so as to guide the light receiving position to the center based on the deviation of the light receiving position from the center. input. At the same time, the control unit predicts the moving direction and the moving amount of the optical axis on the narrow-field optical sensor based on the amount of operation for guiding the optical axis to the center of the wide-field optical sensor. An operation amount of the optical system for allowing the optical axis to be received at the center of the narrow-field optical sensor is predicted in advance, and the predicted operation amount is input to the optical system.

【0017】[0017]

【発明の実施の形態】以下、本発明の一実施形態を図1
乃至図3に基づいて説明する。従来例と同一部分につい
ては、同一符号を付して重複説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG. The same parts as those in the conventional example are denoted by the same reference numerals, and redundant description will be omitted.

【0018】図1に示す光追尾装置は、相手光を受信す
る光アンテナ51と、この光アンテナ51で受信された
光信号の光軸を外部操作量に応じて調整する光学系52
と、この光学系52からの出力光を比較的広い視野で受
光する粗追尾センサ53(広視野光センサ)と、光学系
52からの出力光を比較的狭い視野で受光する精追尾セ
ンサ54(狭視野光センサ)と、光学系52からの出力
光軸を粗追尾センサ53の略中心に導くように当該光学
系52に操作量を入力すると共に光学系52からの出力
光軸を精追尾センサ53の略中心に導くように当該光学
系52に操作量を入力する追尾制御回路10(制御部)
とを備えている。
The optical tracking device shown in FIG. 1 has an optical antenna 51 for receiving a partner light and an optical system 52 for adjusting the optical axis of an optical signal received by the optical antenna 51 in accordance with an external operation amount.
And a coarse tracking sensor 53 (wide-field optical sensor) for receiving the output light from the optical system 52 in a relatively wide field of view, and a fine tracking sensor 54 for receiving the output light from the optical system 52 in a relatively narrow field of view ( An operation amount is input to the optical system 52 so as to guide the output optical axis from the optical system 52 to substantially the center of the coarse tracking sensor 53, and the output optical axis from the optical system 52 is precisely tracked. Tracking control circuit 10 (control unit) for inputting an operation amount to the optical system 52 so as to guide the optical system 52 to the approximate center of 53
And

【0019】このうち、追尾制御回路10は、光学系5
2からの出力光軸を粗追尾センサ53の略中心に導くた
めの操作量に基づいて光学系52からの出力光軸を精追
尾センサ54の略中心に導くための操作量を予測し、光
学系52からの出力光軸を粗追尾センサ53の略中心に
導く間に、当該予測操作量を光学系52に入力する入射
方向予測演算部1を備えている。
The tracking control circuit 10 includes the optical system 5
The amount of operation for guiding the output optical axis from the optical system 52 to the approximate center of the fine tracking sensor 54 is predicted based on the amount of operation for guiding the output optical axis from the optical tracking device 2 to the approximate center of the coarse tracking sensor 53. While the output optical axis from the system 52 is guided to the approximate center of the coarse tracking sensor 53, the incident direction prediction calculation unit 1 that inputs the predicted operation amount to the optical system 52 is provided.

【0020】本実施形態において、粗追尾センサ53か
らの出力ベクトル(粗追尾誤差角及びその誤差方向)
は、入射方向予測演算部1にも入力される。この入射方
向予測演算部1は、この粗追尾誤差角及びその誤差方向
と、粗追尾制御部55aから受信する粗追尾機構55の
駆動速度及び駆動方向と、に基づいて粗追尾センサ53
の視野内での受信光の動きを予測すると共に、この予測
結果から受信光を精追尾センサ57に最短時間で受信さ
せるための精追尾機構52cのミラー角操作量(リセン
タリング角)を算出する。
In this embodiment, the output vector from the coarse tracking sensor 53 (coarse tracking error angle and its error direction)
Is also input to the incident direction prediction calculation unit 1. The incident direction prediction calculation unit 1 performs a coarse tracking sensor 53 based on the coarse tracking error angle and its error direction, and the driving speed and driving direction of the coarse tracking mechanism 55 received from the coarse tracking control unit 55a.
The movement of the received light within the field of view is predicted, and the mirror angle operation amount (recentering angle) of the fine tracking mechanism 52c for causing the fine tracking sensor 57 to receive the received light in the shortest time is calculated from the prediction result. .

【0021】また、精追尾制御部2は、追尾時には精追
尾誤差角が0になるように精追尾機構52cを駆動制御
する。一方、捕捉時には、入射方向予測演算部1のリセ
ンタリング角演算結果に基づき、精追尾センサ54で光
を受信するまでの時間が最短になるように精追尾機構5
2cを駆動制御する。その他の構成は、従来例と同一と
なっている。
Further, the fine tracking control section 2 drives and controls the fine tracking mechanism 52c so that the fine tracking error angle becomes 0 at the time of tracking. On the other hand, at the time of capturing, the fine tracking mechanism 5 based on the result of the re-centering angle calculation of the incident direction prediction calculation unit 1 is set so that the time until light is received by the fine tracking sensor 54 is minimized.
2c is drive-controlled. Other configurations are the same as the conventional example.

【0022】次に、本実施形態の全体動作を図2乃至図
3に基づいて説明する。ここで、図2は、精追尾センサ
に相手光を受信するまでのフローチャートを示す。ま
た、図3は、入射方向予測演算部1の動作を説明するた
めの説明図である。
Next, the overall operation of this embodiment will be described with reference to FIGS. Here, FIG. 2 shows a flowchart up to reception of the partner light by the fine tracking sensor. FIG. 3 is an explanatory diagram for explaining the operation of the incident direction prediction calculation unit 1.

【0023】初期状態において、図3(a)に示すよう
に、粗追尾センサ53の広い視野11と精追尾センサ5
4の狭い視野12とが同心円上に位置しているとする。
即ち、もし粗追尾センサ53の中心に光が入射すれば、
その光は精追尾センサ54の中心にも入射するという光
アンテナ51及び光学系52の状態である。以下の説明
では、各追尾センサ53,54に入射する光軸位置の移
動を、各追尾センサ53,54の視野の移動として相対
的に捉えることとする。なお、図3では、実際の受光素
子の形状に関わらず、便宜上センサ視野を円形で示し
た。
In the initial state, as shown in FIG. 3A, the wide field of view 11 of the coarse tracking sensor 53 and the fine tracking sensor 5
It is assumed that four narrow visual fields 12 are located on concentric circles.
That is, if light enters the center of the coarse tracking sensor 53,
This is the state of the optical antenna 51 and the optical system 52 in which the light also enters the center of the fine tracking sensor 54. In the following description, the movement of the optical axis position incident on each of the tracking sensors 53 and 54 is relatively regarded as the movement of the visual field of each of the tracking sensors 53 and 54. In FIG. 3, the sensor field of view is shown as a circle for convenience regardless of the actual shape of the light receiving element.

【0024】この状態から、光アンテナ51で相手光が
受信され、粗追尾センサ53において図3(a)のハッ
チングで示す入射位置Lで受光したとすると(図2のス
テップS1)、粗追尾センサ53から粗追尾誤差角θ1
とその誤差方向がベクトルとして入射方向予測演算部1
と粗追尾制御部55aに入力される。粗追尾制御部55
aは、粗追尾センサ53の出力から粗追尾機構56の駆
動方向と駆動速度を算出し、粗追尾機構52bと入射方
向予測演算部1に入力する。
In this state, if the opponent light is received by the optical antenna 51 and is received by the coarse tracking sensor 53 at the incident position L indicated by hatching in FIG. 3A (step S1 in FIG. 2), the coarse tracking sensor From 53, the coarse tracking error angle θ 1
And the error direction thereof as a vector
Is input to the coarse tracking control unit 55a. Coarse tracking control unit 55
“a” calculates the driving direction and the driving speed of the coarse tracking mechanism 56 from the output of the coarse tracking sensor 53, and inputs them to the coarse tracking mechanism 52 b and the incident direction prediction calculation unit 1.

【0025】これにより、粗追尾制御部55aは、当該
光ビームを粗追尾センサ53の中心で受光するように粗
追尾機構52bを駆動するが、これと同時に、入射方向
予測演算部1は、以下の予測演算処理を実行する(ステ
ップS2)。
Thus, the coarse tracking control unit 55a drives the coarse tracking mechanism 52b so as to receive the light beam at the center of the coarse tracking sensor 53. At the same time, the incident direction prediction calculation unit 1 Is performed (step S2).

【0026】即ち、今図3(a)に示すように、粗追尾
センサ53の視野11において入射位置Lに光軸が入射
したとすると、粗追尾制御部55aにより粗追尾センサ
53の視野11がその中心に入射位置Lを捉えるように
矢印方向に移動される。すると、図3(b)に示すよう
に、粗追尾センサ53の視野11と同心にあった精追尾
センサ54の視野12がずれるので、入射方向予測演算
部1は、このずれを戻すような精追尾機構52cにおけ
るミラーMの操作角(リセンタリング角θr)を予測し
て算出する(ステップS3)。
That is, as shown in FIG. 3A, assuming that the optical axis is incident on the incident position L in the field of view 11 of the coarse tracking sensor 53, the field of view 11 of the coarse tracking sensor 53 is changed by the coarse tracking controller 55a. It is moved in the direction of the arrow so as to capture the incident position L at its center. Then, as shown in FIG. 3 (b), the field of view 12 of the fine tracking sensor 54, which is concentric with the field of view 11 of the coarse tracking sensor 53, is displaced. The operation angle (recentering angle θ r ) of the mirror M in the tracking mechanism 52c is predicted and calculated (step S3).

【0027】そして、入射方向予測演算部1は、算出し
たリセンタリング角θrを精追尾制御部2に入力し、精
追尾制御部2により精追尾機構52cが所定量駆動され
精追尾センサ53の視野12が粗追尾センサ53の視野
11に近づけられる(ステップS4)。
Then, the incident direction prediction calculation unit 1 inputs the calculated re-centering angle θ r to the fine tracking control unit 2, and the fine tracking mechanism 52 c is driven by a predetermined amount by the fine tracking control unit 2 to drive the fine tracking sensor 53. The field of view 12 is brought closer to the field of view 11 of the coarse tracking sensor 53 (step S4).

【0028】これにより、精追尾センサ53で相手光が
受信されると、その後は従来一般的な追尾制御が行われ
る。一方、相手光が受信されない場合は、上記ステップ
S2からの動作が繰り返し実行される(ステップS
5)。
Thus, when the precise tracking sensor 53 receives the partner light, the conventional general tracking control is performed thereafter. On the other hand, when the partner light is not received, the operation from step S2 is repeatedly executed (step S2).
5).

【0029】これによると、入射方向予測演算部1が、
粗追尾センサ53への入射光軸位置に応じて精追尾セン
サ54への入射光軸位置を予測し、精追尾センサ54の
略中心で受光されるように予め精追尾機構を駆動制御す
るので、相手光を受光してから捕捉動作を完了し追尾状
態へ移行するまでにかかる時間(捕捉時間)を短縮する
ことができる。
According to this, the incident direction prediction calculation unit 1
Since the position of the incident optical axis to the fine tracking sensor 54 is predicted in accordance with the position of the incident optical axis to the coarse tracking sensor 53, and the fine tracking mechanism is drive-controlled in advance so as to be received substantially at the center of the fine tracking sensor 54, It is possible to reduce the time (capture time) required from the reception of the partner light to the completion of the capture operation and transition to the tracking state.

【0030】特に、予測操作量による制御を精追尾セン
サに相手光が受光されるまで繰り返し実行するので、よ
り補足時間の短縮を図ることができる。
In particular, since the control based on the predicted operation amount is repeatedly executed until the precise tracking sensor receives the partner light, the supplementary time can be further reduced.

【0031】次に、本発明の他の実施形態を図4に基づ
いて説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

【0032】上記実施形態において、精追尾機構52c
にピエゾアクチェエータ等を用いる場合は、小型・軽量
化を図ることができるが、その構造上の制限として、精
追尾機構角度検出器にポテンショメータ等の機構的な検
出器を採用することができない不都合がある。そこで、
かかる場合は図4に示すように、精追尾機構52cのミ
ラーに光を射出する独立した光源3を新たに設け、当該
光源から射出され精追尾機構52cのミラーで反射され
た光を受光可能な位置に機構的ではなく光学的な精追尾
機構角度検出器57を設けると良い。そして、精追尾制
御部4は、精追尾機構角度検出器57の出力に基づいて
精追尾機構52cにおけるミラー角度を検出するように
する。このようにしても、上記実施形態と同様の作用効
果を奏する他、装置全体の小型化及び軽量化を図ること
ができる。
In the above embodiment, the fine tracking mechanism 52c
When a piezo actuator or the like is used, the size and weight can be reduced, but as a structural limitation, a mechanical detector such as a potentiometer cannot be adopted as the fine tracking mechanism angle detector. There are inconveniences. Therefore,
In such a case, as shown in FIG. 4, an independent light source 3 for emitting light to the mirror of the fine tracking mechanism 52c is newly provided to receive light emitted from the light source and reflected by the mirror of the fine tracking mechanism 52c. It is preferable to provide an optical fine tracking mechanism angle detector 57 at the position, not a mechanical one. Then, the fine tracking control unit 4 detects the mirror angle in the fine tracking mechanism 52c based on the output of the fine tracking mechanism angle detector 57. Even in this case, the same operation and effect as those of the above-described embodiment can be obtained, and the size and weight of the entire apparatus can be reduced.

【0033】ここで、光源3は上述したように独立した
光源を用いる他、相手装置への送信光を帰還させて用い
ることも可能である。
Here, the light source 3 uses an independent light source as described above, and it is also possible to use the light transmitted back to the partner device by feeding it back.

【0034】[0034]

【発明の効果】本発明は、以上のように構成され機能す
るので、これによると、相手光を粗追尾センサで受光し
たときに精追尾センサヘの入射方向を予測し、その方向
へ予め精追尾機構を向けておくことにより、精追尾セン
サヘの光の入射までにかかる時間を削減するので、粗追
尾センサでの受光から精追尾の完了までに要する時間を
短縮することができる。特に、予測操作量による制御を
精追尾センサに相手光が受光されるまで繰り返し実行す
るので、より補足時間の短縮を図ることができる、とい
う従来にない優れた移動体間光通信システムの光追尾装
置を提供することができる。
Since the present invention is constructed and functions as described above, according to this, when the other party's light is received by the coarse tracking sensor, the incident direction to the fine tracking sensor is predicted, and the fine tracking is previously performed in that direction. By arranging the mechanism, the time required for the light to enter the fine tracking sensor is reduced, so that the time required from the reception of light by the coarse tracking sensor to the completion of the fine tracking can be reduced. Particularly, since the control based on the predicted operation amount is repeatedly executed until the opposing light is received by the fine tracking sensor, the supplementary time can be further shortened. An apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】図1に示す実施形態の動作を示すフローチャー
トである。
FIG. 2 is a flowchart showing the operation of the embodiment shown in FIG.

【図3】図1に示す実施形態における入射方向予測演算
部の処理を説明する説明図であって、図3(a)は粗追
尾センサの視野に対し所定位置に相手光が入射した状
態、図3(b)は粗追尾センサと精追尾センサとの視野
の中心が同心からずれた状態をそれぞれ示す。
3A and 3B are explanatory diagrams illustrating a process of an incident direction prediction calculation unit in the embodiment illustrated in FIG. 1; FIG. 3A illustrates a state in which partner light enters a predetermined position with respect to a field of view of a coarse tracking sensor; FIG. 3B shows a state in which the centers of the fields of view of the coarse tracking sensor and the fine tracking sensor are deviated from concentricity, respectively.

【図4】本発明の他の実施形態を示すブロック図であ
る。
FIG. 4 is a block diagram showing another embodiment of the present invention.

【図5】従来例を示すブロック図である。FIG. 5 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 入射方向予測演算部 2,4 精追尾制御部 3 光源 10 追尾制御回路(制御部) 11 粗追尾センサの視野 12 精追尾センサの視野 51 光アンテナ 52 光学系 52a ビームスプリッタ 52b 粗追尾機構 52c 精追尾機構 53 粗追尾センサ(広視野光センサ) 54 精追尾センサ(狭視野光センサ) 56 粗追尾機構角度検出器 57 精追尾機構角度検出器 DESCRIPTION OF SYMBOLS 1 Incident direction prediction calculation part 2, 4 Fine tracking control part 3 Light source 10 Tracking control circuit (control part) 11 Field of view of coarse tracking sensor 12 Field of view of fine tracking sensor 51 Optical antenna 52 Optical system 52a Beam splitter 52b Coarse tracking mechanism 52c Fine Tracking mechanism 53 Coarse tracking sensor (wide-field optical sensor) 54 Fine tracking sensor (narrow-field optical sensor) 56 Coarse tracking mechanism angle detector 57 Fine tracking mechanism angle detector

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 相手光を受信する光アンテナと、この光
アンテナで受信された光信号の光軸を外部操作量に応じ
て調整する光学系と、この光学系からの出力光を比較的
広い視野で受光する広視野光センサと、前記光学系から
の出力光を比較的狭い視野で受光する狭視野光センサ
と、前記光学系からの出力光軸を前記広視野光センサの
略中心に導くように当該光学系に操作量を入力すると共
に前記光学系からの出力光軸を前記狭視野光センサの略
中心に導くように当該光学系に操作量を入力する制御部
とを備えた光追尾装置において、 前記制御部は、前記光学系からの出力光軸を広視野光セ
ンサの略中心に導くための操作量に基づいて前記光学系
からの出力光軸を狭視野光センサの略中心に導くための
操作量を予測し、前記光学系からの出力光軸を広視野光
センサの略中心に導く間に、前記予測操作量を前記光学
系に入力することを特徴とした光追尾装置。
An optical antenna for receiving a partner light, an optical system for adjusting an optical axis of an optical signal received by the optical antenna according to an external operation amount, and a relatively wide output light from the optical system. A wide-field optical sensor that receives light in a visual field, a narrow-field optical sensor that receives output light from the optical system in a relatively narrow visual field, and guides an output optical axis from the optical system to approximately the center of the wide-field optical sensor. And a control unit for inputting an operation amount to the optical system so as to input an operation amount to the optical system and guiding an output optical axis from the optical system to substantially the center of the narrow-field optical sensor. In the apparatus, the control unit may set the output optical axis from the optical system to substantially the center of the narrow-field optical sensor based on an operation amount for guiding the output optical axis from the optical system to the approximate center of the wide-field optical sensor. Predict the amount of operation to guide, and output light from the optical system The while leading to substantially the center of the wide field light sensor, optical tracking device which is characterized in that inputs the predicted manipulated variable to the optical system.
【請求項2】 前記制御部は、前記広視野光センサの出
力に基づいて前記予測操作量を算出することを特徴とし
た請求項1記載の光追尾装置。
2. The optical tracking device according to claim 1, wherein the control unit calculates the predicted operation amount based on an output of the wide-field optical sensor.
【請求項3】 前記制御部は、前記狭視野光センサに相
手光が受信されるまで前記予測操作量に基づく狭視野光
センサへの入射光軸の制御を継続することを特徴とした
請求項1又は2記載の光追尾装置。
3. The control unit according to claim 2, wherein the control of the incident optical axis to the narrow-field optical sensor based on the predicted operation amount is continued until the partner light is received by the narrow-field optical sensor. 3. The optical tracking device according to 1 or 2.
JP8350002A 1996-12-27 1996-12-27 Optical tracking device for optical communication system between mobile units Expired - Lifetime JP2993450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8350002A JP2993450B2 (en) 1996-12-27 1996-12-27 Optical tracking device for optical communication system between mobile units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8350002A JP2993450B2 (en) 1996-12-27 1996-12-27 Optical tracking device for optical communication system between mobile units

Publications (2)

Publication Number Publication Date
JPH10190582A JPH10190582A (en) 1998-07-21
JP2993450B2 true JP2993450B2 (en) 1999-12-20

Family

ID=18407575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8350002A Expired - Lifetime JP2993450B2 (en) 1996-12-27 1996-12-27 Optical tracking device for optical communication system between mobile units

Country Status (1)

Country Link
JP (1) JP2993450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581111B2 (en) * 2001-04-16 2010-11-17 独立行政法人情報通信研究機構 Optical space communication device
JP5599365B2 (en) * 2011-05-11 2014-10-01 三菱電機株式会社 Acquisition and tracking device
JP2012253484A (en) * 2011-06-01 2012-12-20 Nec Corp Acquisition and tracking control device
JP6515472B2 (en) * 2014-09-18 2019-05-22 日本電気株式会社 Detection device, control device, detection method, and program

Also Published As

Publication number Publication date
JPH10190582A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
US6798992B1 (en) Method and device for optically crossconnecting optical signals using tilting mirror MEMS with drift monitoring feature
US4349838A (en) Laser target designator system
AU2018317941B2 (en) Laser tracker with improved roll angle measurement
EP2588917B1 (en) Line of sight stabilization system
US7058307B2 (en) Free-space optical communication apparatus and free-space optical communication system
JP4581111B2 (en) Optical space communication device
US5155327A (en) Laser pointing system
US6175451B1 (en) Optical axis correcting apparatus and method of correcting optical axis
EP3282280A1 (en) Positional feedback sensing useful for automated vehicle lidar
JP2993450B2 (en) Optical tracking device for optical communication system between mobile units
US4941739A (en) Mirror scanner
JPH0683145B2 (en) Optical wireless communication device for moving body
JPH07175021A (en) Optical spatial communication device
US20030222143A1 (en) Precision laser scan head
JPH09113603A (en) Position detector for mobile
JP2518066B2 (en) Laser beam direction control device
JP2507541B2 (en) Track survey system
JP2004363669A (en) Optical communication apparatus
JPH0346582A (en) Laser beam direction controller
JP2000046930A (en) Optical sensor
JPH09113270A (en) Automatic moving-body-tracking device and position detecting device of tracking type
JPH02242114A (en) Initial acquisition system
US20030222209A1 (en) Compact, large angle beam stabilization module
JPH0738499A (en) Space optical transmitter
JPS62293212A (en) Optical axis adjusting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990921