JPH06749B2 - Method for producing aminomethylpyridine - Google Patents

Method for producing aminomethylpyridine

Info

Publication number
JPH06749B2
JPH06749B2 JP60093353A JP9335385A JPH06749B2 JP H06749 B2 JPH06749 B2 JP H06749B2 JP 60093353 A JP60093353 A JP 60093353A JP 9335385 A JP9335385 A JP 9335385A JP H06749 B2 JPH06749 B2 JP H06749B2
Authority
JP
Japan
Prior art keywords
reaction
cyanopyridine
yield
cyanopyridines
aminomethylpyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60093353A
Other languages
Japanese (ja)
Other versions
JPS61251663A (en
Inventor
俊成 名畑
義男 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP60093353A priority Critical patent/JPH06749B2/en
Publication of JPS61251663A publication Critical patent/JPS61251663A/en
Publication of JPH06749B2 publication Critical patent/JPH06749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアミノメチルピリジン類を製造する方法に関
し、詳しくは水素化触媒の存在下原料シアノピリジン類
を反応系内、例えばオートプレーブに供給し、接触還元
反応を行うことによりアミノメチルピリジン類を製造す
る方法に関する。アミノメチルピリジン類は医薬の中間
体として有用な化合物である。
Description: TECHNICAL FIELD The present invention relates to a method for producing aminomethylpyridines, more specifically, supplying a starting cyanopyridine in the presence of a hydrogenation catalyst to a reaction system, for example, an autoclave. And a catalytic reduction reaction to produce aminomethylpyridines. Aminomethylpyridines are compounds useful as intermediates for medicines.

(従来技術) 従来化合物の製法として、シアノピリジン類を水素化触
媒の存在下接触還元反応する方法が知られている。
(C.A72、66760r(1970))この方法によると反応器に
原料シアノピリジン類と溶媒メタノール、アンモニア及
びラネーニッケルを同時に仕込み、室温下80気圧で4
0時間接触還元反応し2−アミノメチルピリジン、3−
アミノメチルピリジン、4−アミノメチルピリジンをそ
れぞれ収率72%、60%、60%で得ている。しかし
上記方法は収率が必ずしも高いとはいえずまた、反応時
間が長いなどの欠点を有し工業的に有利な製法とは言え
ない。
(Prior Art) As a conventional method for producing a compound, a method in which a catalytic reduction reaction of cyanopyridines in the presence of a hydrogenation catalyst is known.
(C. A72, 66760r (1970)) According to this method, the starting material cyanopyridines and the solvents methanol, ammonia and Raney nickel are charged at the same time in a reactor, and the mixture is heated at room temperature to 80 atm.
2-aminomethylpyridine, 3-
Aminomethylpyridine and 4-aminomethylpyridine are obtained at yields of 72%, 60% and 60%, respectively. However, the above-mentioned method is not necessarily an industrially advantageous production method since it does not necessarily have a high yield and has drawbacks such as a long reaction time.

(発明が解決しようとする問題点) 本発明者らは、上記のごとき不利を改善すべく鋭意研究
を重ね未反応シアノピリジン類の反応性に着目した結
果、はからずも水素化触媒の存在下原料シアノピリジン
類を反応系内へ逐次供給しながら接触還元反応を行なう
ことにより副反応を抑制しアミノメチルピリジン類を収
率良く製造することを見い出し本発明を完成するに到っ
た。
(Problems to be Solved by the Invention) The present inventors have conducted extensive studies to improve the above-mentioned disadvantages, and as a result of paying attention to the reactivity of unreacted cyanopyridines, it is inevitable that the raw material cyano is present in the presence of a hydrogenation catalyst. The inventors have found that by carrying out a catalytic reduction reaction while successively supplying pyridines into the reaction system, side reactions are suppressed and aminomethylpyridines are produced in good yield, and the present invention has been completed.

(問題点を解決するための手段) 本発明に用いるシアノピリジンには特に限定はないが、
医薬中間体であるアミノメチルピリジン類を製造すると
いう点から2−シアノピリジン、3−シアノピリジン、
4−シアノピリジン、2−シアノ−6−メチルピリジン
などが好適に使用される。
(Means for Solving Problems) The cyanopyridine used in the present invention is not particularly limited,
2-cyanopyridine, 3-cyanopyridine, from the viewpoint of producing aminomethylpyridines which are pharmaceutical intermediates
4-cyanopyridine, 2-cyano-6-methylpyridine and the like are preferably used.

一般にかかる水素化反応方法としては、あらかじめ反応
器内にシアノピリジン類を仕込み水素化触媒の存在下接
触還元反応を行うことにより、アミノメチルピリジン類
を得る方法が知られている。しかしこの方法では収率が
低く、工業的に有利な方法とはいえない。
In general, as such a hydrogenation reaction method, a method is known in which cyanopyridines are charged in advance in a reactor and a catalytic reduction reaction is carried out in the presence of a hydrogenation catalyst to obtain aminomethylpyridines. However, this method has a low yield and cannot be said to be an industrially advantageous method.

そこで本発明者らは、鋭意研究を重ねた結果、意外にも
本発明においては、反応系内に原料シアノピリジン類を
逐次供給しながら、接触還元反応を行なうことにより著
く収率が向上することを見い出した。
Therefore, as a result of intensive studies, the present inventors have surprisingly found that in the present invention, the yield is remarkably improved by performing the catalytic reduction reaction while sequentially supplying the raw material cyanopyridines into the reaction system. I found a thing.

従来の方法では、反応が進行する際シアノピリジン類同
志の反応及びシアノピリジン類と生成したアミノメチル
ピリジン類との反応など副反応が起こりやすく、高沸点
物が多量に副成するのでアミノメチルピリジン類の収率
が大幅に低下するものと思われる。
In the conventional method, side reactions such as reactions between cyanopyridines and reactions between cyanopyridines and the formed aminomethylpyridines are likely to occur when the reaction proceeds, and a large amount of high-boiling substances are by-produced. It seems that the yield of the compounds is significantly reduced.

本発明の方法を実施するに当り、原料シアノピリジン類
を反応系内へ供給するため、あらかじめ反応器内へ溶媒
を仕込んでおく必要がある。適当な溶媒としては、例え
ばベンゼン、トルエン等の芳香族炭化水素類、ヘキサ
ン、シクロヘキサン等の炭化水素類、メタノール、エタ
ノール類のアルコール類、テトラヒドロフラン、ジオキ
サン等の環状エーテル類等が挙げられる。
In carrying out the method of the present invention, in order to supply the starting cyanopyridines into the reaction system, it is necessary to charge a solvent in the reactor in advance. Examples of suitable solvents include aromatic hydrocarbons such as benzene and toluene, hydrocarbons such as hexane and cyclohexane, alcohols such as methanol and ethanol, cyclic ethers such as tetrahydrofuran and dioxane.

溶媒量としては、特に制限はないが反応効率を考慮した
場合、シアノピリジン類に対し0.5〜5倍(重量)の
範囲が好ましい。
The amount of the solvent is not particularly limited, but when reaction efficiency is taken into consideration, it is preferably in the range of 0.5 to 5 times (weight) with respect to the cyanopyridines.

本発明に用いる水素化触媒としては、通常使用される水
素化触媒が挙げられるが、具体例としては、ラネーニッ
ケルやラネーコバルト触媒などが挙げられる。水素化触
媒の使用量は、シアノピリジン類に対し2〜50%の範
囲が反応効率、触媒効率などの面から好ましい。
Examples of the hydrogenation catalyst used in the present invention include commonly used hydrogenation catalysts, and specific examples thereof include Raney nickel and Raney cobalt catalysts. The amount of the hydrogenation catalyst used is preferably in the range of 2 to 50% with respect to the cyanopyridines in terms of reaction efficiency, catalyst efficiency and the like.

アンモニアは必ずしも必要ではないが、存在することは
副反応を抑える効果があり、通常シアノピリジン類に対
し同量(重量)以下で十分で反応は好適に進行する。
Ammonia is not always necessary, but its presence has the effect of suppressing side reactions, and usually the same amount (weight) or less with respect to cyanopyridines is sufficient and the reaction proceeds properly.

反応は通常室温〜200℃好ましくは70〜150℃に
て好適に進行し、反応圧としては常圧以上、好ましく
は、5〜50気圧が好適である。
The reaction normally proceeds at room temperature to 200 ° C., preferably 70 to 150 ° C., and the reaction pressure is atmospheric pressure or higher, preferably 5 to 50 atm.

一般に上記にような条件で反応は0.5〜5時間とい短
時間で終了し、未反応シアノピリジン類もほとんど残ら
ない。
Generally, under the above conditions, the reaction is completed in a short time of 0.5 to 5 hours and almost no unreacted cyanopyridines remain.

上記方法にて得られるアミノメチルピリジン類は一般的
な単離、精製手段、例えば反応液から過により水素化
触媒を除去し、液を蒸留精製することなどにより極め
て容易に高純度の目的物ができる。本発明の方法による
と高品質のアミノメチルピリジン類が極めて容易に収率
良く、シアノピリジン類を出発原料として得られる。
The aminomethylpyridines obtained by the above method can be easily isolated to a high-purity target by general isolation and purification means, for example, by removing the hydrogenation catalyst from the reaction solution by filtration and purifying the solution by distillation. it can. According to the method of the present invention, high-quality aminomethylpyridines can be obtained very easily and in good yield, and cyanopyridines can be obtained as a starting material.

(発明の効果) 本発明と従来の方法を比較した場合、2−アミノメチル
ピリジンの合成においては、従来法で例えば比較例−1
に示した様に原料の2−シアノピリジン、溶媒、アンモ
ニア及び触媒を一度に仕込んだ場合、収率は68%であ
る。本発明では実施例−2に示した様に2−シアノピリ
ジンを反応の進行に従ってオートクレーブ内に供給する
ことにより収率は96%と非常に高くなる。従来法で
は、反応中シアノピリジン類とアミノメチルピリジン類
とが共存しているため、シアノピリジン類同志、及びシ
アノピリジン類とアミノメチルピリジン類などの副反応
が起こり高沸点物が生成しやすく、そのため収率が低下
するものと考えられる。事実、比較例の方法によると不
明の高沸点生成物が多く生成した。しかし本発明の方法
においては、原料シアノピリジン類を反応の進行に合せ
て供給しながら接触還元反応を行うため、上記のような
副反応が起こらず高収率でアミノメチルピリジン類が得
られる。
(Effect of the Invention) When the present invention and the conventional method are compared, in the synthesis of 2-aminomethylpyridine, the conventional method is used, for example, Comparative Example-1.
When 2-cyanopyridine as a raw material, a solvent, ammonia, and a catalyst are charged at once as shown in, the yield is 68%. In the present invention, as shown in Example-2, by supplying 2-cyanopyridine into the autoclave as the reaction progresses, the yield becomes extremely high at 96%. In the conventional method, since cyanopyridines and aminomethylpyridines coexist during the reaction, side reactions such as cyanopyridines, and cyanopyridines and aminomethylpyridines easily occur to easily generate high-boiling substances, Therefore, it is considered that the yield is lowered. In fact, according to the method of the comparative example, many unknown high boiling point products were produced. However, in the method of the present invention, the catalytic reduction reaction is carried out while supplying the starting cyanopyridines in accordance with the progress of the reaction, and thus the above-mentioned side reaction does not occur and aminomethylpyridines can be obtained in high yield.

また本発明においては、副反応がほとんど起こらないた
め、従来法に比べ精製が非常に容易であり、例えば簡単
な蒸留により非常に純度の高いアミノメチルピリジン類
が得られる。
Further, in the present invention, since side reactions hardly occur, the purification is very easy as compared with the conventional method, and, for example, a highly pure aminomethylpyridine can be obtained by simple distillation.

次に本発明の方法を実施例により説明するが本発明はそ
れらに限定されるものではない。
Next, the method of the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例−1 容量3の電磁攪拌式オートクレーブにベンゼン700
g、展開したラネーニッケル140g液体アンモニア7
0gを仕込み、これに水素を導入して90℃45気圧ま
で昇温昇圧する。反応器内温が90℃に達した後2−シ
アノピリジン700gを3時間かけて高圧定量ポンプに
てオートプレーブ内に供給した。反応の進行により水素
が消費されるので逐次水素を追加し圧力を保った。
Example 1 Benzene 700 was placed in an electromagnetic stirring autoclave having a capacity of 3.
g, Raney nickel 140g liquid ammonia 7
0 g was charged, hydrogen was introduced into this, and the temperature was raised to 90 ° C. and 45 atm to increase the pressure. After the reactor internal temperature reached 90 ° C., 700 g of 2-cyanopyridine was fed into the autoclave by a high-pressure metering pump over 3 hours. Hydrogen was consumed as the reaction proceeded, so hydrogen was added successively to maintain the pressure.

2−シアノピリジンの供給を止めると、同時に水素の消
費も止まり反応は終了した。反応液を冷却、過して触
媒を別し、液を蒸留して89mmHgで132℃の沸点
の2−アミノメチルピリジン646g(GC純度99
%、収率88%)及び副生成物のビス−2−ピコリルア
ミン60g(収率9%)を得た。
When the supply of 2-cyanopyridine was stopped, the consumption of hydrogen also stopped and the reaction ended. The reaction solution was cooled and passed to separate the catalyst, and the solution was distilled to give 646 g of 2-aminomethylpyridine having a boiling point of 132 ° C. at 89 mmHg (GC purity: 99
%, Yield 88%) and bis-2-picolylamine 60 g (yield 9%) were obtained as a by-product.

実施例−2 容量3の電磁攪拌式オートプレーブにベンゼン700
g、展開したラネーコバルト140g、液体アンモニア
70gを仕込みこれに水素を導入して130℃45気圧
まで昇温昇圧する。反応器内温が130℃に達して直ち
に2−シアノピリジン700gを3時間かけて高圧定量
ポンプにてオートプレーブ内に供給した。反応の進行に
より水素が消費されるので逐次水素を追加し圧力を保っ
た。2−シアノピリジンの供給を止めると、同時に水素
の消費も止まり反応は終了した。以下実施例−1と同様
に処理して、2−アミノメチルピリジン705g(GC
純度99%、収率96%)および副生成物のビス−2−
ピコリルアミン13g(収率2%)を得た。
Example 2 Benzene 700 was added to a magnetic stirring type autoclave with a capacity of 3.
g, 140 g of Raney cobalt developed, and 70 g of liquid ammonia were charged, and hydrogen was introduced into this to raise the temperature and pressure to 130 ° C. and 45 atm. Immediately after the reactor internal temperature reached 130 ° C., 700 g of 2-cyanopyridine was fed into the autoclave by a high-pressure metering pump over 3 hours. Hydrogen was consumed as the reaction proceeded, so hydrogen was added successively to maintain the pressure. When the supply of 2-cyanopyridine was stopped, the consumption of hydrogen also stopped and the reaction ended. Thereafter, the same treatment as in Example-1 was carried out to give 705 g of 2-aminomethylpyridine (GC
Purity 99%, yield 96%) and by-product bis-2-
13 g (yield 2%) of picolylamine was obtained.

実施例−3 実施例−1と同様にして2−シアノピリジンの代わりに
3−シアノピリジン700gを使用し、同様に反応、処
理して30mmHgで沸点133℃の3−アミノメチルピリ
ジン712g(GC純度99%、収率97%)を得た。
Example-3 In the same manner as in Example-1, 700 g of 3-cyanopyridine was used instead of 2-cyanopyridine, and the same reaction and treatment were carried out to obtain 712 g of 3-aminomethylpyridine having a boiling point of 133 ° C at 30 mmHg (GC purity). 99%, yield 97%) was obtained.

実施例−4 実施例−2と同様にして、2−シアノピリジンの代わり
に4−シアノピリジン700gを使用し、同様に反応、
処理して15mmHgで沸点114℃の4−アミノメチルピ
リジン690g(GC純度99%、収率94%)を得
た。
Example-4 In the same manner as in Example-2, using 700 g of 4-cyanopyridine instead of 2-cyanopyridine, and similarly reacting,
After treatment, 690 g of 4-aminomethylpyridine (GC purity 99%, yield 94%) having a boiling point of 114 ° C. at 15 mmHg was obtained.

実施例−5 実施例−1と同様に2−シアノピリジンの代わりに、6
−メチル−2−シアノピリジン700gを使用し、同様
に反応、処理して40mmHgで沸点117℃の6−メチル
−2−アミノメチルピリジン651g(GC純度99
%、収率90%)を得た。
Example-5 As in Example-1, instead of 2-cyanopyridine, 6
Using 700 g of methyl-2-cyanopyridine, the same reaction and treatment were carried out and 651 g of 6-methyl-2-aminomethylpyridine having a boiling point of 117 ° C. at 40 mmHg (GC purity 99
%, Yield 90%) was obtained.

比較例−1 容量3の電磁攪拌式オートクレーブに、2−シアノピ
リジン700g、ベンゼン700g、展開したラネーコ
バルト140g、液体アンモニア70gを仕込みこれに
水素を導入して90℃45気圧で反応させた。水素を追
加しながら反応し、3時間で反応は終了した。以下実施
例−1と同様に処理して2−アミノメチルピリジン49
9g(GC純度99%、収率68%)及びビス−2−ピ
コリルアミン80g(収率12%)を得た。
Comparative Example-1 A magnetic stirring type autoclave having a capacity of 3 was charged with 700 g of 2-cyanopyridine, 700 g of benzene, 140 g of Raney cobalt developed, and 70 g of liquid ammonia, and hydrogen was introduced into this to react at 90 ° C. and 45 atm. The reaction was carried out while adding hydrogen, and the reaction was completed in 3 hours. Thereafter, the same treatment as in Example-1 is carried out to prepare 2-aminomethylpyridine 49
9 g (GC purity 99%, yield 68%) and bis-2-picolylamine 80 g (yield 12%) were obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シアノピリジン類を水素化触媒の存在下、
接触還元反応させて、アミノメチルピリジン類を製造す
るに当り、触媒の存在下反応系内に原料シアノピリジン
類を供給しながら反応することを特徴とするアミノメチ
ルピリジン類の製造法。
1. A cyanopyridine compound in the presence of a hydrogenation catalyst,
A method for producing aminomethyl pyridines, which comprises reacting while supplying a starting cyanopyridine in the reaction system in the presence of a catalyst to produce aminomethyl pyridines by catalytic reduction reaction.
JP60093353A 1985-04-30 1985-04-30 Method for producing aminomethylpyridine Expired - Fee Related JPH06749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093353A JPH06749B2 (en) 1985-04-30 1985-04-30 Method for producing aminomethylpyridine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093353A JPH06749B2 (en) 1985-04-30 1985-04-30 Method for producing aminomethylpyridine

Publications (2)

Publication Number Publication Date
JPS61251663A JPS61251663A (en) 1986-11-08
JPH06749B2 true JPH06749B2 (en) 1994-01-05

Family

ID=14079907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093353A Expired - Fee Related JPH06749B2 (en) 1985-04-30 1985-04-30 Method for producing aminomethylpyridine

Country Status (1)

Country Link
JP (1) JPH06749B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222152A1 (en) * 1992-07-06 1994-01-13 Bayer Ag Process for the preparation of 2-chloro-5-aminomethyl-pyridine
GB0025616D0 (en) * 2000-10-19 2000-12-06 Aventis Cropscience Sa Novel process
US6921828B2 (en) * 2000-08-25 2005-07-26 Bayer Cropscience S.A. Processes for the preparation of 2-aminomethlpyridines and the 2-cyanopyridines used in their preparation
BR0117362B1 (en) * 2000-08-25 2013-08-27 Process for the preparation of a 2-pyridylmethylamine derivative compound of formula (v)

Also Published As

Publication number Publication date
JPS61251663A (en) 1986-11-08

Similar Documents

Publication Publication Date Title
CN109020881B (en) Preparation method of apatinib
JPS6233211B2 (en)
CN111732536B (en) Synthesis method of aminopyridine compound
JPH06749B2 (en) Method for producing aminomethylpyridine
CN110981854B (en) Synthesis method of 2-amino-6- (1-alkyl piperidine-4-carbonyl) pyridine compound
US4263175A (en) Catalyst for the production of pyrrolidone
JP3038271B2 (en) Method for producing 3-aminopropanol
JP3031727B2 (en) Process for producing aminomethylpyridines having a chlorine atom at the α-position
JP4131575B2 (en) Production method of benzophenone imine
JPS6072864A (en) Manufacture of 2-amino-alkylpyridines
JP2740828B2 (en) Method for producing N, N-diisopropylethylamine
CN108602758B (en) Process for preparing trans-4-amino-1-cyclohexanecarboxylic acids and derivatives thereof
JPH05310697A (en) Production of 2-chloro-5-substituted aminomethylpyridines
JP4224144B2 (en) Process for producing N-alkylpyridinemethanamines
US4658032A (en) Process for producing 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine
CN116554143B (en) Preparation process of (S) -nicotine
JPS61251659A (en) Production of 2-or 3-aminomethylpiperidine
JP2815636B2 (en) Process for producing 2-aminomethylpyrazines and / or 2-aminomethylpiperazines
JP4214322B2 (en) Method for producing monoalkylaminopyridine compound
CN110668959A (en) Process for the preparation of optically pure cyclic aminoalcohols and salts thereof
CN110642726A (en) Preparation of optically pure cyclic aminoalcohols and salts thereof
EP0882712B1 (en) Process for preparing acid salts of gamma-(piperidyl)butyric acid
JP4809985B2 (en) Method for producing 3-arylpropylamine
JPH01121268A (en) Production of 3,5-dichloropyridine
JPS60132960A (en) Manufacture of 2-pyridone in gas phase

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees