JPH0674941B2 - Defrost control method for refrigeration cycle - Google Patents

Defrost control method for refrigeration cycle

Info

Publication number
JPH0674941B2
JPH0674941B2 JP62319710A JP31971087A JPH0674941B2 JP H0674941 B2 JPH0674941 B2 JP H0674941B2 JP 62319710 A JP62319710 A JP 62319710A JP 31971087 A JP31971087 A JP 31971087A JP H0674941 B2 JPH0674941 B2 JP H0674941B2
Authority
JP
Japan
Prior art keywords
refrigerant
defrosting
compressor
evaporator
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62319710A
Other languages
Japanese (ja)
Other versions
JPH01163585A (en
Inventor
功 本多
和秀 勇内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62319710A priority Critical patent/JPH0674941B2/en
Priority to KR1019880015726A priority patent/KR890010518A/en
Priority to MYPI88001439A priority patent/MY103652A/en
Priority to GB8829149A priority patent/GB2213247B/en
Priority to CN88108617A priority patent/CN1012104B/en
Publication of JPH01163585A publication Critical patent/JPH01163585A/en
Priority to SG426/92A priority patent/SG42692G/en
Priority to HK439/92A priority patent/HK43992A/en
Publication of JPH0674941B2 publication Critical patent/JPH0674941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は冷凍冷蔵庫等の冷凍サイクルの霜取りの制御
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for controlling defrosting in a refrigerating cycle such as a refrigerator-freezer.

〔従来の技術〕[Conventional technology]

第6図は従来の冷凍サイクルの除霜制御方法の一例であ
る実開昭60−65582号公報に示された冷凍冷蔵庫の除霜
装置の断面図であり,第7図は基本冷凍サイクルを示す
回路図である。図において(1)は冷蔵庫箱体,(2)
は送風フアン,(3)は蒸発器,(4)は蒸発器(3)
出口に設けられた液溜めタンク,(5)は蒸発器(3)
を支えるためのエンドプレート,(6)は蒸発器(3)
下方に取り付けられたガラス管ヒーター,(7)はガラ
ス管ヒーター(6)の真上に設けたカサ,(8)は蒸発
器室最下部に設けられたトイ,(11)はエンドプレート
(5)下部に取り付けられた熱対流用ガイド,(12)は
圧縮機,(13)は凝縮機,(14)は減圧器,(15)は冷
媒管路である。
FIG. 6 is a sectional view of a defrosting device for a refrigerator / freezer shown in Japanese Utility Model Laid-Open No. 60-65582, which is an example of a conventional defrosting control method for a refrigerating cycle, and FIG. 7 shows a basic refrigerating cycle. It is a circuit diagram. In the figure, (1) is a refrigerator box, (2)
Is a blast fan, (3) is an evaporator, (4) is an evaporator (3)
A liquid reservoir tank provided at the outlet, (5) is an evaporator (3)
End plate for supporting the (6) is the evaporator (3)
A glass tube heater attached below, (7) a umbrella provided directly above the glass tube heater (6), (8) a toy provided at the bottom of the evaporator chamber, and (11) an end plate (5). ) A guide for heat convection attached to the lower part, (12) is a compressor, (13) is a condenser, (14) is a decompressor, and (15) is a refrigerant conduit.

次に動作について説明するとまず,圧縮機(12),凝縮
機(13),減圧器(14),蒸発器(3)を冷媒管路(1
5)により順次接続した冷凍サイクルを運転すると,蒸
発器(3)が極低温となる。そして,その極低温となつ
た蒸発器(3)に庫内の空気を当てて,熱交換を行なわ
せて空気を冷却し,その冷却した空気を送風フアン
(2)で強制対流させて冷凍冷蔵庫の庫内へ再び送り込
み庫内の冷却を行う。このとき庫内の空気中に含まれて
いる水分は熱交換時に増発器(3)及び液溜めタンク
(4)表面に霜となつて付着する。そしてその霜は熱交
換しようとする蒸発器(3)と空気の間に層をつくり熱
交換を阻害する。そのため通常冷凍冷蔵庫は定期的に霜
取り運転を行う。
Next, the operation will be described. First, the compressor (12), the condenser (13), the pressure reducer (14), and the evaporator (3) are connected to the refrigerant pipeline (1
When the refrigeration cycle connected sequentially by 5) is operated, the evaporator (3) becomes extremely low temperature. Then, air in the refrigerator is applied to the cryogenic evaporator (3) to cause heat exchange to cool the air, and the cooled air is forcibly convected by the blower fan (2) to freeze the refrigerator. It is sent again to the inside of the refrigerator to cool the inside. At this time, the moisture contained in the air in the refrigerator adheres to the surfaces of the accelerator (3) and the liquid storage tank (4) as frost during heat exchange. Then, the frost forms a layer between the evaporator (3) trying to exchange heat and the air and hinders the heat exchange. Therefore, the normal freezer-refrigerator regularly performs defrosting operation.

その除霜運転は,加熱することにより蒸発器(3)や液
溜めタンク(4)の表面に氷付いている霜を解かして取
り除く作業であるから,冷凍運転中蒸発器(3)の冷気
を発生する,つまり熱を奪う作業とは相反するため,通
常冷凍運転を停止し,つまり圧縮機(12)を一旦停止し
た後除霜運転を行ない,除霜運転終了後再び圧縮機(1
2)を始動して冷凍運転を行なつていた。
Since the defrosting operation is an operation of defrosting and removing the frost on the surface of the evaporator (3) and the liquid storage tank (4) by heating, the cold air of the evaporator (3) during the freezing operation is removed. Since it is contrary to the work that occurs, that is, heat removal, the normal refrigeration operation is stopped, that is, the compressor (12) is temporarily stopped and then the defrosting operation is performed, and after the defrosting operation is completed, the compressor (1
2) was started and the refrigeration operation was performed.

その除霜運転は,圧縮機(12)の停止後ガラス管ヒータ
ー(6)に通電され,ガラス管ヒータ(6)が駆動して
発熱し付近の空気を加熱する。加熱された空気は自然対
流して上方へいき蒸発器(3)の表面に付いた霜との熱
交換により霜取りを行う。又加熱された空気の一部は,
ガラス管ヒーター(6)の発熱により内側へ折れ曲がつ
た熱対流用ガイド(11)により液溜めタンク(4)側に
上昇し液溜めタンク表面の霜取りをも行う。
In the defrosting operation, the glass tube heater (6) is energized after the compressor (12) is stopped, and the glass tube heater (6) is driven to generate heat and heat nearby air. The heated air naturally convects and moves upward to defrost by exchanging heat with the frost on the surface of the evaporator (3). Also, part of the heated air is
The heat generated by the glass tube heater (6) causes the heat convection guide (11) bent inward to move up to the liquid storage tank (4) side to defrost the surface of the liquid storage tank.

なお,霜取完了は液溜めタンク表面に取り付けられた霜
取り感知センサーの感知温度が霜の融点以上の10〜15℃
に達したことにより判断される。
When defrosting is completed, the temperature detected by the defrosting sensor attached to the surface of the liquid storage tank is 10 to 15 ° C above the melting point of frost.
It is judged by having reached.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の冷凍サイクルの除霜方法は,単にヒーターから放
射される輻射熱により除霜しているのでヒーターに近く
の除霜は,比較的短時間で取り除かれるが,ヒーターと
の距離が離れると加熱された空気の熱量が急激に減少す
るためヒーターから離れた蒸発器上部及び液溜めタンク
の除霜時間が大巾に長くなり,ヒーターから発生する熱
はすべて霜を解かすためにのみ使用することは不可能で
あるから,ヒーターの加熱時間が長くなればなるほど,
ヒーターより離れた所の霜が解けるとともに,蒸発器の
冷気により冷却すべき庫内にヒーターの熱が伝わり,庫
内温度を上昇させてしまうという問題がある。
In the conventional defrosting method of the refrigeration cycle, since defrosting is simply performed by radiant heat emitted from the heater, defrosting near the heater is removed in a relatively short time, but it is heated when the distance from the heater increases. The defrosting time of the upper part of the evaporator and the liquid storage tank far from the heater is drastically decreased because the amount of heat of the air is drastically reduced, and all the heat generated from the heater cannot be used only for defrosting. Since it is impossible, the longer the heating time of the heater,
There is a problem that the frost in the place away from the heater is thawed and the heat of the heater is transferred to the inside of the chamber to be cooled by the cool air of the evaporator, which raises the temperature inside the chamber.

この発明は,上記のような問題点を解決するためになさ
れたもので,ヒーターの発熱する熱量を蒸発器のヒータ
ーから離れた部分及び液溜タンク等に早く確実に伝え,
冷却すべき庫内への熱影響を最小限に抑え短時間で除霜
を完了することのできる冷凍サイクルの除霜制御方法を
得ることを目的とする。
The present invention has been made to solve the above problems, and quickly and surely transfers the amount of heat generated by the heater to the portion of the evaporator away from the heater and the liquid storage tank.
It is an object of the present invention to obtain a defrosting control method for a refrigeration cycle that can minimize defrosting in a short time while minimizing the heat influence on the inside of the refrigerator to be cooled.

〔問題点を解決するための手段〕[Means for solving problems]

この第1の発明に係る冷凍サイクルの除霜制御方法は、
蒸発器の冷媒流入側近傍にヒーターを設けると共に、こ
のヒーターによる除霜運転中に圧縮機を所定時間間隔で
短時間運転するようにしたものである。
A defrosting control method for a refrigeration cycle according to the first aspect of the present invention,
A heater is provided near the refrigerant inflow side of the evaporator, and the compressor is operated for a short time at predetermined time intervals during the defrosting operation by the heater.

さらに第2の発明は,凝縮器と減圧器の間に冷媒制御弁
を,蒸発器と圧縮器の間に逆止弁を設けて,通常は圧縮
機のON−OFFに同期して開閉する冷媒制御弁を除霜運転
中は圧縮器の運転に関係なく開としたものである。
Further, the second invention provides a refrigerant control valve between the condenser and the pressure reducer, and a check valve between the evaporator and the compressor, and normally opens and closes in synchronization with ON-OFF of the compressor. The control valve is opened during the defrosting operation regardless of the operation of the compressor.

〔作用〕[Action]

この第1の発明における冷凍サイクルの除霜制御方法
は,ヒーターの熱エネルギーにより局部加熱状態にある
ヒーター近傍の蒸発器冷媒をヒーターより離れた蒸発器
及び,液溜めタンクへ圧縮機により徐々に移動させ,移
動した冷媒が各部における新たなる熱源となつて,その
冷媒近傍の管壁外の霜を溶かすと共に,ヒーター付近で
溶けた霜がさらに過熱されて蒸発することがなくなり,
庫内が高湿とならない。
In the defrosting control method of the refrigeration cycle according to the first aspect of the present invention, the evaporator refrigerant in the vicinity of the heater, which is locally heated by the heat energy of the heater, is gradually moved to the evaporator away from the heater and the liquid storage tank by the compressor. Then, the moved refrigerant serves as a new heat source in each part to melt the frost outside the pipe wall in the vicinity of the refrigerant, and the frost melted in the vicinity of the heater is not further overheated and evaporated.
The inside of the refrigerator does not get very humid.

また,第2の発明は冷媒制御弁と逆止弁を設けた冷蔵庫
の除霜運転中は冷媒制御弁を,圧縮機のON−OFFに同期
せず,常に「開」にすることにより除霜時間を短縮させ
ることができる。
The second aspect of the invention is to defrost the refrigerator provided with the refrigerant control valve and the check valve during the defrosting operation of the refrigerator by always opening the refrigerant control valve without synchronizing with ON-OFF of the compressor. The time can be shortened.

〔実施例〕〔Example〕

この発明はヒータによる加熱除霜時には,停止した冷凍
サイクルを利用して除霜能力を向上させたものである。
The present invention improves the defrosting ability by utilizing the stopped refrigeration cycle during the heating defrosting by the heater.

冷凍サイクルの除霜制御方法の第一の発明を,冷凍冷蔵
庫の防霜制御の一実施例を示す第1図,第2図を用いて
説明する。
A first invention of a defrosting control method for a refrigerating cycle will be described with reference to FIG. 1 and FIG.

第1図において(1)は冷蔵庫箱体,(2)は送風フア
ン,(3)は蒸発器,(4)は蒸発器(3)出口側に設
けられた液溜めタンク,(6)は蒸発器(3)下部に取
り付けられたガラス管ヒーター,(7)はガラス管ヒー
ター(6)直上に取り付けられたカサ,(8)は蒸発器
室最下部に設けられたトイ,(9)はドレン管,(10)
は液溜めタンク(4)表面に取り付けられた霜取りセン
サーである。第2図は冷凍冷蔵庫の霜取り運転時におけ
る圧縮機及びガラス管ヒーターの制御を示すタイムチヤ
ート図であり,tは霜取り運転時における圧縮機の瞬間運
転時間を示す。aは圧縮機瞬間運転中止温度,bは霜取り
完了温度である。
In FIG. 1, (1) is a refrigerator box, (2) is a fan fan, (3) is an evaporator, (4) is a liquid storage tank provided on the outlet side of the evaporator (3), and (6) is evaporation. A glass tube heater attached to the bottom of the vessel (3), (7) a umbrella attached directly above the glass tube heater (6), (8) a toy provided at the bottom of the evaporator chamber, and (9) a drain. Tube, (10)
Is a defrost sensor attached to the surface of the liquid storage tank (4). FIG. 2 is a time chart showing the control of the compressor and the glass tube heater during the defrosting operation of the refrigerator / freezer, and t shows the instantaneous operating time of the compressor during the defrosting operation. a is the compressor instantaneous operation stop temperature, and b is the defrosting completion temperature.

通常の冷却運転は従来の冷凍冷蔵庫と同じであり,冷凍
サイクルの運転により庫内を冷却し,又従来の冷凍冷蔵
庫と同様の理由により定期的に霜取り運転を行う。
The normal cooling operation is the same as the conventional refrigerator / freezer, in which the inside of the refrigerator is cooled by the operation of the refrigeration cycle, and the defrosting operation is performed periodically for the same reason as in the conventional refrigerator / freezer.

次にこの霜取り制御を第2図のタイムチヤート図を用い
て説明する。
Next, this defrosting control will be described with reference to the time chart of FIG.

まず,除霜運転を開始すると,ガラス管ヒーター(6)
への通電を開始し,ガラス管ヒーター(6)より発熱を
開始する。と同時に冷凍サイクル中の圧縮機(12)は,
通常の連続駆動や庫内温度による制御運転より,所定間
隔Tで短時間tの瞬間運転に切り換わる。
First, when the defrosting operation starts, the glass tube heater (6)
Power is supplied to the glass tube heater (6) and heat is generated. At the same time, the compressor (12) in the refrigeration cycle
The normal continuous drive or the control operation based on the internal temperature is switched to the instantaneous operation for a short time t at a predetermined interval T.

そして,霜取りセンサー(10)の感知温度が液溜めタン
ク(4)表面の霜が溶けたと判断するa点に達するまで
圧縮機(12)の断続瞬間運転は続けられる。この霜取セ
ンサー(10)の感知温度がa点に達するまでは蒸発器内
部の圧力は霜が溶ける0℃の飽和圧力であり,圧縮機
(12)が瞬間運転しても圧縮機吸込による圧力低下を殆
んど受けず,蒸発温度を下げることなくガラス管ヒータ
ー(6)近傍である蒸発器(3)下部で暖められた冷媒
を蒸発器(3)出口側のガラス管ヒーター(6)より離
れた部分まで移動させることができる。この加熱された
冷媒の移動によりガラス管ヒーター(6)の熱エネルギ
ーを自然対流では受けにくいガラス管ヒーター(6)よ
り離れた蒸発器(3)の上部及び,液溜めタンク(4)
へ配管内部より伝達することができ,移動した配管内の
冷媒がその部分での新たな熱源となり,配管の内側より
霜を解かすので,ガラス管ヒーター(6)より離れた蒸
発器(3)上部及び液溜めタンク(4)の表面の霜を早
く解かすことができる。
Then, the intermittent operation of the compressor (12) is continued until the temperature sensed by the defrost sensor (10) reaches point a where it is determined that the frost on the surface of the liquid storage tank (4) has melted. Until the temperature detected by the defrost sensor (10) reaches point a, the pressure inside the evaporator is a saturation pressure of 0 ° C at which the frost melts, and even if the compressor (12) momentarily operates, the pressure due to the compressor suction The refrigerant warmed in the lower part of the evaporator (3) near the glass tube heater (6) with almost no lowering of the evaporation temperature is cooled by the glass tube heater (6) at the outlet side of the evaporator (3). It can be moved to a remote location. Due to the movement of the heated refrigerant, the upper part of the evaporator (3) apart from the glass tube heater (6), which is difficult to receive the thermal energy of the glass tube heater (6) by natural convection, and the liquid storage tank (4)
The refrigerant inside the pipe can be transferred to the inside of the pipe, and the refrigerant inside the pipe becomes a new heat source at that portion, and frost is defrosted from the inside of the pipe, so the evaporator (3) separated from the glass tube heater (6) Frost on the upper part and the surface of the liquid storage tank (4) can be quickly thawed.

この冷凍冷蔵庫の除霜運転は,霜取りセンサー(10)の
感知温度が霜が溶ける温度よりも高いb点(約10℃)に
達するまで行なわれる。
The defrosting operation of this freezer-refrigerator is performed until the temperature detected by the defrosting sensor (10) reaches point b (about 10 ° C.), which is higher than the temperature at which frost melts.

これは溶けた霜が水滴となつて蒸発器(3)よりトイ
(8)へさらにドレン管(9)へと流れていくための時
間を持つためで,溶けた水滴が再び蒸発器(3)表面に
氷となつて残るのを防ぐためである。この霜が溶けて流
れるまでのa点からb点の間においては蒸発器(3)の
内部圧力および温度が上昇しているので,この時に圧縮
機を瞬間運転すると,圧縮機吸込による圧力低下の影響
を受け,蒸発温度が一瞬降下し霜取りセンサー(10)の
感知温度にも影響を及ばす。したがつて圧縮機(12)の
瞬間運転は霜取り開始より霜が溶けた霜取りセンサ(1
0)の感知温度(1〜3℃)a点まで運転するのがよ
く,この制御方法により霜取り時間を短縮することがで
きる。
This is because the melted frost has time to flow into the water drop from the evaporator (3) to the toy (8) and further to the drain pipe (9). This is to prevent ice from remaining on the surface. Since the internal pressure and temperature of the evaporator (3) increase between the points a and b until the frost melts and flows, if the compressor is operated instantaneously at this time, the pressure drop due to the suction of the compressor will occur. As a result, the evaporation temperature drops for a moment, affecting the temperature sensed by the defrost sensor (10). Therefore, when the compressor (12) is operated instantaneously, the defrost sensor (1
It is preferable to operate up to the a point (0) of the sensing temperature (1 to 3 ° C.), and this control method can shorten the defrosting time.

そして冷凍サイクル中の蒸発器に発生する霜は,蒸発器
内を流れる冷媒より発生する冷気により作り出されたも
のであるから,その冷媒を熱源とすれば確実に霜のある
所に熱源を送ることができ,かつ不必要な部分や庫内を
霜がなくなるまで加熱する心配はないし,霜がなくなつ
た時点で冷媒を熱源とすることを停止するのでつまり,
ガラス管ヒーターの発熱を停止するので,冷媒を熱源に
したことによる熱の影響の発生の心配は全くない。
Since the frost generated in the evaporator during the refrigeration cycle is created by the cold air generated by the refrigerant flowing in the evaporator, if the refrigerant is used as the heat source, the heat source must be sent to a place with frost. There is no need to worry about heating unnecessary parts or the interior of the refrigerator until the frost disappears, and when the frost disappears, it stops using the refrigerant as a heat source.
Since the heat generation of the glass tube heater is stopped, there is no concern about the influence of heat caused by using the refrigerant as the heat source.

ここで,圧縮機(12)が停止している時間Tは,ガラス
管ヒーター(6)近傍の蒸発器(3)の冷媒にとつて
は,ガラス管ヒーター(6)から吸熱に要する時間であ
り,ガラス管ヒーター(6)より離れた蒸発器(3)や
液溜めタンク(4)内の冷媒にとつては吸熱した熱エネ
ルギーを管壁外の霜へ放熱する時間である。
Here, the time T during which the compressor (12) is stopped is the time required for the refrigerant in the evaporator (3) near the glass tube heater (6) to absorb heat from the glass tube heater (6). , It is the time to radiate the heat energy absorbed by the refrigerant in the evaporator (3) and the liquid storage tank (4) away from the glass tube heater (6) to the frost outside the tube wall.

従つてこの時間Tはガラス管ヒーター(6)近傍の蒸発
器(3)の霜が取り除かれた後の吸熱後の冷媒が霜付区
間通過後放熱する熱エネルギーが残つていないように設
定すれば霜以外への放熱が完全に防止できる。
Therefore, this time T should be set so that the heat energy of the refrigerant after absorbing heat after defrosting of the evaporator (3) in the vicinity of the glass tube heater (6) is not released after passing through the frosting section. For example, heat radiation other than frost can be completely prevented.

また,圧縮機(12)が瞬間運転する時間tは,ガラス管
ヒーター(6)の近傍においては,吸熱した冷媒を霜の
ある位置まで送り出す時間であり,新たに吸熱させるた
めの冷媒をガラス管ヒーター近傍に引き入れる時間であ
り,ガラス管ヒーター(6)より離れた位置において
は,吸熱した冷媒を放熱する位置に引き入れる時間であ
る。
In addition, the time t during which the compressor (12) operates instantaneously is the time to send out the heat-absorbed refrigerant to the position where there is frost in the vicinity of the glass tube heater (6). It is the time to draw in the vicinity of the heater, and the time away from the glass tube heater (6) is the time to draw in the refrigerant that has absorbed heat.

従つて,この時間tは同時に吸熱された冷媒が完全に吸
熱前の冷媒と入れ変われるように設定すると全霜のむら
のない均一な除霜を行なうことができる。
Therefore, at this time t, if the refrigerant that has absorbed heat at the same time is set so as to be completely replaced with the refrigerant that has not yet absorbed heat, uniform defrosting without unevenness in total frost can be performed.

なお上記実施例では冷媒回路中に冷媒制御弁を持たない
冷蔵庫について述べたが第3図に示すように凝縮器(1
3)出口と減圧装置(14)入口との間に冷媒制御弁(1
6)を設け蒸発器(3)出口と圧縮機(12)入口の間に
逆止弁(17)を設け,第3図のタイムチヤートに示すよ
うに通常の冷却運転時は圧縮機のON−OFFロスを少なく
するため圧縮機(12)のON−OFFに同期して冷媒制御弁
(16)を開−閉する冷蔵庫においい第4のタイムチヤー
トに示すようにガラス管ヒーター(6)による霜取り運
転時は圧縮機(12)のON−OFFに関係なく常に冷媒純御
弁(16)を開とし霜取り開始より霜取りセンサー(10)
の感知温度が霜の溶解温度以上(1〜3℃)aとなるま
での間圧縮機(12)をある時間(T)置きに短時間
(t)運転することにより上記実施例と同様の効果を得
ることができる。
In the above embodiment, the refrigerator having no refrigerant control valve in the refrigerant circuit is described, but as shown in FIG.
3) Refrigerant control valve (1) between outlet and pressure reducer (14) inlet
6) is provided and a check valve (17) is provided between the outlet of the evaporator (3) and the inlet of the compressor (12). As shown in the time chart of FIG. 3, the compressor is turned on during normal cooling operation. It is suitable for refrigerators that open and close the refrigerant control valve (16) in synchronism with ON-OFF of the compressor (12) in order to reduce OFF loss, and by the glass tube heater (6) as shown in the fourth time chart. During defrosting operation, regardless of whether the compressor (12) is on or off, the refrigerant pure control valve (16) is always open and the defrosting sensor (10) starts when defrosting starts.
By operating the compressor (12) for a certain period of time (T) for a short period of time (t) until the temperature sensed by the sensor becomes equal to or higher than the melting temperature of frost (1 to 3 ° C.) a, the same effect as in the above-described embodiment is obtained. Can be obtained.

〔発明の効果〕〔The invention's effect〕

この第1の発明に係る冷凍サイクルの除霜制御方法は,
蒸発器の冷媒流入側近傍にヒーターを設けると共に,こ
のヒーターによる除霜運転中に圧縮機を所定時間間隔で
短時間運転するようにしたので、ヒーターの熱エネルギ
ーにより局部加熱状態にあるヒーター近傍の蒸発器冷媒
をヒーターより離れた蒸発器及び液溜めタンクへ圧縮機
により徐々に強制的に移動させ、移動した冷媒が各部に
おける新たな熱源となって、その冷媒近傍の管壁外の霜
を溶かすので、ヒーターより離れた部分の霜も確実にか
つ短時間で取り除くことができる。
The defrosting control method for the refrigeration cycle according to the first aspect of the invention is
Since a heater was provided near the refrigerant inflow side of the evaporator and the compressor was operated for a short time at predetermined time intervals during the defrosting operation by this heater, the heat energy of the heater caused a local heating near the heater. Evaporator The refrigerant is gradually and forcibly moved by the compressor to the evaporator and the liquid storage tank away from the heater, and the moved refrigerant becomes a new heat source in each part and melts the frost outside the pipe wall near the refrigerant. Therefore, the frost on the part away from the heater can be surely removed in a short time.

しかも、ヒーター付近の温度上昇を新たな冷媒の流入で
抑えることができ、ヒーター付近で溶けた霜がさらに過
熱されて蒸発することがなくなり、庫内が高湿となら
ず、霜取り終了後再運転したとき再び蒸発器及び液溜め
タンク上に霜が着き易くなることがなく、新たな着霜を
防止でき、このため効率の良い運転が実現できるという
効果を奏する。
Moreover, the temperature rise near the heater can be suppressed by the inflow of new refrigerant, the frost melted near the heater will not be overheated and will not evaporate, the inside of the refrigerator will not become high humidity, and it will be restarted after defrosting is completed. At this time, frost is not likely to be formed on the evaporator and the liquid storage tank again, new frost formation can be prevented, and therefore, an efficient operation can be realized.

またヒーターで加熱された冷媒が凝縮器に逆流して凝縮
器で放熱せず、蒸発器内で放熱するのでヒーターの熱が
庫外に逃げないという効果がある。
Further, the refrigerant heated by the heater flows back to the condenser and does not radiate heat in the condenser, but radiates heat in the evaporator, so that the heat of the heater does not escape to the outside of the refrigerator.

さらに,第2の発明は凝縮器う減圧器の間に冷媒制御弁
を,蒸発器と圧縮機の間に逆止弁を設けた冷蔵庫におい
て冷媒制御弁を除霜運転時,圧縮機のON−OFF運転に同
期させず開のまま固定することにより第1の発明と同様
の効果を奏する。
Further, in the second invention, when the refrigerant control valve is provided in the refrigerator in which the refrigerant control valve is provided between the condenser and the pressure reducer and the check valve is provided between the evaporator and the compressor, the compressor is turned on during defrosting operation. The same effect as that of the first aspect of the invention is achieved by fixing the open state without synchronizing with the OFF operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は第1の発明の冷凍サイクルの除霜制御方法の一
実施例を示す冷凍冷蔵庫の正面図,第2図は第1図の実
施例における霜取り制御を示すタイムチヤート図,第3
図は第2の発明の一実施例の冷媒回路図,第4図は第3
図の実施例の霜取り制御を示すタイムチヤート図,第5
図は第3図の通常運転時の制御のタイムチヤート図,第
6図は従来の霜取り装置を示す冷蔵庫の正面図,第7図
は基本冷媒回路図である。 図において(1)は冷蔵庫箱体,(2)は送風フアン,
(3)は蒸発器,(4)は液溜めタンク,(5)はエン
ドプレート,(6)はガラス管ヒーター,(7)はカ
サ,(8)はトイ,(9)はドレン管,(10)は霜取り
センサー,(11)は熱対流用ガイド,(12)は圧縮機,
(13)は凝縮器,(14)は減圧器,(15)は冷媒管路,
(16)は冷媒制御弁,(17)は逆止弁である。 なお図中同一符号は同一又は相当部分を示す。
FIG. 1 is a front view of a refrigerator-freezer showing an embodiment of a defrosting control method for a refrigeration cycle of the first invention, FIG. 2 is a time chart showing defrosting control in the embodiment of FIG. 1, and FIG.
FIG. 4 is a refrigerant circuit diagram of one embodiment of the second invention, and FIG.
Time chart showing the defrosting control of the embodiment shown in FIG.
FIG. 6 is a time chart of the control during normal operation of FIG. 3, FIG. 6 is a front view of a refrigerator showing a conventional defroster, and FIG. 7 is a basic refrigerant circuit diagram. In the figure, (1) is a refrigerator box, (2) is a blower fan,
(3) is an evaporator, (4) is a liquid storage tank, (5) is an end plate, (6) is a glass tube heater, (7) is a bulkhead, (8) is a toy, (9) is a drain tube, ( 10) is a defrost sensor, (11) is a guide for heat convection, (12) is a compressor,
(13) is a condenser, (14) is a pressure reducer, (15) is a refrigerant line,
(16) is a refrigerant control valve, and (17) is a check valve. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮機、減圧器、蒸発器、液溜め
タンクを冷凍管路にて順次連接した冷凍サイクルの上記
蒸発器又は上記液溜めタンクに霜取センサーを設け、上
記蒸発器の冷媒流入側近傍にヒーターを設け、霜取り開
始より上記霜取りセンサーの感知温度が霜の融点以上に
なるまでの間、上記ヒーターを駆動し上記圧縮機を所定
時間間隔で短時間運転するようにしたことを特徴とする
冷凍サイクルの除霜制御方法。
1. A defrosting sensor is provided in the evaporator or the liquid reservoir tank of a refrigeration cycle in which a compressor, a condenser, a decompressor, an evaporator, and a liquid reservoir tank are sequentially connected by a refrigerating pipeline. A heater is provided in the vicinity of the refrigerant inflow side, and the heater is driven to operate the compressor for a short time at predetermined time intervals from the start of defrosting until the temperature detected by the defrosting sensor is equal to or higher than the melting point of frost. A defrosting control method for a refrigeration cycle, comprising:
【請求項2】圧縮機、凝縮機、減圧器、蒸発器、液溜め
タンクを冷凍管路にて順次連接した冷凍サイクルの上記
蒸発器又は上記液溜めタンクに霜取センサーを設け、上
記蒸発器の冷媒流入側近傍にヒーターを設け、上記凝縮
機と上記減圧器の間の冷媒管路に冷媒制御弁を設け、上
記蒸発器と上記圧縮機の間の冷媒管路に上記圧縮機から
上記蒸発器への冷媒の流れを止める逆止弁を設け、霜取
り開始より上記霜取りセンサーの感知温度が霜の融点以
上になるまでの間、上記ヒーターを駆動し上記圧縮機を
所定時間間隔で短時間運転し、かつこの間上記圧縮機の
ON−OFFに関係なく常に上記冷媒制御弁を開のまま固定
したことを特徴とする冷凍サイクルの除霜制御方法。
2. A defrosting sensor is provided on the evaporator or the liquid reservoir tank of a refrigeration cycle in which a compressor, a condenser, a decompressor, an evaporator, and a liquid reservoir tank are sequentially connected by a refrigerating pipeline. Is provided in the vicinity of the refrigerant inflow side, a refrigerant control valve is provided in the refrigerant pipeline between the condenser and the decompressor, and the refrigerant is evaporated from the compressor in the refrigerant pipeline between the evaporator and the compressor. A check valve that stops the flow of refrigerant to the vessel is provided, and the heater is driven to operate the compressor for a short time at predetermined time intervals from the start of defrosting until the temperature detected by the defrosting sensor is equal to or higher than the melting point of frost. And during this time the compressor
A defrosting control method for a refrigerating cycle, characterized in that the refrigerant control valve is always kept open regardless of whether it is ON or OFF.
JP62319710A 1987-12-17 1987-12-17 Defrost control method for refrigeration cycle Expired - Lifetime JPH0674941B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62319710A JPH0674941B2 (en) 1987-12-17 1987-12-17 Defrost control method for refrigeration cycle
KR1019880015726A KR890010518A (en) 1987-12-17 1988-11-29 Defrost control method of refrigeration cycle
MYPI88001439A MY103652A (en) 1987-12-17 1988-12-12 Method for controlling defrosting operation in a refrigerating cycle
GB8829149A GB2213247B (en) 1987-12-17 1988-12-14 Method for controlling defrosting operation in a refrigerating cycle
CN88108617A CN1012104B (en) 1987-12-17 1988-12-16 Method for controlling defrosting in refrigerating cycle
SG426/92A SG42692G (en) 1987-12-17 1992-04-20 Method for controlling defrosting operation in a refrigerating cycle
HK439/92A HK43992A (en) 1987-12-17 1992-06-18 Method for controlling defrosting operation in a refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319710A JPH0674941B2 (en) 1987-12-17 1987-12-17 Defrost control method for refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH01163585A JPH01163585A (en) 1989-06-27
JPH0674941B2 true JPH0674941B2 (en) 1994-09-21

Family

ID=18113315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319710A Expired - Lifetime JPH0674941B2 (en) 1987-12-17 1987-12-17 Defrost control method for refrigeration cycle

Country Status (7)

Country Link
JP (1) JPH0674941B2 (en)
KR (1) KR890010518A (en)
CN (1) CN1012104B (en)
GB (1) GB2213247B (en)
HK (1) HK43992A (en)
MY (1) MY103652A (en)
SG (1) SG42692G (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237357B1 (en) * 1999-06-07 2001-05-29 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner using heat pump
CN100451494C (en) * 2002-02-28 2009-01-14 Lg电子株式会社 Heat exchanger for refrigerator
JP4644271B2 (en) * 2008-06-09 2011-03-02 日立アプライアンス株式会社 refrigerator
KR101179371B1 (en) * 2009-06-18 2012-09-07 히타치 어플라이언스 가부시키가이샤 Refrigerator
CN108779947A (en) * 2016-03-16 2018-11-09 利勃海尔-家用电器利恩茨有限责任公司 Refrigeration and/or freezing equipment
DE102016220464A1 (en) * 2016-10-19 2018-04-19 BSH Hausgeräte GmbH No-frost refrigerating appliance
CN108592474B (en) * 2018-05-10 2021-05-25 重庆海尔制冷电器有限公司 Air-cooled refrigerator
JP7445287B2 (en) * 2019-12-26 2024-03-07 アクア株式会社 refrigerator
CN111397281B (en) * 2020-04-27 2021-07-20 合肥美菱物联科技有限公司 Defrosting control method for air-cooled refrigerator
CN111609665B (en) * 2020-05-15 2021-12-07 珠海格力电器股份有限公司 Defrosting control method and device
CN114857806B (en) * 2022-05-05 2023-07-14 山东和同信息科技股份有限公司 Multifunctional complementary air source heat pump system with defrosting function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816152A (en) * 1981-07-21 1983-01-29 松下冷機株式会社 Refrigerator

Also Published As

Publication number Publication date
CN1012104B (en) 1991-03-20
GB2213247A (en) 1989-08-09
GB2213247B (en) 1991-12-11
GB8829149D0 (en) 1989-01-25
SG42692G (en) 1992-06-12
MY103652A (en) 1993-08-28
JPH01163585A (en) 1989-06-27
HK43992A (en) 1992-06-26
KR890010518A (en) 1989-08-09
CN1034052A (en) 1989-07-19

Similar Documents

Publication Publication Date Title
JP2000121233A (en) Freezer/refrigerator
JP2021509944A (en) refrigerator
CN109764607A (en) The control method of refrigerator
JPH0674941B2 (en) Defrost control method for refrigeration cycle
CN104412054A (en) Refrigerator
JP2005337613A (en) Refrigerator
JP2008151439A (en) Storage device and its control method
JPH07120130A (en) Refrigerator
JP3583570B2 (en) refrigerator
JP2012042140A (en) Refrigerator
JP3813372B2 (en) refrigerator
JP3626890B2 (en) refrigerator
KR100206801B1 (en) Refrigerator defrost method and its device
CN212362560U (en) Refrigerator adopting recovered hot defrosting
JP2005030606A (en) Refrigerator
JP2607298B2 (en) Air cooling system
JPH04194564A (en) Refrigerator
JP2000121236A (en) Refrigerator
JPS621670Y2 (en)
JPS6113892Y2 (en)
JP2009036416A (en) Refrigerator
US2899801A (en) grimshaw
CN115900169A (en) Waste heat recovery type air-cooled refrigerator and control method thereof
CN116465140A (en) Multi-heat source three-dimensional distributed hot gas bypass defrosting system and control method
JP2022183741A (en) Cooling storage