JPH0674755A - Flatness measuring apparatus - Google Patents

Flatness measuring apparatus

Info

Publication number
JPH0674755A
JPH0674755A JP4247166A JP24716692A JPH0674755A JP H0674755 A JPH0674755 A JP H0674755A JP 4247166 A JP4247166 A JP 4247166A JP 24716692 A JP24716692 A JP 24716692A JP H0674755 A JPH0674755 A JP H0674755A
Authority
JP
Japan
Prior art keywords
longitudinal direction
unevenness
steepness
strip
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4247166A
Other languages
Japanese (ja)
Other versions
JP2763459B2 (en
Inventor
Masayuki Sugiyama
昌之 杉山
Katsuya Ueki
勝也 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4247166A priority Critical patent/JP2763459B2/en
Publication of JPH0674755A publication Critical patent/JPH0674755A/en
Application granted granted Critical
Publication of JP2763459B2 publication Critical patent/JP2763459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure flatness of a stripe member with no effect of vibration due to conveyance. CONSTITUTION:Outputs from longitudinal direction irregularities operating units 13a, 13b, 13c are integrated through integrators 14a, 14b, 14c and integration results are fed to longitudinal direction steepness operating units 15a, 15b, 15c where steepness in longitudinal direction is determined. A steepness operating unit 16 then operates deviation of steepness in longitudinal direction thus determining the steepness. This constitution is not susceptible to vibration of stripe member and enhances accuracy in measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、搬送される圧延材等
の帯状体の平坦度を測定する平坦度測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flatness measuring device for measuring flatness of a belt-shaped body such as a rolled material being conveyed.

【0002】[0002]

【従来の技術】図7は例えば特開昭61−178608
号公報に示された従来の平坦度測定装置を示すブロック
図であり、図において、1は長手方向に一定速度Vで移
動する帯状体、2はこの帯状体1の上方に幅方向に配置
された複数の距離測定器で、各距離測定器2は、一定時
間Δt毎に帯状体1の表面までの距離Yを測定する。3
は距離測定器2からの距離信号を平滑化するローパスフ
イルタ、4は帯状体1の後述する弧長を求める弧長演算
器、5は帯状体1の幅方向の各位置(各箇所)で測定さ
れた移動距離L1 ,L2 ,…,Ln のうち最小の移動距
離Lmin を検出する最小値検出器、6は弧長演算器4の
演算結果および最小値検出器5の出力にもとづいて各幅
方向位置の各伸び率β1 〜βn 、つまり帯状体1の後述
する平坦度を算出する平坦度演算器である。
2. Description of the Related Art FIG. 7 shows, for example, JP-A-61-178608.
FIG. 1 is a block diagram showing a conventional flatness measuring device disclosed in Japanese Patent Laid-Open Publication No. 1993-163, in which 1 is a strip that moves at a constant velocity V in the longitudinal direction, and 2 is a width direction above the strip 1. Each of the plurality of distance measuring devices 2 measures the distance Y to the surface of the band-shaped body 1 at regular time intervals Δt. Three
Is a low-pass filter for smoothing the distance signal from the distance measuring device 4, 4 is an arc length calculator for obtaining an arc length of the strip 1 described later, and 5 is measured at each position (each position) in the width direction of the strip 1. A minimum value detector for detecting the minimum movement distance L min among the calculated movement distances L 1 , L 2 , ..., L n , 6 is based on the calculation result of the arc length calculator 4 and the output of the minimum value detector 5. Is a flatness calculator for calculating the respective elongations β 1 to β n at each position in the width direction, that is, the flatness of the strip 1 described later.

【0003】次に動作について説明する。図9は帯状体
1の平坦度不良をもった例を示す。一般的に同図(a)
の例1は帯状体1の幅方向の両エッジ部に波が大きく耳
波と言われる。同図(b)の例2は帯状体1の幅方向の
中央部に波が大きく中のびと言われる。この波の大き
さ、すなわち平坦度量を表わす方法として、伸び率又は
急峻度の定義がよく知られている。
Next, the operation will be described. FIG. 9 shows an example in which the strip 1 has poor flatness. Generally, the same figure (a)
In Example 1, the waves are large at both edge portions in the width direction of the strip 1 and are called ear waves. In Example 2 of FIG. 2B, the wave is large in the central portion of the strip 1 in the width direction, and it is said that the wave is centered. As a method of expressing the magnitude of this wave, that is, the amount of flatness, the definition of elongation or steepness is well known.

【0004】図10は急峻度の定義を示す。急峻度α
は、帯状体1の長手方向の波ピッチPと波高値Hとの比
によって(1)式で定義される。 α=H/P ・・・・・(1)
FIG. 10 shows the definition of steepness. Steepness α
Is defined by the equation (1) by the ratio of the wave pitch P in the longitudinal direction of the strip 1 and the wave height value H. α = H / P (1)

【0005】図11は伸び率の定義を示す。伸び率βは
帯状体1の長手方向の弧長Sと測定区間Lとの比によっ
て(2)式で定義される。 β=(S−L)/L ・・・・(2)
FIG. 11 shows the definition of elongation. The elongation rate β is defined by the equation (2) by the ratio of the arc length S in the longitudinal direction of the strip 1 and the measurement section L. β = (S−L) / L ... (2)

【0006】図7において、まず、距離測定器2は移動
する帯状体1の各位置における、距離測定器2から帯状
体1までの距離を測定する。この測定された距離信号は
各ローパスフイルタ3に入力されて高周波の雑音成分が
除去された後、弧長演算器4に入力される。この弧長演
算器4では、図8に示すように、時刻ti と一定時間Δ
t経過後の時刻ti+1 における距離Yi ,Yi+1 、およ
び該当時間Δt内の移動距離ΔXi (=V・Δt)から
(3)式に基づいて該当距離ΔXi における帯状体1の
表面の長さ、すなわち弧長ΔSi が算出される。
In FIG. 7, first, the distance measuring device 2 measures the distance from the distance measuring device 2 to the strip 1 at each position of the moving strip 1. The measured distance signal is input to each low pass filter 3 to remove high frequency noise components, and then input to the arc length calculator 4. In the arc length calculator 4, as shown in FIG. 8, the time t i and a predetermined time Δ
From the distances Y i and Y i + 1 at time t i + 1 after the elapse of t and the moving distance ΔX i (= V · Δt) within the corresponding time Δt based on the equation (3), the strip at the corresponding distance ΔX i The length of the surface of 1, that is, the arc length ΔS i is calculated.

【0007】[0007]

【数1】 [Equation 1]

【0008】したがって、帯状体1が長手方向にa点か
らb点までの距離Lだけ移動した場合におけるその距離
Lに対応する全体の弧長Sは、L=(n−1)ΔXi
すると、(4)式で示される。
Therefore, when the strip 1 moves in the longitudinal direction by the distance L from the point a to the point b, the total arc length S corresponding to the distance L is L = (n-1) ΔX i. , (4).

【0009】[0009]

【数2】 [Equation 2]

【0010】よって、距離Lだけ移動した場合の伸び率
βは、(2)式の定義に従って各伸び率演算器6におい
て算出される。以上の手法を用いて幅方向の各位置にお
ける各伸び率β1 〜βn が求まる。
Therefore, the elongation rate β when moving by the distance L is calculated by each elongation rate calculator 6 according to the definition of the equation (2). The elongation rates β 1 to β n at each position in the width direction can be obtained using the above method.

【0011】なお、測定された伸び率から帯状体1の大
きなうねりによる要因を排除するために、幅方向の各位
置で測定された移動距離L1 ,L2 ,…,Ln のうちの
最小移動距離Lmin を用い、(5)式に従って各幅方向
位置の各伸び率β1 〜βn 、つまり平坦度を算出する。 β=(S−Lmin )/Lmin ・・・・(5) なお、上記ローパスフイルタ3は測定された距離信号に
含まれる高周波の雑音成分を、上記のように除去する機
能を有している。
In order to eliminate the factor due to the large undulation of the strip 1 from the measured elongation, the minimum of the moving distances L 1 , L 2 , ..., L n measured at each position in the width direction. Using the moving distance L min , the elongation percentages β 1 to β n at each position in the width direction, that is, the flatness is calculated according to the equation (5). β = (S−L min ) / L min (5) The low-pass filter 3 has a function of removing high-frequency noise components included in the measured distance signal as described above. There is.

【0012】[0012]

【発明が解決しようとする課題】従来の平坦度測定装置
は以上のように構成されているので、例えば、製鉄所に
おける熱間圧延ラインにおいて、ローラコンベア上を連
続移動している圧延材の平坦度を測定する場合において
は、測定対象となる帯状体1は絶えず上下左右に振動し
ながら移動するので、測定された平坦度にこの振動に起
因する誤差が混入するほか、この搬送に伴って発生する
振動を完全に防止することは困難であるところから、平
坦度の測定度を例えば上下振動の振幅以下に向上させる
ことは不可能であるなどの問題点があった。
Since the conventional flatness measuring apparatus is constructed as described above, for example, in a hot rolling line in a steel mill, the flatness of a rolled material continuously moving on a roller conveyor is flattened. When measuring the degree, the strip 1 to be measured constantly moves while vibrating up and down, left and right, so that errors caused by this vibration are mixed into the measured flatness, and also occur along with this conveyance. Since it is difficult to completely prevent such vibrations, there has been a problem that it is impossible to improve the degree of flatness measurement to, for example, the amplitude of vertical vibration or less.

【0013】また、距離測定器2から出力される距離信
号に含まれる上記振動に起因する振動成分を、例えばロ
ーパスフイルタ等で除去することが考えられるが、上下
振動の周期と測定時間間隔Δtとが近似すると測定でき
ないので、帯状体1の移動速度を低下しなければならな
いなどの問題点があった。
Further, it is conceivable to remove the vibration component due to the vibration contained in the distance signal output from the distance measuring device 2 by a low-pass filter or the like, but the cycle of the vertical vibration and the measurement time interval Δt. However, there is a problem in that the moving speed of the band-shaped body 1 has to be reduced because the measurement cannot be performed if the above is approximate.

【0014】この発明は上記のような問題点を解消する
ためになされたものであり、長手方向の凹凸量を測定す
ることによって被測定体としての帯状体の上下振動の要
因を確実に排除でき、平坦度の測定精度を大幅に向上で
きる平坦度測定装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and by measuring the amount of unevenness in the longitudinal direction, it is possible to reliably eliminate the factor of vertical vibration of the belt-shaped body as the object to be measured. An object of the present invention is to obtain a flatness measuring device capable of significantly improving the measurement accuracy of flatness.

【0015】[0015]

【課題を解決するための手段】請求項1の発明に係る平
坦度測定装置は複数の長手方向凹凸量演算器を幅方向に
設け、各演算器から得られた、長手方向の凹凸量を演算
し抽出すると共に、その偏差を求めることにより、急峻
度を演算するようにしたものである。
A flatness measuring apparatus according to a first aspect of the present invention is provided with a plurality of longitudinal direction unevenness amount calculators in the width direction, and calculates the unevenness amount in the longitudinal direction obtained from each calculator. Then, the steepness is calculated by extracting the deviation and calculating the deviation.

【0016】請求項2の発明に係る平坦度測定装置は、
複数の長手方向凹凸量演算器幅方向に設け、各演算器か
ら得られた、長手方向の凹凸量を演算し抽出すると共
に、その偏差を求めることにより伸び率を演算するよう
にしたものである。
A flatness measuring device according to the invention of claim 2 is
A plurality of longitudinal direction unevenness amount calculators are provided in the width direction, and the unevenness amount in the longitudinal direction obtained from each calculator is calculated and extracted, and the elongation is calculated by obtaining the deviation thereof. .

【0017】請求項3の発明に係る平坦度測定装置は、
帯状体の長手方向に設置された、複数台の距離測定器か
ら、長手方向の凹凸量を抽出することにより急峻度を演
算するようにしたものである。
A flatness measuring device according to the invention of claim 3 is
The steepness is calculated by extracting the unevenness amount in the longitudinal direction from a plurality of distance measuring devices installed in the longitudinal direction of the strip.

【0018】請求項4の発明に係る平坦度測定装置は、
帯状体の長手方向に設置された、複数台の距離測定器か
ら、長手方向の凹凸量を抽出することにより伸び率を演
算するようにしたものである。
The flatness measuring apparatus according to the invention of claim 4 is
The elongation percentage is calculated by extracting the amount of unevenness in the longitudinal direction from a plurality of distance measuring devices installed in the longitudinal direction of the strip.

【0019】[0019]

【作用】請求項1の発明における平坦度測定装置は、搬
送される帯状体の上下振動及び回転振動の影響をまった
く受けずに、帯状体の急峻度の測定精度を大幅に向上さ
せると共に、モニタ表示に適した測定を行う。
According to the flatness measuring device of the present invention, the accuracy of measuring the steepness of the strip is significantly improved without being affected by the vertical vibration and the rotational vibration of the transported strip, and the monitor can be used. Make measurements suitable for display.

【0020】請求項2の発明における平坦度測定装置
は、搬送される帯状体の上下振動及び回転振動の影響を
まったく受けずに帯状体の伸び率の測定精度を大幅に向
上させると共に、形状制御に適した制御量を得る。
According to the flatness measuring apparatus of the second aspect of the present invention, the accuracy of measuring the elongation of the strip is greatly improved without being affected by the vertical vibration and the rotational vibration of the transported strip, and the shape control is performed. To obtain a controlled variable suitable for.

【0021】請求項3,4の発明における平坦度測定装
置は、搬送される帯状体の上下振動及び回転振動の影響
をまったく受けずに帯状体の急峻度、伸び率の測定精度
を大幅に向上させる。
In the flatness measuring device according to the third and fourth aspects of the invention, the accuracy of measuring the steepness and elongation of the strip is greatly improved without being affected by vertical vibration and rotational vibration of the transported strip. Let

【0022】[0022]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1において、1は圧延材などの帯状体、12
a,12b,12cは長手方向凹凸測定器で、帯状体1
の幅方向に所定の間隔をおいて設置され、設置位置での
長手方向の凹凸を測定する。13a,13b,13cは
長手方向凹凸量演算器で、長手方向凹凸測定器12a,
12b,12cの測定結果から長手方向の凹凸量を演算
する。14a,14b,14cは積分器で、長手方向凹
凸量演算器13a,13b,13cの演算結果を搬送ピ
ッチ毎に積分する。15a,15b,15cは長手方向
急峻度演算器で積分器14a,14b,14cの演算結
果から長手方向の急峻度を演算する。16は急峻度演算
器で、長手方向急峻度演算器15a,15b,15cの
演算結果から幅方向の偏差を演算し、急峻度を演算す
る。22は帯状体1の搬送ピッチを検出して積分器14
a,14b,14cに加えるパルスジェネレータであ
る。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a strip-shaped body such as a rolled material, 12
Reference numerals a, 12b and 12c are longitudinal direction unevenness measuring devices, and the strip 1
It is installed at a predetermined interval in the width direction of and the unevenness in the longitudinal direction at the installation position is measured. Reference numerals 13a, 13b and 13c are longitudinal direction unevenness amount calculators, and longitudinal direction unevenness measuring device 12a,
The unevenness amount in the longitudinal direction is calculated from the measurement results of 12b and 12c. Reference numerals 14a, 14b, and 14c denote integrators, which integrate the calculation results of the longitudinal unevenness amount calculators 13a, 13b, and 13c for each transport pitch. Reference numerals 15a, 15b and 15c denote longitudinal steepness calculators which calculate longitudinal steepness from the calculation results of the integrators 14a, 14b and 14c. A steepness calculator 16 calculates a deviation in the width direction from the calculation results of the longitudinal steepness calculators 15a, 15b, 15c to calculate steepness. Reference numeral 22 denotes the integrator 14 by detecting the conveyance pitch of the strip 1.
It is a pulse generator added to a, 14b, and 14c.

【0023】図2は長手方向凹凸量抽出部分の構成例を
示す構成図である。図2において、17は光源で、帯状
体1上に長手方向のスリット状の光17aを照射する。
18は2次元カメラで、帯状体1上に照射されるスリッ
ト光17aを幅方向の所定の角度から撮像する。2次元
カメラ18の撮像する映像には帯状体1に凹凸がある
と、帯状体1に照射されるスリット光17aの帯状体1
の凹凸に対応した変化が表われる。長手方向凹凸量演算
器13aは2次元カメラ18からの画像情報から長手方
向の凹凸量を演算し抽出する。23は2次元カメラ18
の画像情報を表示するモニタである。なお、長手方向凹
凸測定器12b,12cも長手方向凹凸測定器12aと
同様に構成されている。
FIG. 2 is a block diagram showing a structural example of a portion for extracting the unevenness in the longitudinal direction. In FIG. 2, reference numeral 17 denotes a light source, which irradiates the strip 1 with slit-shaped light 17a in the longitudinal direction.
Reference numeral 18 denotes a two-dimensional camera, which images the slit light 17a irradiated on the strip 1 from a predetermined angle in the width direction. If the strip 1 has irregularities in the image captured by the two-dimensional camera 18, the strip 1 of the slit light 17a irradiated on the strip 1 is formed.
A change corresponding to the unevenness of is shown. The longitudinal direction unevenness amount calculator 13a calculates and extracts the unevenness amount in the longitudinal direction from the image information from the two-dimensional camera 18. 23 is a two-dimensional camera 18
It is a monitor that displays image information of. The longitudinal direction unevenness measuring devices 12b and 12c are also configured similarly to the longitudinal direction unevenness measuring device 12a.

【0024】次に動作について説明する。まず、帯状体
1上に設置された距離測定器(図示せず)にて、帯状体
1の表面までの距離を測定したと仮定すると、搬送され
る帯状体1までの距離測定結果F(x,t)は(6)式
で表わされる。 F(x,t)=F(x)+x・R(+)+V(t)・・・(6) ここで、F(x,t)は距離測定結果 F(x)は帯状体1の長手方向の位置xに対する高さの
関数 xは帯状体1の長手方向の位置 tは計測時刻 x・R(t)は位置xに対する振動であって、位置xに
よって異なる振動は回転すなわち不規則な振動を示す。 V(+)は上下振動成分 (6)式の両辺を位置xで2階微分すると、
Next, the operation will be described. First, assuming that the distance to the surface of the strip 1 is measured by a distance measuring device (not shown) installed on the strip 1, the distance measurement result F (x , T) is expressed by equation (6). F (x, t) = F (x) + x · R (+) + V (t) (6) where F (x, t) is the distance measurement result F (x) is the length of the strip 1. A function of height with respect to a position x in the direction x is a position in the longitudinal direction of the strip 1 t is a measurement time x · R (t) is a vibration with respect to the position x, and vibrations that differ depending on the position x are rotational or irregular vibrations Indicates. V (+) is the vertical vibration component When both sides of equation (6) are differentiated by the second order at the position x,

【0025】[0025]

【数3】 [Equation 3]

【0026】となる。(7)式は距離測定結果F(x,
t)を位置xにおいて2階微分することにより、振動成
分、回転成分に影響されないことを示す。すなわち、2
階微分とは物理的には凹凸量のことであり、凹凸量を直
接測定すれば振動成分、回転成分に影響されないことを
意味する。さらに(7)式を、xで積分すると
[0026] Equation (7) is the distance measurement result F (x,
It is shown that t) is not influenced by the vibration component and the rotation component by performing the second-order differentiation at the position x. Ie 2
The differential is physically the amount of unevenness, which means that if the amount of unevenness is directly measured, it is not affected by vibration components and rotation components. Further, if the equation (7) is integrated with x,

【0027】[0027]

【数4】 [Equation 4]

【0028】となる。一方、平坦度の量を表わす、長手
方向の急峻度αは(1)式で定義される。従って、図3
において、長手方向の急峻度αは(9),(10)式で
表わされる。
[0028] On the other hand, the steepness α in the longitudinal direction, which represents the amount of flatness, is defined by the equation (1). Therefore, FIG.
In, the steepness α in the longitudinal direction is expressed by equations (9) and (10).

【0029】[0029]

【数5】 [Equation 5]

【0030】ここで、(10)式は位置xの関数F
(x)の微分値の平均値の絶対値の2分の1を示す。図
3は(9)式,(10)式の物理的意味を示す。長手方
向の急峻度の幅方向に対する偏差は、最小値αmin を基
準として、(11)式で表わされる。
Here, the equation (10) is the function F of the position x.
It shows one half of the absolute value of the average value of the differential values of (x). FIG. 3 shows the physical meaning of the expressions (9) and (10). The deviation of the steepness in the longitudinal direction from the width direction is expressed by the equation (11) with the minimum value α min as a reference.

【0031】[0031]

【数6】 [Equation 6]

【0032】従って、(7)式の通り、長手方向凹凸測
定器12a,12b,12cからの信号から、長手方向
凹凸量演算器13a,13b,13cにて凹凸量を演算
する。次に、(8)式の通り、積分器14a,14b,
14cにて積分される。次に、(10)式の通り、長手
方向急峻度演算器15a,15b,15cにて演算され
る。最後に(11)式の通り、急峻度演算器16にて演
算される。
Therefore, according to the equation (7), the unevenness amount calculator 13a, 13b, 13c calculates the unevenness amount from the signals from the longitudinal unevenness measuring devices 12a, 12b, 12c. Next, as shown in equation (8), the integrators 14a, 14b,
It is integrated at 14c. Next, as shown in equation (10), the longitudinal steepness calculators 15a, 15b, and 15c calculate the values. Finally, as in equation (11), the steepness calculator 16 calculates.

【0033】実施例2.次に、請求項2の発明の一実施
例について図4と共に説明する。図4においては図1と
対応する部分には同一符号を付して説明を省略する。1
9a,19b,19cは長手方向伸び率演算器で積分器
14a,14b,14cの演算結果から長手方向の伸び
率を演算する。20は伸び率演算器で、長手方向伸び率
演算器19a,19b,19cから幅方向の偏差を演算
し、伸び率を演算する。
Example 2. Next, an embodiment of the invention of claim 2 will be described with reference to FIG. In FIG. 4, portions corresponding to those in FIG. 1
Reference numerals 9a, 19b, and 19c are longitudinal elongation rate calculators that calculate the elongation rate in the longitudinal direction from the calculation results of the integrators 14a, 14b, and 14c. Reference numeral 20 denotes an elongation rate calculator which calculates the deviation in the width direction from the longitudinal direction elongation rate calculators 19a, 19b and 19c to calculate the elongation rate.

【0034】次に動作について説明する。平坦度の量を
表わす長手方向の伸び率βは(2)式で定義される。図
5において、長手方向の伸び率βは(12)式で表わさ
れる。
Next, the operation will be described. The elongation rate β in the longitudinal direction, which represents the amount of flatness, is defined by equation (2). In FIG. 5, the elongation rate β in the longitudinal direction is expressed by equation (12).

【0035】[0035]

【数7】 [Equation 7]

【0036】上記12(式)の右辺の弧長Sは(13)
式で表わされる。
The arc length S on the right side of the above 12 (expression) is (13)
It is represented by a formula.

【0037】[0037]

【数8】 [Equation 8]

【0038】(13)式を(12)式に代入すると、Substituting equation (13) into equation (12),

【0039】[0039]

【数9】 [Equation 9]

【0040】となる。ここで、(14)式は位置xの関
数F(x)の微分値の2乗の積分の1/2を掛けたもの
と測長区間Lとの比を示す。長手方向の伸び率βの幅方
向に対する偏差は最小値βmin を基準として(15)式
で表わされる。
It becomes Here, the equation (14) shows the ratio of the product of the integral of the square of the derivative of the function F (x) at the position x multiplied by 1/2 and the length measurement section L. The deviation of the elongation rate β in the longitudinal direction from the width direction is expressed by the equation (15) with the minimum value β min as a reference.

【0041】[0041]

【数10】 [Equation 10]

【0042】従って、実施例1の(10)式の代わりに
(14)式を用いると、この(14)式で示す通り、長
手方向の伸び率が長手方向伸び率演算器19a,19
b,19cによって得られる。さらに、(15)式の通
り、伸び率演算器20にて伸び率が得られる。
Therefore, when the equation (14) is used instead of the equation (10) in the first embodiment, the elongation in the longitudinal direction is calculated by the equations (a) and (19) in the longitudinal direction as shown in the equation (14).
b, 19c. Furthermore, the elongation rate is obtained by the elongation rate calculator 20 as in the equation (15).

【0043】実施例3.次に、請求項3の発明の一実施
例について図6と共に説明する。図6において、21は
距離測定器で、所定の基準位置から帯状体1上面までの
距離を測定する。この距離測定器21は帯状体1の長手
方向に所定の間隔をおいて複数台(3台以上)設置さ
れ、その距離信号を長手方向凹凸量演算器13aに加え
る。他の部分の構成は図1と同様に構成されている。
Example 3. Next, an embodiment of the invention of claim 3 will be described with reference to FIG. In FIG. 6, 21 is a distance measuring device, which measures the distance from a predetermined reference position to the upper surface of the strip 1. A plurality of (three or more) distance measuring devices 21 are installed at predetermined intervals in the longitudinal direction of the strip 1 and the distance signals are applied to the longitudinal direction unevenness amount calculator 13a. The structure of the other parts is the same as that of FIG.

【0044】次に動作について説明する。(7)式の代
わりに、帯状体1の長手方向に設置された3台の距離測
定器21の測定結果から(16)式を演算する。
Next, the operation will be described. Instead of the expression (7), the expression (16) is calculated from the measurement results of the three distance measuring devices 21 installed in the longitudinal direction of the strip 1.

【0045】[0045]

【数11】 [Equation 11]

【0046】(16)式の通り、長手方向凹凸量演算器
13a,13b,13cによって演算することにより、
長手方向の凹凸量が得られる。以下、実施例1,2と同
様にして、急峻度が得られる。
According to the equation (16), by calculating with the longitudinal direction unevenness amount calculators 13a, 13b, 13c,
The amount of unevenness in the longitudinal direction can be obtained. Thereafter, the steepness is obtained in the same manner as in the first and second embodiments.

【0047】実施例4.請求項4の発明の一実施例にお
いては、図6の長手方向急峻度演算器15a,15b,
15c及び急峻度演算器16の代わりに、図4の長手方
向伸び率演算器19a,19b,19c及び伸び率演算
器20を用いる。これにより実施例3と同様にして伸び
率を得ることができる。
Example 4. In an embodiment of the invention of claim 4, in the longitudinal steepness calculators 15a, 15b of FIG.
Instead of 15c and the steepness calculator 16, the longitudinal elongation calculators 19a, 19b, 19c and the elongation calculator 20 of FIG. 4 are used. Thereby, the elongation rate can be obtained in the same manner as in Example 3.

【0048】実施例5.上記実施例3,4では、長手方
向凹凸測定器の代わりに複数台(3台以上)の距離測定
器を用いる例について示したが、この長手方向凹凸測定
器の代わりに、複数台(2台以上)の傾き測定器を用い
てもよい。
Example 5. In Examples 3 and 4 described above, an example in which a plurality of (three or more) distance measuring devices are used in place of the longitudinal direction unevenness measuring device has been shown. However, instead of this longitudinal direction unevenness measuring device, a plurality of (two) The above inclination measuring instrument may be used.

【0049】[0049]

【発明の効果】以上のように、請求項1の発明によれ
ば、長手方向凹凸量演算器から得られる長手方向の凹凸
量を抽出することにより、急峻度を演算するように構成
したので、搬送される帯状体の上下振動及び回転振動の
影響をまったく受けることがなくこのため、帯状体の急
峻度の測定精度を大幅に向上できるという効果がある。
また、急峻度は人間の感覚にマッチしている平坦度量で
あるため、モニタ表示に適しており、画面表示により平
坦度を観察できる効果がある。
As described above, according to the first aspect of the present invention, the steepness is calculated by extracting the longitudinal unevenness amount obtained from the longitudinal unevenness calculator. Since there is no influence of vertical vibration and rotational vibration of the conveyed belt-shaped body, there is an effect that the accuracy of measuring the steepness of the belt-shaped body can be significantly improved.
Further, since the steepness is the amount of flatness that matches the human sense, it is suitable for monitor display and has the effect of observing the flatness on the screen display.

【0050】また、請求項2の発明によれば、長手方向
凹凸量演算器から得られた、長手方向の凹凸量を抽出す
ることにより伸び率を演算するように構成したので、搬
送される帯状体の上下振動及び回転振動の影響をまった
く受けることがなくこのため帯状体の伸び率の測定精度
を大幅に向上できるという効果がある。また急峻度は人
間の感覚にマッチした平坦度量であるため、モニタ表示
として使用できるが、帯状体の形状を正弦波として定義
しているため、正弦波以外の形状に対しては誤差を含
む。一方、伸び率は帯状体の形状が正弦波以外の形状で
も定義されるため、正弦波以外の形状でも誤差を含まな
い。従って、形状制御に適した制御量を得ることができ
る効果がある。
Further, according to the second aspect of the invention, since the elongation rate is calculated by extracting the unevenness amount in the longitudinal direction obtained from the unevenness amount calculator for longitudinal direction, the strip shape to be conveyed. Since there is no influence of vertical vibration and rotational vibration of the body, there is an effect that the accuracy of measuring the elongation rate of the strip can be significantly improved. Further, since the steepness is a flatness amount that matches the human sense, it can be used as a monitor display, but since the shape of the band is defined as a sine wave, an error is included in shapes other than the sine wave. On the other hand, the elongation rate is defined even when the shape of the strip is a shape other than the sine wave, and therefore, the shape other than the sine wave does not include an error. Therefore, there is an effect that a control amount suitable for shape control can be obtained.

【0051】請求項3の発明によれば、帯状体の長手方
向に設置された、複数台の距離測定器から、長手方向の
凹凸量を抽出することにより、急峻度を演算するように
構成したので、搬送される帯状体の上下振動及び回転振
動の影響をまったく受けることがなく、このため、帯状
体の急峻度の測定精度を大幅に向上できるという効果が
ある。また、1台の長手方向凹凸測定器の代わりに、複
数台の距離測定器を用いることで、長手方向凹凸測定器
1台での測定範囲には限界があることから、複数倍の測
定範囲にすることが可能であるという効果がある。さら
に測定範囲と測定精度は一般に逆比例の関係にあること
から、大幅に測定精度を向上できるという効果がある。
According to the third aspect of the invention, the steepness is calculated by extracting the unevenness amount in the longitudinal direction from a plurality of distance measuring devices installed in the longitudinal direction of the strip. Therefore, there is no effect of vertical vibration and rotational vibration of the conveyed belt-shaped body, and therefore, there is an effect that the measurement accuracy of the steepness of the belt-shaped body can be significantly improved. In addition, by using a plurality of distance measuring devices instead of one longitudinal direction unevenness measuring device, the measuring range of one longitudinal direction unevenness measuring device is limited. The effect is that it is possible to do. Further, since the measurement range and the measurement accuracy are generally in inverse proportion to each other, there is an effect that the measurement accuracy can be significantly improved.

【0052】請求項4の発明によれば、帯状体の長手方
向に設置された、複数台の距離測定器から、長手方向の
凹凸量を抽出することにより、伸び率を演算するように
構成したので、搬送される帯状体の上下振動及び回転振
動の影響をまったく受けることがなく、このため、帯状
体の伸び率の測定精度を大幅に向上できるという効果が
ある。また、1台の長手方向凹凸測定器の代わりに、複
数台の距離測定器を用いることで、長手方向凹凸測定器
1台での測定範囲には限界があることから、複数倍の測
定範囲にすることが可能であるという効果がある。さら
に測定範囲と測定精度は一般に逆比例の関係にあること
から、大幅に測定精度を向上できるという効果がある。
According to the invention of claim 4, the elongation percentage is calculated by extracting the unevenness amount in the longitudinal direction from a plurality of distance measuring devices installed in the longitudinal direction of the strip. Therefore, there is no effect of vertical vibration and rotational vibration of the conveyed belt-like body, and therefore, there is an effect that the measurement accuracy of the elongation rate of the belt-like body can be significantly improved. In addition, by using a plurality of distance measuring devices instead of one longitudinal direction unevenness measuring device, the measuring range of one longitudinal direction unevenness measuring device is limited. The effect is that it is possible to do. Further, since the measurement range and the measurement accuracy are generally in inverse proportion to each other, there is an effect that the measurement accuracy can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の一実施例による平坦度測定装
置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a flatness measuring apparatus according to an embodiment of the present invention.

【図2】この発明の実施例の長手方向凹凸量抽出部分を
示す構成図である。
FIG. 2 is a configuration diagram showing a longitudinal direction unevenness amount extraction portion of an embodiment of the present invention.

【図3】急峻度演算の方法を示す構成図である。FIG. 3 is a configuration diagram showing a method of steepness calculation.

【図4】請求項2の発明の一実施例による平坦度測定装
置の構成を示すブロック図である。
FIG. 4 is a block diagram showing a configuration of a flatness measuring device according to an embodiment of the invention of claim 2;

【図5】伸び率演算の方法を示す構成図である。FIG. 5 is a configuration diagram showing a method of calculating an elongation rate.

【図6】請求項3の発明の一実施例による平坦度測定装
置の構成を示すブロック図である。
FIG. 6 is a block diagram showing a configuration of a flatness measuring device according to an embodiment of the invention of claim 3;

【図7】従来の平坦度測定装置を示すブロック図であ
る。
FIG. 7 is a block diagram showing a conventional flatness measuring device.

【図8】図7による平坦度の測定原理を示す説明図であ
る。
8 is an explanatory diagram showing the principle of measuring flatness according to FIG. 7. FIG.

【図9】帯状体の平坦度不良例を示す斜視図である。FIG. 9 is a perspective view showing an example of defective flatness of the strip.

【図10】急峻度の定義を示す構成図である。FIG. 10 is a configuration diagram showing the definition of steepness.

【図11】伸び率の定義を示す構成図である。FIG. 11 is a configuration diagram showing a definition of an elongation rate.

【符号の説明】[Explanation of symbols]

1 帯状体12a,12b,12c 長手方向凹凸測定
器 13a,13b,13c 長手方向凹凸量演算器 14a,14b,14c 積分器 15a,15b,15c 長手方向急峻度演算器 16 急峻度演算器 19a,19b,19c 長手方向伸び率演算器 20 伸び率演算器 21 距離測定器
1 strip | belt-shaped body 12a, 12b, 12c Longitudinal direction unevenness measuring device 13a, 13b, 13c Longitudinal direction unevenness amount calculator 14a, 14b, 14c Integrator 15a, 15b, 15c Longitudinal steepness calculator 16 Steepness calculator 19a, 19b , 19c Longitudinal elongation rate calculator 20 Elongation rate calculator 21 Distance measuring instrument

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に搬送される帯状体の幅方向に
沿って配置され上記帯状体の上記長手方向の凹凸を測定
する複数の長手方向凹凸測定器と、上記各長手方向凹凸
測定器の出力からそれぞれ上記長手方向の凹凸量を演算
する複数の長手方向凹凸量演算器と、上記各長手方向凹
凸量演算器の出力をそれぞれ積分する複数の積分器と、
上記各積分器の出力からそれぞれ長手方向の急峻度を演
算する複数の長手方向急峻度演算器と、上記各長手方向
急峻度演算器の出力から上記幅方向の偏差を演算し急峻
度を求める急峻度演算器とを備えた平坦度測定装置。
1. A plurality of longitudinal direction unevenness measuring devices, which are arranged along the width direction of a belt-shaped body conveyed in the longitudinal direction and measure the unevenness in the longitudinal direction of the belt-shaped body, and a plurality of the longitudinal direction unevenness measuring devices. A plurality of longitudinal direction unevenness amount computing unit that respectively calculates the unevenness amount in the longitudinal direction from the output, and a plurality of integrators that respectively integrate the outputs of the respective longitudinal direction unevenness amount computing units,
A plurality of longitudinal steepness calculators that respectively calculate the steepness in the longitudinal direction from the outputs of the integrators, and steepness that calculates the deviation in the width direction from the outputs of the longitudinal steepness calculators. A flatness measuring device equipped with a degree calculator.
【請求項2】 長手方向に搬送される帯状体の幅方向に
沿って配置され上記帯状体の上記長手方向の凹凸を測定
する複数の長手方向凹凸測定器と、上記各長手方向凹凸
測定器の出力からそれぞれ上記長手方向の凹凸量を演算
する複数の長手方向凹凸量演算器と、上記各長手方向凹
凸量演算器の出力をそれぞれ積分する複数の積分器と、
上記各積分器の出力からそれぞれ長手方向の伸び率を演
算する複数の長手方向伸び率演算器と、上記各長手方向
伸び率演算器の出力から上記幅方向の偏差を演算し伸び
率を求める伸び率演算器とを備えた平坦度測定装置。
2. A plurality of longitudinal direction unevenness measuring devices which are arranged along the width direction of a belt-shaped member conveyed in the longitudinal direction and which measure the unevenness in the longitudinal direction of the band-shaped member, and each of the longitudinal direction unevenness measuring devices. A plurality of longitudinal direction unevenness amount computing unit that respectively calculates the unevenness amount in the longitudinal direction from the output, and a plurality of integrators that respectively integrate the outputs of the respective longitudinal direction unevenness amount computing units,
A plurality of longitudinal direction elongation rate calculators for calculating the elongation rate in the longitudinal direction from the outputs of the respective integrators, and an elongation for obtaining the elongation rate by calculating the deviation in the width direction from the outputs of the respective longitudinal direction elongation rate calculators. A flatness measuring device including a rate calculator.
【請求項3】 長手方向に搬送される帯状体上方の上記
長手方向に沿って配置され上記帯状体表面までの距離を
測定する複数の距離測定器と、上記帯状体の幅方向に沿
って配置され上記帯状体の上記長手方向の凹凸を測定す
る複数の長手方向凹凸測定器と、上記各距離測定器の出
力から上記長手方向の凹凸量を演算する長手方向凹凸量
演算器と、上記各長手方向凹凸測定器の出力からそれぞ
れ長手方向の凹凸量を演算する複数の長手方向凹凸量演
算器と、上記各長手方向凹凸量演算器の出力をそれぞれ
積分する複数の積分器と、上記各積分器の出力からそれ
ぞれ長手方向の急峻度を演算する複数の長手方向急峻度
演算器と、上記各長手方向急峻度演算器の出力から上記
幅方向の偏差を演算し急峻度を求める急峻度演算器とを
備えた平坦度測定装置。
3. A plurality of distance measuring devices, which are arranged along the longitudinal direction above the strip to be conveyed in the longitudinal direction and measure a distance to the surface of the strip, and arranged along the width direction of the strip. A plurality of longitudinal direction unevenness measuring device for measuring the longitudinal unevenness of the strip, a longitudinal direction unevenness amount calculator for calculating the longitudinal unevenness amount from the output of each distance measuring device, and each lengthwise A plurality of longitudinal direction unevenness amount calculators that respectively calculate the amount of unevenness in the longitudinal direction from the output of the direction unevenness measurer, a plurality of integrators that respectively integrate the outputs of the respective longitudinal direction unevenness amount calculators, and the respective integrators And a plurality of longitudinal steepness calculators that respectively calculate the steepness in the longitudinal direction from the outputs of the above, and a steepness calculator that calculates the deviation in the width direction from the outputs of the longitudinal steepness calculators to obtain the steepness. Flatness measurement device with Place
【請求項4】 長手方向に搬送される帯状体上方の上記
長手方向に沿って配置され上記帯状体表面までの距離を
測定する複数の距離測定器と、上記帯状体の幅方向に沿
って配置され上記帯状体の上記長手方向の凹凸を測定す
る複数の長手方向凹凸測定器と、上記各距離測定器の出
力から上記長手方向の凹凸量を演算する長手方向凹凸量
演算器と、上記各長手方向凹凸測定器の出力からそれぞ
れ上記長手方向の凹凸量を演算する複数の長手方向凹凸
量演算器と、上記各長手方向凹凸量演算器の出力をそれ
ぞれ積分する複数の積分器と、上記各積分器の出力から
それぞれ長手方向の伸び率を演算する複数の長手方向伸
び率演算器と、上記各長手方向伸び率演算器の出力から
上記幅方向の偏差を演算し急峻度を求める伸び率演算器
とを備えた平坦度測定装置。
4. A plurality of distance measuring devices, which are arranged along the longitudinal direction above the strip to be conveyed in the longitudinal direction and measure a distance to the surface of the strip, and arranged along the width direction of the strip. A plurality of longitudinal direction unevenness measuring device for measuring the longitudinal unevenness of the strip, a longitudinal direction unevenness amount calculator for calculating the longitudinal unevenness amount from the output of each distance measuring device, and each lengthwise A plurality of longitudinal direction unevenness amount calculators that respectively calculate the longitudinal direction unevenness amount from the output of the direction unevenness measuring device, a plurality of integrators that respectively integrate the outputs of the respective longitudinal direction unevenness amount calculators, and the respective integrations. A plurality of longitudinal direction elongation rate calculators for calculating the longitudinal direction elongation rate from the output of each device, and an elongation rate calculator for calculating the widthwise deviation from the outputs of the respective longitudinal direction elongation rate calculators to obtain the steepness Flatness measurement with and Stationary device.
JP4247166A 1992-08-25 1992-08-25 Flatness measuring device Expired - Lifetime JP2763459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4247166A JP2763459B2 (en) 1992-08-25 1992-08-25 Flatness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4247166A JP2763459B2 (en) 1992-08-25 1992-08-25 Flatness measuring device

Publications (2)

Publication Number Publication Date
JPH0674755A true JPH0674755A (en) 1994-03-18
JP2763459B2 JP2763459B2 (en) 1998-06-11

Family

ID=17159423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4247166A Expired - Lifetime JP2763459B2 (en) 1992-08-25 1992-08-25 Flatness measuring device

Country Status (1)

Country Link
JP (1) JP2763459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032271A (en) * 2010-07-30 2012-02-16 Kobe Steel Ltd Measuring apparatus
JP2012252017A (en) * 2012-08-24 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826779B (en) * 2021-04-23 2023-12-21 達運精密工業股份有限公司 Method of inspecting flatness of substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032271A (en) * 2010-07-30 2012-02-16 Kobe Steel Ltd Measuring apparatus
JP2012252017A (en) * 2012-08-24 2012-12-20 Toshiba Mitsubishi-Electric Industrial System Corp Shape measurement device

Also Published As

Publication number Publication date
JP2763459B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US4309902A (en) Method for continuously measuring steepness of defective flatness of metal strip during rolling
JP2877937B2 (en) Method and apparatus for compensating for turbulence due to roller eccentricity
JPH0674755A (en) Flatness measuring apparatus
JP2536668B2 (en) Steel plate flatness measuring device
JPH051912A (en) Flatness measuring-device
JPS61178608A (en) Flatness detector
JP2605158B2 (en) Flatness measuring device
JPH08159728A (en) Shape measuring instrument
JPS63298112A (en) Thickness measuring device
JPH10291015A (en) Device for measuring pass-line of roller table and pass line
JP2988645B2 (en) Measurement method of sheet material distortion shape
JP2539134B2 (en) Flatness measuring device
JPH06167438A (en) Measuring equipment for particle size distribution of granular substance
JP2603740B2 (en) Guide rail installation state correction instruction device
JPH0545325B2 (en)
JPH06258027A (en) Position detecting method of plate member using tv camera
JP2690431B2 (en) Shape measuring device
JPH0634360A (en) Steel plate shape measuring method
JPH0289757A (en) Method for adjusting meandering of band material
JP2716866B2 (en) Mass flow controller for tandem rolling mill
JP2650316B2 (en) Strip shape detector
JPH11290919A (en) Device for controlling eccentricity of roll
JPH01213511A (en) Instrument for measuring bend in wooden board
JP3601237B2 (en) Steel strip profile measurement method
JP2001349795A (en) Tension and distortion measuring device and tension and distortion regulating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15