JPH0674595A - Adsorption type cooling system - Google Patents

Adsorption type cooling system

Info

Publication number
JPH0674595A
JPH0674595A JP22605592A JP22605592A JPH0674595A JP H0674595 A JPH0674595 A JP H0674595A JP 22605592 A JP22605592 A JP 22605592A JP 22605592 A JP22605592 A JP 22605592A JP H0674595 A JPH0674595 A JP H0674595A
Authority
JP
Japan
Prior art keywords
adsorber
air
passage
cooling
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22605592A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
泰生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP22605592A priority Critical patent/JPH0674595A/en
Priority to US08/066,984 priority patent/US5333471A/en
Publication of JPH0674595A publication Critical patent/JPH0674595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide an adsorption type cooling system in which a heating temperature of an adsorber can be maintained substantially constant even when heating means having variable heat quantity is used. CONSTITUTION:When low temperature air of an atmosphere inlet passage 28 is supplied to a first adsorber 20 through a first air passage 26, the air passed through the adsorber 20 is discharged toward a second adsorber 21, high temperature air discharged from an exhaust gas inlet passage 25 flows toward the adsorber 21 by the flow of the air, supplied to the adsorber 21 to heat the absorber 21. On the other hand, the low temperature air supplied to the adsorber 20 cools the adsorber 20, absorbs heat of the adsorber 20 to be combined with high temperature air to be discharged from the passage 25 and fed to the adsorber 21. In this case, when a heat quantity of the passage 25 is large, an air flow rate of the passage 28 is increased, while when it is small, the air flow rate of the passage 28 is decreased, and heating temperatures of the adsorbers 20, 21 become substantially constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用、住棟用または
船舶用の空気調和装置や、要冷蔵の食品または医薬品の
輸送コンテナ用冷却装置等に適用可能な吸着式冷却シス
テムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption type cooling system applicable to an air conditioner for a vehicle, a residential building or a ship, a cooling device for a container for transporting food or medicines requiring refrigeration. is there.

【0002】[0002]

【従来の技術】従来、空気調和装置や冷凍装置等に用い
られる冷却システムとしては、ヒートポンプ式等が一般
的に知られているが、最近ではゼオライト等からなる吸
着材を用いた吸着式冷却システムが提案されている。
尚、これに関連した従来技術としては、例えば特開昭6
2−5060号公報に記載されたものがある。
2. Description of the Related Art Conventionally, as a cooling system used in an air conditioner, a refrigerating device, etc., a heat pump type is generally known, but recently, an adsorption type cooling system using an adsorbent made of zeolite or the like. Is proposed.
As a conventional technique related to this, for example, Japanese Patent Laid-Open No.
There is one described in Japanese Patent Publication No. 2-5060.

【0003】図9は吸着式冷却システムの基本的な原理
を示すもので、吸着器1と冷却容器2とを開閉バルブ3
を有する管路4によって連結した単一の吸着式冷却シス
テムである。吸着器1内にはゼオライト等からなる吸着
材1aが収容されており、吸着材1aには加熱または冷
却用の熱交換パイプ5が接触している。冷却容器2内に
は吸着媒体としての水が入っており、この水には冷却し
ようとする空気が流通する冷却パイプ6が熱的に接触
し、吸着器1、管路4及び冷却容器2内は真空になって
いる。また、管路4の冷却容器2側には外気と熱交換す
る凝縮器7が設けられている。この冷却システムでは、
管路4の開閉バルブ3を開くと、図9(a)に示すように
吸着材1aの吸着作用により冷却容器2内の水が蒸発し
て水蒸気となり、管路4を通って吸着器1内の吸着材1
aに吸着される。これにより、冷却容器2内の水が蒸発
する際の潜熱が冷却容器2側から吸収されるため、冷却
容器2内の温度が低下し、冷却パイプ6内の空気が冷却
される。このような操作を吸着行程という。次に、吸着
材1aに吸着された水を冷却容器2に戻す操作を行う。
即ち、図9(b) に示すように熱交換パイプ5に車両用エ
ンジンの排ガス等のような外部熱源からの高温熱媒体を
流通させることによって吸着材1aを加熱し、吸着材1
aに吸着されている水を分離させる。これにより、水蒸
気となった水分が管路4を通って凝縮器7で水となり、
冷却容器2に回収される。このような操作を再生行程と
いう。尚、この場合の吸着とは吸着材の分子間に水の分
子が保持されている状態を示し、この状態で吸着材を加
熱することにより水が吸着材から分離して再生される。
FIG. 9 shows the basic principle of the adsorption type cooling system, in which the adsorber 1 and the cooling container 2 are connected to each other by an opening / closing valve 3.
Is a single adsorption cooling system connected by a conduit 4 having An adsorbent 1a made of zeolite or the like is housed in the adsorber 1, and a heat exchange pipe 5 for heating or cooling is in contact with the adsorbent 1a. Water as an adsorption medium is contained in the cooling container 2, and a cooling pipe 6 through which air to be cooled flows is thermally contacted with the water, and the adsorber 1, the pipe line 4 and the inside of the cooling container 2 are in contact with each other. Is in a vacuum. Further, a condenser 7 that exchanges heat with the outside air is provided on the side of the cooling passage 2 of the conduit 4. With this cooling system,
When the opening / closing valve 3 of the pipeline 4 is opened, as shown in FIG. 9 (a), the adsorbing action of the adsorbent 1a causes the water in the cooling container 2 to evaporate and become water vapor, and the water inside the adsorber 1 passes through the pipeline 4. Adsorbent 1
Adsorbed by a. As a result, the latent heat when the water in the cooling container 2 evaporates is absorbed from the cooling container 2 side, so that the temperature in the cooling container 2 decreases and the air in the cooling pipe 6 is cooled. Such an operation is called an adsorption process. Next, the operation of returning the water adsorbed by the adsorbent 1a to the cooling container 2 is performed.
That is, as shown in FIG. 9B, the adsorbent 1a is heated by circulating a high-temperature heat medium from an external heat source such as exhaust gas of a vehicle engine through the heat exchange pipe 5 to heat the adsorbent 1a.
The water adsorbed on a is separated. As a result, the water vapor becomes water in the condenser 7 through the conduit 4,
It is collected in the cooling container 2. Such an operation is called a reproduction process. In this case, the adsorption means a state where water molecules are held between the molecules of the adsorbent, and by heating the adsorbent in this state, water is separated from the adsorbent and regenerated.

【0004】しかしながら、前述した単一の吸着式冷却
システムでは吸着行程と再生行程とを同一のシステムで
交互に行わなければならないため、連続的な冷却を行う
ことができない。そこで、図10に示すように二つの吸
着器8,9を有する二連の吸着式冷却システムが提案さ
れている。各吸着器8,9はそれぞれ開閉バルブ10,
11を有する管路12,13によって一つの冷却容器1
4に連結され、冷却容器14内の水には前述と同様の冷
却パイプ15が熱的に接触している。また、各吸着器
8,9内の吸着材8a,9aにはそれぞれ熱交換パイプ
16,17が熱的に接触しており、各管路12,13に
はそれぞれ凝縮器18,19が設けられている。この冷
却システムでは、例えば一方の吸着器8において吸着行
程を行わせると同時に、他方の吸着器9においては再生
行程を行わせる。そして、各吸着器8,9がそれぞれの
行程を終了した時点で逆の動作を行わせるよう切換操作
する。その際、再生行程を終了した吸着器9は高温にな
っているため、熱交換パイプ17に低温または常温の空
気を流通して吸着材9aを冷却する。このような操作を
周期的に繰り返すことによって連続的な冷却を行うこと
が可能となる。
However, in the above-mentioned single adsorption type cooling system, since the adsorption process and the regeneration process must be alternately performed in the same system, continuous cooling cannot be performed. Therefore, as shown in FIG. 10, a dual adsorption cooling system having two adsorbers 8 and 9 has been proposed. Each adsorber 8, 9 has an on-off valve 10,
One cooling vessel 1 by means of conduits 12, 13 with 11
4, the cooling pipe 15 similar to the above is in thermal contact with the water in the cooling container 14. Heat exchange pipes 16 and 17 are in thermal contact with the adsorbents 8a and 9a in the adsorbers 8 and 9, respectively, and condensers 18 and 19 are provided in the pipe lines 12 and 13, respectively. ing. In this cooling system, for example, the adsorption process is performed in one adsorber 8 and the regeneration process is performed in the other adsorber 9. Then, when the adsorbers 8 and 9 have completed their respective strokes, a switching operation is performed so as to perform the reverse operation. At that time, since the adsorber 9 that has completed the regeneration process is at a high temperature, air at a low temperature or room temperature is circulated through the heat exchange pipe 17 to cool the adsorbent 9a. By repeating such an operation periodically, it is possible to perform continuous cooling.

【0005】[0005]

【発明が解決しようとする課題】ところで、加熱手段と
して利用される車両用エンジンの排ガスは、車両の運転
状態等によって熱量の変動を生ずるため、前記吸着器の
加熱温度を一定にすることは極めて困難である。しかし
ながら、前記吸着材に用いられているゼオライトは、温
度が500℃を越えると分解して変質を起こし、200
℃を下回ると水分を分離できなくなるため、加熱手段の
熱量に極端な温度ムラがあるとシステムの運転に支障を
来すという問題点があった。
By the way, since the exhaust gas of the vehicle engine used as the heating means has a variation in the amount of heat depending on the operating state of the vehicle, it is extremely difficult to keep the heating temperature of the adsorber constant. Have difficulty. However, the zeolite used in the adsorbent is decomposed and deteriorated when the temperature exceeds 500 ° C.
If the temperature is lower than ℃, the water cannot be separated. Therefore, there is a problem that the system operation is hindered if there is an extreme temperature unevenness in the heat quantity of the heating means.

【0006】本発明は前記問題点に鑑みてなされたもの
であり、その目的とするところは、熱量の変動する加熱
手段を用いる場合でも、吸着器の加熱温度をほぼ一定に
することのできる吸着式冷却システムを提供することに
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorption device capable of keeping the heating temperature of an adsorber substantially constant even when a heating means having a varying amount of heat is used. Providing a cooling system.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
するために、吸着材を収容した一対の吸着器と、各吸着
器に連結された冷却容器と、各吸着器を択一的に冷却す
る冷却手段と、各吸着器を択一的に加熱する加熱手段と
を備え、一方の吸着器を冷却することによって冷却容器
内の吸着媒体を該吸着器内に吸着させる吸着行程と、他
方の吸着器を加熱することによって該吸着器内の吸着媒
体を分離させ冷却容器内に戻す再生行程とを各吸着器に
おいて交互に行わせる吸着式冷却システムにおいて、前
記冷却手段及び加熱手段を、吸着行程を行っている方の
吸着器に低温空気を給送する低温空気送風路と、再生行
程を行っている方の吸着器に高温空気を給送する高温空
気送風路とから構成し、吸着行程を行っている方の吸着
器を通過した空気が再生行程を行っている方の吸着器に
向かって流れるよう各吸着器を対向して設置するととも
に、各吸着器の間には高温空気送風路の吐出口を臨ま
せ、高温空気送風路の熱量の大きさを判定することによ
り熱量の大きいときは低温空気送風路の風量を増加さ
せ、熱量の小さいときは低温空気送風路の風量を減少さ
せる風量制御手段を設けている。
In order to achieve the above-mentioned object, the present invention selectively uses a pair of adsorbers containing adsorbents, a cooling container connected to each adsorber, and each adsorber. A cooling means for cooling and a heating means for selectively heating each of the adsorbers, and an adsorption step for adsorbing the adsorption medium in the cooling container into the adsorbers by cooling one of the adsorbers, and the other. In the adsorption type cooling system, in which the adsorption medium in the adsorber is separated by heating the adsorber and the regeneration process for returning the adsorbent into the cooling container is alternately performed in each adsorber, the cooling means and the heating means are It consists of a low-temperature air blow passage that feeds low-temperature air to the adsorber that is performing the stroke, and a hot air blow passage that feeds high-temperature air to the adsorber that is performing the regeneration stroke. That has passed through the adsorber that is performing Install each adsorber facing each other so that it flows toward the adsorber that is performing the regeneration process, and let the discharge port of the hot air blow passage face between each adsorber, and the heat quantity of the hot air blow passage By determining the magnitude of the heat quantity, the air quantity control means is provided to increase the air quantity of the low temperature air blow passage when the heat quantity is large and decrease the air quantity of the low temperature air blow passage when the heat quantity is small.

【0008】[0008]

【作用】本発明の吸着式冷却システムによれば、高温空
気送風路の高温空気は各吸着器の間に給送され、低温空
気送風路の低温空気は吸着行程を行っている方の吸着器
に給送される。その際、吸着行程を行っている方の吸着
器を通過した空気が再生行程を行っている方の吸着器に
向かって流れるため、この空気の流れによって高温空気
送風路から吐出した高温空気が再生行程を行っている方
の吸着器に向かって流れ、該吸着器が加熱される。ま
た、吸着行程を行っている方の吸着器に給送された低温
空気は該吸着器を冷却するとともに吸着器の熱を吸収
し、高温空気送風路から吐出する高温空気と合流して再
生行程を行っている方の吸着器に給送される。その際、
高温空気送風路の熱量が大きいときは低温空気送風路の
風量が増加され、熱量の小さいときは低温空気送風路の
風量が減少されることから、熱量の変動する加熱手段を
用いる場合でも、吸着器の加熱温度がほぼ一定になる。
According to the adsorption cooling system of the present invention, the high temperature air in the high temperature air blowing path is fed between the adsorbers, and the low temperature air in the low temperature air blowing path is the adsorber performing the adsorption process. Be delivered to. At that time, since the air that has passed through the adsorber that is performing the adsorption process flows toward the adsorber that is performing the regeneration process, the high temperature air discharged from the hot air blowing passage is regenerated by this air flow. It flows toward the adsorber which is performing the stroke, and the adsorber is heated. Further, the low-temperature air fed to the adsorber that is performing the adsorption step cools the adsorber and absorbs the heat of the adsorber, and joins with the high-temperature air discharged from the hot-air blowing passage to perform the regeneration step. It is fed to the adsorber that is performing. that time,
When the amount of heat in the high-temperature air duct is large, the amount of air in the low-temperature air duct is increased, and when the amount of heat is small, the amount of air in the low-temperature air duct is decreased. The heating temperature of the vessel becomes almost constant.

【0009】[0009]

【実施例】図1乃至図6は本発明の一実施例であり、本
発明の吸着式冷却システムを適用した車両用空気調和装
置を示すものである。図中、20,21は吸着材20,
21aを収容した第1及び第2吸着器、22は吸着媒体
としての水を収容した冷却容器、23は凝縮器、24は
車内側の熱交換器、50は風量制御部である。
1 to 6 show an embodiment of the present invention, showing a vehicle air conditioner to which the adsorption cooling system of the present invention is applied. In the figure, 20 and 21 are adsorbents 20,
21a is a first and second adsorber, 22 is a cooling container containing water as an adsorption medium, 23 is a condenser, 24 is a heat exchanger inside the vehicle, and 50 is an air volume controller.

【0010】各吸着器20,21は、詳細図を省略した
が両端にヘッダーパイプを有する熱交換器型に形成さ
れ、各ヘッダーパイプ間に配設された多数のチューブ内
にはゼオライト等からなる吸着材が収容されている。各
吸着器20,21は互いに間隔をおいて配置され、その
間には車両のエンジン(図示せず)に接続された排ガス
導入路25の吐出口が臨み、各吸着器20,21は互い
の対向面がやや排ガス導入路25の吐出口側へ向くよう
斜めに配置されている。また、各吸着器20,21の反
対側には第1及第2送風路26,27の一端がそれぞれ
臨み、各送風路26,27の他端は外気導入路28及び
排気送風路29の他端と十字路状に接続されている。従
って、排ガス導入路25によって高温空気送風路が、外
気導入路28及び各送風路26,27によって低温空気
送風路がそれぞれ構成されている。外気導入路28の他
端は車両の進行方向側に、排気送風路29の他端は車両
の進行方向反対側に向かってそれぞれ外部に開放され、
給気及び排気が効果的に行われるようになっている。ま
た、外気導入路28内には強制給気用の送風機30が設
置されている。更に、各送風路26,27、外気導入路
28及び排気送風路29の交差部には、各風路の二つず
つを切換可能に連通するフラップ31が設けられてい
る。即ち、このフラップ31は二位置に切換わるように
回動し、一方の位置では第1送風路26と外気導入路2
8、第2送風路27と排気送風路29とがそれぞれ連通
し、他方の位置では第1送風路26と排気送風路29、
第2送風路27と外気導入路28とがそれぞれ連通する
ようになっている。
Although not shown in detail, each of the adsorbers 20 and 21 is formed in a heat exchanger type having header pipes at both ends, and is made of zeolite or the like in a large number of tubes arranged between the header pipes. An adsorbent is contained. The adsorbers 20 and 21 are arranged at a distance from each other, and the discharge port of the exhaust gas introducing passage 25 connected to an engine (not shown) of the vehicle faces the adsorber 20 and 21, and the adsorbers 20 and 21 face each other. The surface is slightly arranged so as to face the discharge port side of the exhaust gas introduction passage 25. Further, one end of each of the first and second air passages 26, 27 faces the opposite side of each adsorber 20, 21, and the other end of each air passage 26, 27 has an outside air introduction passage 28 and an exhaust air passage 29. It is connected to the end in a cross shape. Therefore, the exhaust gas introducing passage 25 constitutes a high temperature air blowing passage, and the outside air introducing passage 28 and the respective blowing passages 26, 27 constitute a low temperature air blowing passage. The other end of the outside air introduction path 28 is open to the outside in the traveling direction side of the vehicle, and the other end of the exhaust air blowing path 29 is opened to the outside in the opposite direction to the traveling direction of the vehicle
Air supply and exhaust are effectively performed. A blower 30 for forced air supply is installed in the outside air introduction passage 28. Further, a flap 31 is provided at the intersection of the air passages 26 and 27, the outside air introduction passage 28, and the exhaust air passage 29 so that two of the air passages can be switched to each other. That is, the flap 31 rotates so as to switch between two positions, and at one position, the first air passage 26 and the outside air introduction passage 2 are rotated.
8, the second air passage 27 and the exhaust air passage 29 communicate with each other, and at the other position, the first air passage 26 and the exhaust air passage 29,
The second air blowing passage 27 and the outside air introducing passage 28 communicate with each other.

【0011】冷却容器22は第1蒸気往路32を介して
第1吸着器20に、第2蒸気往路33を介して第2吸着
器21にそれぞれ連結されており、各蒸気往路32,3
3には開閉バルブV1,V2が設けられている。本実施
例では冷却容器22内に収容した吸着媒体に水を用いた
が、アルコール等、他の液体を用いることもできる。ま
た、各蒸気往路32,33は、互いに分岐接続されたバ
イパス通路34によって互いに連通できるようになって
おり、バイパス通路34には二つの開閉バルブV3,V
4が設けられている。更に、バイパス通路34における
各開閉バルブV3,V4の中間には蒸気復路35の一端
が分岐接続され、蒸気復路35には開閉バルブV5が設
けられている。尚、バイパス通路34は機能的には蒸気
復路35の一部を構成するものでもある。また、蒸気復
路35の他端は凝縮器23に接続され、凝縮器23は細
径の凝縮通路36を介して冷却容器22に連結されてい
る。尚、各通路の流通断面は、蒸気復路35及びバイパ
ス通路34の断面積が蒸気往路32(33)の断面積の
約50%に、凝縮通路36の断面積が蒸気復路35及び
バイパス通路34の断面積の約0.6%にそれぞれ設定
されている。
The cooling container 22 is connected to the first adsorber 20 via the first vapor outward path 32 and to the second adsorber 21 via the second vapor outward path 33, respectively.
On-off valves V1 and V2 are provided at 3. In this embodiment, water is used as the adsorption medium contained in the cooling container 22, but other liquid such as alcohol may be used. Further, the respective vapor outward paths 32 and 33 can be communicated with each other by a bypass passage 34 which is branched and connected to each other, and the bypass passage 34 has two opening / closing valves V3 and V3.
4 are provided. Further, one end of a steam return path 35 is branched and connected to the middle of each of the opening / closing valves V3 and V4 in the bypass passage 34, and an opening / closing valve V5 is provided in the steam return path 35. The bypass passage 34 also functionally constitutes a part of the steam return passage 35. Further, the other end of the vapor return path 35 is connected to the condenser 23, and the condenser 23 is connected to the cooling container 22 via a small-diameter condensation passage 36. Regarding the flow cross section of each passage, the cross sectional area of the steam return passage 35 and the bypass passage 34 is about 50% of the cross sectional area of the vapor outward passage 32 (33), and the cross sectional area of the condensation passage 36 is that of the steam return passage 35 and the bypass passage 34. It is set to about 0.6% of the cross-sectional area.

【0012】熱交換器24は冷却容器22内の水に熱的
に接触する冷却パイプ37に連結され、冷却パイプ37
に設けたポンプ38により冷却容器22側との間で水,
ブライン等の熱媒体を循環するようになっている。ま
た、熱交換器24は車内空気の吸入通風路39と吹出通
風路40との間に配置され、以下に述べる構成は周知の
車両用空気調和装置に設けられているものである。即
ち、吸入通風路39内には送風機41が設置されるとと
もに、吸入通風路39の途中には外気導入路42が接続
され、外気導入路42はフラップ43によって開閉でき
るようになっている。また、吹出通風路40は運転席や
助手席等に設けられた複数の吹出口44に分岐し、各吹
出口44にはルーバ45が設けられている。更に、吹出
通風路40の途中にはエンジンのラジエータ(図示せ
ず)に連結された加熱パイプ46が設置され、暖房時や
除湿時の再加熱用として使用される。この加熱パイプ4
6では、開閉バルブ47を開放することによりラジエー
タの冷却水(高温)を流通し、吹出通風路40内の空気
を加熱できるようになっている。また、加熱パイプ46
の風上側にはフラップ48が設けられ、このフラップ4
8を任意の位置に設定することにより、加熱パイプ46
を通る空気量を調整できるようになっている。
The heat exchanger 24 is connected to a cooling pipe 37 which is in thermal contact with the water in the cooling container 22.
Water between the cooling container 22 and the pump 38 provided in the
A heat medium such as brine is circulated. Further, the heat exchanger 24 is arranged between the intake air passage 39 and the blowout air passage 40 for the air in the vehicle, and the configuration described below is provided in a known vehicle air conditioner. That is, the blower 41 is installed in the intake air passage 39, the outside air introduction passage 42 is connected in the middle of the intake air passage 39, and the outside air introduction passage 42 can be opened and closed by the flap 43. Further, the blowout air passage 40 branches into a plurality of air outlets 44 provided in a driver's seat, a passenger seat, etc., and a louver 45 is provided in each air outlet 44. Further, a heating pipe 46 connected to a radiator (not shown) of the engine is installed midway in the blowout air passage 40, and is used for reheating during heating or dehumidification. This heating pipe 4
In 6, the cooling water (high temperature) of the radiator is circulated by opening the opening / closing valve 47 so that the air in the blowout air passage 40 can be heated. Also, the heating pipe 46
A flap 48 is provided on the windward side of the flap 4
By setting 8 to any position, the heating pipe 46
The amount of air passing through can be adjusted.

【0013】風量制御部50はマイクロコンピュータ等
によって構成され、前記送風機30に接続されている。
図2に示すように、送風機30のモータ30aは電源5
1及び互いに並列に設けられた第1及び第2抵抗器5
2,53からなる回路に接続され、各抵抗器の抵抗値は
第1抵抗器52の方が小さく、第2抵抗器53の方が大
きくなっている。また、各抵抗器52,53と電源51
との間にはそれぞれ第1及び第2スイッチ54,55が
設けられ、各スイッチ54,55は第1及び第2リレー
56,57によってそれぞれ開閉するようになってい
る。一方、各吸着器20,21の加熱手段として利用さ
れるエンジンEにはイグナイタ(図示せず)等に用いら
れる回転数センサ58が連結されており、回転数センサ
58は風量制御部50に接続されている。風量制御部5
0は回転数センサ58の検出値Rに対する所定の上限値
RH 及び下限値RL を設定しており、各設定値RH 〜R
L 間が再生行程に対する標準値となっている。
The air volume control unit 50 is composed of a microcomputer or the like and is connected to the blower 30.
As shown in FIG. 2, the motor 30a of the blower 30 has a power source 5
1 and first and second resistors 5 provided in parallel with each other
The resistance value of each resistor is smaller in the first resistor 52 and larger in the second resistor 53, which is connected to the circuit composed of 2, 53. In addition, the resistors 52 and 53 and the power source 51
The first and second switches 54 and 55 are provided between and, and the switches 54 and 55 are opened and closed by the first and second relays 56 and 57, respectively. On the other hand, a rotation speed sensor 58 used for an igniter (not shown) or the like is connected to the engine E used as a heating means for the adsorbers 20 and 21, and the rotation speed sensor 58 is connected to the air volume control unit 50. Has been done. Air volume controller 5
0 sets a predetermined upper limit value RH and lower limit value RL with respect to the detection value R of the rotation speed sensor 58, and each set value RH to R
Between L is the standard value for the regeneration process.

【0014】以上の構成において、例えば第1吸着器2
0で吸着行程を、第2吸着器21で再生行程を行ってい
るときは、フラップ31を図中実線で示す位置に設定
し、第1送風路26と外気導入路28、第2送風路27
と排気送風路29とをそれぞれ連通する。これにより、
排ガス導入路25の高温空気(排気ガス)が各吸着器2
0,21の間に給送され、外気導入路28の低温空気
(外気)が図中破線矢印で示すように第1送風路26を
経て第1吸着器20に給送される。その際、第1吸着器
20を通過した空気が第2吸着器21に向かって吹出さ
れるため、この空気の流れによって排ガス導入路25か
ら吐出した空気が第2吸着器21に向かって流れ、第2
吸着器21に給送される。これにより、第2吸着器21
が加熱され、第2吸着器21を通過した空気は図中実線
矢印で示すように第2送風路27及び排気送風路29を
経て外部に排出される。また、第2吸着器21は排ガス
導入路25の吐出口に向かって斜めに配置されているこ
とから、排ガス導入路25の高温空気が第2吸着器21
にスムーズに流入する。一方、第1吸着器20に給送さ
れた低温空気は第1吸着器20を冷却するとともに第1
吸着器20の熱を吸収し、排ガス導入路25から吐出す
る高温空気と合流して第2吸着器21に給送される。こ
れにより、第1吸着器20で発生した吸着熱(顕熱)が
第2吸着器21の加熱に利用される。また、各吸着器2
0,21において前述とは逆の行程を行う場合、フラッ
プ31を図中一点鎖線の位置に切換えることにより、排
気送風路29及び外気導入路28の空気の流通方向が変
わり、第1吸着器20が加熱、第2吸着器21が冷却さ
れる。
In the above structure, for example, the first adsorber 2
When the adsorption stroke is 0 and the regeneration stroke is being performed by the second adsorber 21, the flap 31 is set to the position shown by the solid line in the figure, and the first air passage 26, the outside air introduction passage 28, and the second air passage 27 are set.
And the exhaust air flow path 29 communicate with each other. This allows
The hot air (exhaust gas) in the exhaust gas introduction passage 25 is transferred to each adsorber 2
The low temperature air (outside air) in the outside air introduction passage 28 is fed to the first adsorber 20 through the first air passage 26 as indicated by the broken line arrow in the figure. At that time, since the air that has passed through the first adsorber 20 is blown out toward the second adsorber 21, the air discharged from the exhaust gas introduction passage 25 flows toward the second adsorber 21 due to the flow of this air. Second
It is fed to the adsorber 21. As a result, the second adsorber 21
The air that has been heated and has passed through the second adsorber 21 is exhausted to the outside through the second air passage 27 and the exhaust air passage 29 as indicated by the solid line arrow in the figure. In addition, since the second adsorber 21 is obliquely arranged toward the discharge port of the exhaust gas introduction passage 25, the high temperature air in the exhaust gas introduction passage 25 is discharged to the second adsorber 21.
Flows in smoothly. On the other hand, the low temperature air fed to the first adsorber 20 cools the first adsorber 20 and
The heat of the adsorber 20 is absorbed, merges with the high temperature air discharged from the exhaust gas introduction passage 25, and is fed to the second adsorber 21. Thereby, the heat of adsorption (sensible heat) generated in the first adsorber 20 is used to heat the second adsorber 21. Also, each adsorber 2
In the case of performing the reverse stroke to the above at 0 and 21, the flap 31 is switched to the position shown by the alternate long and short dash line in the figure, whereby the air flow direction of the exhaust air blowing passage 29 and the outside air introducing passage 28 changes, and the first adsorber 20 Is heated and the second adsorber 21 is cooled.

【0015】次に、本実施例における吸着式冷却システ
ム、即ち各吸着器20,21及び冷却容器22間の動作
を、図3の原理図及び図4のP−1/T線図を参照して
説明する。尚、図3では説明を容易にするために各構成
部分を図1と若干異なった形状で図示してある。また、
図4においてPは水蒸気圧、Tは温度であり、図中に示
されている数値は一例である。
Next, referring to the principle diagram of FIG. 3 and the P-1 / T diagram of FIG. 4, the operation of the adsorption cooling system in this embodiment, that is, the operation between the adsorbers 20 and 21 and the cooling container 22 will be described. Explain. Incidentally, in FIG. 3, each constituent part is shown in a shape slightly different from that of FIG. 1 for facilitating the description. Also,
In FIG. 4, P is the water vapor pressure, T is the temperature, and the numerical values shown in the figure are examples.

【0016】即ち、第1吸着器20で吸着行程を、第2
吸着器21で再生行程を行う場合には、まず開閉バルブ
V1,V2,V3,V4を閉じ、開閉バルブV5を開
く。これにより、第1吸着器20内の温度が含水量6%
の水等量線上で150℃まで冷却され(C′→D)、第
2吸着器21内の温度は含水量22%の水等量線上で1
50℃まで加熱される(A′→B)。この時、第1吸着
器20内の水蒸気圧P1は10mbar、第2吸着器21内
の水蒸気圧P2 は450mbarとなる。尚、P3 はP1 及
びP2 の平均値である。次に、開閉バルブV2,V3を
閉じたままで、開閉バルブV1,V4,V5を開く。こ
れにより、冷却容器22内の水が10mbarの圧力下で蒸
発するとともに、第1蒸気往路32を経て第1吸着器2
0の吸着材20aに吸着される。その際、水の蒸発潜熱
によって冷却容器22内の熱が奪われる。そして、第1
吸着器20内の冷却を続けることにより、冷却容器22
内の水が順次吸着材20aに吸着され、第1吸着器20
内が最終的に70℃まで冷却される(D→A)。一方、
第2吸着器21内は450mbarの圧力下で280℃まで
加熱され(B→C)、第2吸着器21の吸着材21aに
吸着されている水が分離して再生され、バイパス通路3
4及び蒸気復路35を経て凝縮器23に流入する。そし
て、凝縮器23内で凝縮した水は凝縮通路36を通って
冷却容器22内に戻される。このような操作は1分〜1
日の周期で行われる。また、各蒸気往路32,33、蒸
気復路35及び凝縮通路36の流通断面積が順に小さく
なっているのは、この順に水蒸気の密度が大きくなるか
らで(凝縮通路36内では液体)、特に凝縮通路36で
は冷却容器22から蒸発して行く水とほぼ同量の流量に
なるのが望ましい。
That is, the adsorption process in the first adsorber 20
When performing the regeneration process in the adsorber 21, first the on-off valves V1, V2, V3, V4 are closed and the on-off valve V5 is opened. As a result, the temperature inside the first adsorber 20 has a water content of 6%.
Is cooled to 150 ° C. on the water equivalent line (C ′ → D), and the temperature in the second adsorber 21 is 1 on the water equivalent line having a water content of 22%.
It is heated to 50 ° C. (A ′ → B). At this time, the water vapor pressure P1 in the first adsorber 20 is 10 mbar, and the water vapor pressure P2 in the second adsorber 21 is 450 mbar. Incidentally, P3 is the average value of P1 and P2. Next, the opening / closing valves V1, V4, V5 are opened while the opening / closing valves V2, V3 are kept closed. As a result, the water in the cooling container 22 evaporates under the pressure of 10 mbar and the first adsorber 2 passes through the first vapor outward path 32.
It is adsorbed by the adsorbent 20a of 0. At that time, the heat in the cooling container 22 is taken by the latent heat of vaporization of water. And the first
By continuing to cool the inside of the adsorber 20, the cooling container 22
Water in the first adsorber 20 is sequentially adsorbed by the adsorbent 20a.
The inside is finally cooled to 70 ° C. (D → A). on the other hand,
The inside of the second adsorber 21 is heated to 280 ° C. under a pressure of 450 mbar (B → C), the water adsorbed on the adsorbent 21a of the second adsorber 21 is separated and regenerated, and the bypass passage 3
4 and the steam return path 35 to flow into the condenser 23. Then, the water condensed in the condenser 23 is returned to the cooling container 22 through the condensation passage 36. Such operation is from 1 minute to 1
It takes place on a daily cycle. Moreover, the reason why the flow cross-sectional areas of the vapor outward paths 32 and 33, the vapor return path 35, and the condensing passage 36 become smaller in order is that the density of water vapor increases in this order (liquid in the condensing passage 36), and In the passage 36, it is desirable that the flow rate be almost the same as the amount of water evaporated from the cooling container 22.

【0017】前述の行程が終了した時点では、再生行程
を行った第2吸着器21内は約280℃の高温となって
おり、吸着行程を終えた第1吸着器20は約70℃の低
温となっている。ここで、各吸着器20,21を前述と
逆の行程に切換える前に以下に述べる中間行程を行うこ
とによって各吸着器20,21間のエンタルピーの差を
排熱とならないよう再利用する。即ち、開閉バルブV
1,V2,V5を閉じた状態で、バイパス通路34の開
閉バルブV3,V4のみを開放し、各吸着器20,21
を冷却容器22を介さずに連通させる。これにより、第
2吸着器21内の熱の一部が第1吸着器20内に移動
し、次に再生行程を行おうとする第1吸着器20内の温
度が上昇するとともに、吸着行程を行おうとする第2吸
着器21内の温度が低下する。この中間行程は前記吸着
/再生行程の切換周期の1%〜5%程度の時間だけ行
う。尚、中間行程は図3の線図にはプロットできない
が、吸着/再生行程の一部であると言える。
At the end of the above process, the inside of the second adsorber 21 that has undergone the regeneration process has a high temperature of about 280 ° C., and the first adsorber 20 that has completed the adsorption process has a low temperature of about 70 ° C. Has become. Here, before switching the adsorbers 20 and 21 to the reverse process to the above-described process, the following intermediate process is performed to reuse the difference in enthalpy between the adsorbers 20 and 21 so as not to generate waste heat. That is, the open / close valve V
1, V2 and V5 are closed, only the opening / closing valves V3 and V4 of the bypass passage 34 are opened, and the adsorbers 20 and 21 are closed.
Are communicated with each other without the cooling container 22. As a result, a part of the heat in the second adsorber 21 moves into the first adsorber 20, the temperature in the first adsorber 20 that is going to perform the regeneration process next rises, and the adsorption process is performed. The temperature in the intended second adsorber 21 decreases. This intermediate step is performed only for a period of about 1% to 5% of the switching cycle of the adsorption / regeneration step. Although the intermediate stroke cannot be plotted in the diagram of FIG. 3, it can be said that it is part of the adsorption / regeneration stroke.

【0018】このようにして、各吸着器20,21にお
ける吸着行程→中間行程→再生行程→中間行程→吸着行
程…を周期的に繰り返すことにより、冷却容器22内が
連続的に冷却される。尚、図4は前記各行程における各
バルブV1,V2,V3,V4,V5の開閉状態を示す
ものである。
In this way, the inside of the cooling container 22 is continuously cooled by repeating the adsorption process → intermediate process → regeneration process → intermediate process → adsorption process in each adsorber 20, 21. FIG. 4 shows the open / closed states of the valves V1, V2, V3, V4 and V5 in the respective strokes.

【0019】ここで、再び図1に戻り車内側の空調動作
について説明する。即ち、前記冷却システムによって冷
却容器22内が冷却されることにより、冷却容器22内
の冷却パイプ37が冷却され、低温となった冷却パイプ
37内の熱媒体が熱交換器24に流入する。一方、吸入
通風路39内に吸入された車内空気は熱交換器24に給
送され、熱交換器24によって冷却される。そして、冷
却された空気は吹出通風路40を経て各吹出口44から
車内へ吹出される。その際、外気導入路42のフラップ
43を操作することにより、必要に応じて吸入通風路3
9内に外気を導入することができる。また、加熱パイプ
46のフラップ48を操作することにより、吹出通風路
40内の空気が加熱される。
Now, returning to FIG. 1, the air conditioning operation inside the vehicle will be described. That is, as the inside of the cooling container 22 is cooled by the cooling system, the cooling pipe 37 in the cooling container 22 is cooled, and the heat medium in the cooling pipe 37 having a low temperature flows into the heat exchanger 24. On the other hand, the in-vehicle air sucked into the intake air passage 39 is fed to the heat exchanger 24 and cooled by the heat exchanger 24. Then, the cooled air is blown out into the vehicle from each outlet 44 through the blowout air passage 40. At that time, by operating the flap 43 of the outside air introduction passage 42, the intake ventilation passage 3 can be operated as necessary.
It is possible to introduce outside air into the inside 9. By operating the flap 48 of the heating pipe 46, the air in the blowout air passage 40 is heated.

【0020】また、前記送風機30の風量は風量制御部
50によって制御されるが、排ガス導入路25から吐出
される排ガスの熱量はエンジンの回転数等、車両の運転
状態によって変化するため、この熱量の変化に追従して
送風機30の風量を変えることが望ましい。そこで、こ
のような制御を含む風量制御部50の動作を図6のフロ
ーチャートを参照して以下に説明する。
The air volume of the blower 30 is controlled by the air volume control unit 50. Since the heat quantity of the exhaust gas discharged from the exhaust gas introducing passage 25 changes depending on the operating condition of the vehicle such as the engine speed, the heat quantity of this exhaust gas is changed. It is desirable to change the air volume of the blower 30 in accordance with the change of Therefore, the operation of the air volume control unit 50 including such control will be described below with reference to the flowchart of FIG.

【0021】まず、回転数センサ58の検出値Rが上限
値RH よりも大きいと判定されると(S1)、第1スイ
ッチ54をONにし(S2)、第2スイッチ55をOF
Fにする(S3)。これにより、送風機30のモータ3
0aには第1抵抗器52を介して電圧が印加され、第1
抵抗器52は抵抗値が小さいのでモータ30aは高速で
回転し、外気導入路28の風量が増加する。そして、時
間待ちして(S4)、ステップS1に戻り、例えば回転
数センサ58の検出値Rが上限値RH よりも小さく(S
1)、下限値RL よりも大きいと判定されると(S
5)、第1及び第2スイッチ54の両者をONにする
(S6,S7)。これにより、送風機30のモータ30
aには第1及び第2抵抗器52,53の両者を介して電
圧が印加され、第1及び第2抵抗器52,53の合成抵
抗値は各抵抗器52,53の中間となるのでモータ30
aは中速で回転し、外気導入路28の風量が標準とな
る。そして、時間待ちして(S4)、再びステップS1
に戻り、例えば回転数センサ58の検出値Rが上限値R
H よりも小さく(S1)、下限値RL よりも小さいと判
定されると(S5)、第1スイッチ54をOFFにし
(S8)、第2スイッチ55をONにする(S9)。こ
れにより、送風機30のモータ30aには第2抵抗器5
3を介して電圧が印加され、第1抵抗器52は抵抗値が
大きいのでモータ30aは低速で回転し、外気導入路2
8の風量が減少する。
First, when it is determined that the detected value R of the rotation speed sensor 58 is larger than the upper limit value RH (S1), the first switch 54 is turned on (S2), and the second switch 55 is turned off.
Set to F (S3). Thereby, the motor 3 of the blower 30
0a is applied with a voltage via the first resistor 52,
Since the resistance value of the resistor 52 is small, the motor 30a rotates at high speed, and the air volume of the outside air introduction passage 28 increases. Then, after waiting for a time (S4), the process returns to step S1 and, for example, the detection value R of the rotation speed sensor 58 is smaller than the upper limit value RH (S4).
1) If it is determined that it is larger than the lower limit value RL (S
5), both the first and second switches 54 are turned on (S6, S7). Thereby, the motor 30 of the blower 30
A voltage is applied to a through both the first and second resistors 52 and 53, and the combined resistance value of the first and second resistors 52 and 53 is intermediate between the resistors 52 and 53. Thirty
a rotates at a medium speed, and the air volume in the outside air introduction passage 28 becomes standard. Then, wait for the time (S4), and then step S1 again.
Return to, for example, the detection value R of the rotation speed sensor 58 is the upper limit value R
If it is determined that it is smaller than H (S1) and smaller than the lower limit value RL (S5), the first switch 54 is turned off (S8) and the second switch 55 is turned on (S9). As a result, the motor 30a of the blower 30 has the second resistor 5
3, a voltage is applied through the first resistor 52, and the resistance value of the first resistor 52 is large. Therefore, the motor 30a rotates at a low speed, and the outside air introduction path 2
The air volume of 8 decreases.

【0022】このように、本実施例の吸着式冷却システ
ムによれば、各吸着器20,21の加熱手段として利用
されるエンジンEの回転数を回転数センサ58によって
検出するとともに、この検出値に基づいて熱量の大きさ
を判定し、熱量の大きいときは外気導入路28の風量を
増加させ、熱量の小さいときは外気導入路28の風量を
減少させるようにしたので、車両の運転状態等によりエ
ンジンEからの排ガスの熱量が変動しても、各吸着器2
0,21の加熱温度をほぼ一定にすることができ、シス
テムの運転状態を常に良好に保つことができる。
As described above, according to the adsorption cooling system of this embodiment, the rotation speed of the engine E used as a heating means for the adsorbers 20 and 21 is detected by the rotation speed sensor 58, and the detected value is detected. The amount of heat is determined based on the above, and when the amount of heat is large, the amount of air in the outside air introducing passage 28 is increased, and when the amount of heat is small, the amount of air in the outside air introducing passage 28 is decreased. Even if the heat quantity of the exhaust gas from the engine E fluctuates due to the
The heating temperature of 0 and 21 can be made almost constant, and the operating state of the system can be always kept good.

【0023】尚、前記実施例では送風機30の送風量を
制御するようにしたが、図7に示すように外気導入路2
8中に風量調整ダンパ59を設けたり、図8に示すよう
にフラップ31を任意の開度に調整して外気導入路28
から第1送風路26への流入量を変えるようにしても、
前述と同様の効果を得ることができる。また、前記実施
例ではエンジンEの回転数を検出することにより熱量の
大きさを判定するようにしたが、車両の走行速度や排ガ
ス導入路25の温度に基づいて熱量の大きさを判定する
ようにしてもよい。
In the above embodiment, the amount of air blown by the blower 30 is controlled, but as shown in FIG.
8 is provided with an air volume adjusting damper 59, or the flap 31 is adjusted to an arbitrary opening as shown in FIG.
Even if the amount of inflow into the first air duct 26 is changed,
The same effect as described above can be obtained. Further, in the above embodiment, the amount of heat is determined by detecting the number of revolutions of the engine E. However, the amount of heat is determined based on the traveling speed of the vehicle and the temperature of the exhaust gas introducing passage 25. You may

【0024】[0024]

【発明の効果】以上説明したように、本発明の吸着式冷
却システムによれば、熱量の変動する加熱手段を用いる
場合でも、吸着器の加熱温度をほぼ一定にすることがで
き、システムの運転状態を常に良好に保つことができ
る。
As described above, according to the adsorption type cooling system of the present invention, the heating temperature of the adsorber can be made substantially constant even when the heating means of which the amount of heat fluctuates is used, and the operation of the system can be performed. You can always keep good condition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸着式冷却システムを
備えた車両用空気調和装置の概略構成図
FIG. 1 is a schematic configuration diagram of a vehicle air conditioner including an adsorption cooling system according to an embodiment of the present invention.

【図2】制御系を示す構成図FIG. 2 is a block diagram showing a control system

【図3】吸着式冷却システムの原理図[Figure 3] Principle of adsorption cooling system

【図4】吸着式冷却システムの吸着/再生行程を示すP
−1/T線図
FIG. 4 shows P showing an adsorption / regeneration process of an adsorption cooling system.
-1 / T diagram

【図5】各開閉バルブの開閉状態を示す図FIG. 5 is a diagram showing an open / closed state of each open / close valve.

【図6】切換制御部の動作を示すフローチャートFIG. 6 is a flowchart showing the operation of a switching control unit.

【図7】本発明の他の実施例を示す要部構成図FIG. 7 is a configuration diagram of main parts showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す要部構成図FIG. 8 is a configuration diagram of main parts showing another embodiment of the present invention.

【図9】従来例を示す単一の吸着式冷却システムの原理
FIG. 9 is a principle diagram of a single adsorption cooling system showing a conventional example.

【図10】従来例を示す二連の吸着式冷却システムの原
理図
FIG. 10 is a principle diagram of a dual adsorption cooling system showing a conventional example.

【符号の説明】[Explanation of symbols]

20…第1吸着器、21…第2吸着器、20a,21a
…吸着材、22…冷却容器、25…排ガス導入路、26
…第1送風路、27…第1送風路、28…外気導入路、
29…排気送風路、30…送風機、50…風量制御部、
51…回転数センサ、E…エンジン、V1,V2,V
3,V4,V5…開閉バルブ。
20 ... 1st adsorption device, 21 ... 2nd adsorption device, 20a, 21a
... Adsorbent, 22 ... Cooling container, 25 ... Exhaust gas introduction passage, 26
... first air passage, 27 ... first air passage, 28 ... outside air introduction passage,
29 ... Exhaust air passage, 30 ... Blower, 50 ... Air volume control unit,
51 ... Revolution sensor, E ... Engine, V1, V2, V
3, V4, V5 ... Open / close valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸着材を収容した一対の吸着器と、各吸
着器に連結された冷却容器と、各吸着器を択一的に冷却
する冷却手段と、各吸着器を択一的に加熱する加熱手段
とを備え、一方の吸着器を冷却することによって冷却容
器内の吸着媒体を該吸着器内に吸着させる吸着行程と、
他方の吸着器を加熱することによって該吸着器内の吸着
媒体を分離させ冷却容器内に戻す再生行程とを各吸着器
において交互に行わせる吸着式冷却システムにおいて、 前記冷却手段及び加熱手段を、吸着行程を行っている方
の吸着器に低温空気を給送する低温空気送風路と、再生
行程を行っている方の吸着器に高温空気を給送する高温
空気送風路とから構成し、 吸着行程を行っている方の吸着器を通過した空気が再生
行程を行っている方の吸着器に向かって流れるよう各吸
着器を対向して設置するとともに、各吸着器の間には高
温空気送風路の吐出口を臨ませ、 高温空気送風路の熱量の大きさを判定することにより熱
量の大きいときは低温空気送風路の風量を増加させ、熱
量の小さいときは低温空気送風路の風量を減少させる風
量制御手段を設けたことを特徴とする吸着式冷却システ
ム。
1. A pair of adsorbers accommodating an adsorbent, a cooling container connected to each adsorber, a cooling means for selectively cooling each adsorber, and an alternative heating for each adsorber. An adsorbing step of adsorbing the adsorption medium in the cooling container into the adsorber by cooling one of the adsorbers,
In the adsorption type cooling system in which the adsorption process in which the adsorption medium in the adsorber is separated by heating the other adsorber and returned to the cooling container is alternately performed in each adsorber, the cooling means and the heating means are It consists of a low-temperature air blow passage that feeds low-temperature air to the adsorber performing the adsorption stroke and a hot air blow passage that feeds high-temperature air to the adsorber performing the regeneration stroke. Install each adsorber so that the air that has passed through the adsorber that is performing the stroke flows toward the adsorber that is performing the regeneration stroke, and blow high-temperature air between each adsorber. When the heat quantity is high, the air quantity of the low temperature air blow path is increased, and when the heat quantity is low, the air quantity of the low temperature air blow path is decreased. Air flow control means Sorption cooling system which is characterized by comprising.
JP22605592A 1992-05-26 1992-08-25 Adsorption type cooling system Pending JPH0674595A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22605592A JPH0674595A (en) 1992-08-25 1992-08-25 Adsorption type cooling system
US08/066,984 US5333471A (en) 1992-05-26 1993-05-25 Adsorption cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22605592A JPH0674595A (en) 1992-08-25 1992-08-25 Adsorption type cooling system

Publications (1)

Publication Number Publication Date
JPH0674595A true JPH0674595A (en) 1994-03-15

Family

ID=16839093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22605592A Pending JPH0674595A (en) 1992-05-26 1992-08-25 Adsorption type cooling system

Country Status (1)

Country Link
JP (1) JPH0674595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214937A (en) * 2013-04-24 2014-11-17 三菱重工業株式会社 Ship cold water generation system and ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214937A (en) * 2013-04-24 2014-11-17 三菱重工業株式会社 Ship cold water generation system and ship

Similar Documents

Publication Publication Date Title
US5333471A (en) Adsorption cooling system
JP6562004B2 (en) Vehicle air conditioner equipped with adsorption heat pump
JP2000108655A (en) Dehumidifier
JP4265067B2 (en) Vehicle air conditioner
JP3592374B2 (en) Adsorption type cooling device and method for controlling cooling output thereof
JPH05155236A (en) Air-conditioning device for electric automobile
JP3870432B2 (en) Adsorption cooling system
JPH0674594A (en) Adsorption type cooler
JP3831964B2 (en) Adsorption type refrigerator
KR102097783B1 (en) Adsorption type air conditioning apparatus for automotive vehicles
JPH1183235A (en) Refrigerating equipment and air conditioner
JPH0674595A (en) Adsorption type cooling system
JP4341091B2 (en) Adsorption air conditioner for vehicles
JP3831963B2 (en) Adsorption refrigeration system
JPH05322359A (en) Adsorption type cooling system
JPH0666455A (en) Absorption type cooling system
JP6683102B2 (en) Vehicle air conditioner equipped with adsorption heat pump
JPH05322360A (en) Adsorption type cooling system
JPH05322362A (en) Adsorption type cooling system
JPH0658645A (en) Adsorptive type cooling system
JPH11182969A (en) Air conditioner
JP4082192B2 (en) Air conditioner
JP4206817B2 (en) Adsorption refrigerator and vehicle air conditioner
RU2562003C2 (en) Automotive climate control system and method of its operation
JP3733616B2 (en) Adsorption refrigeration system