JP4206817B2 - Adsorption refrigerator and vehicle air conditioner - Google Patents

Adsorption refrigerator and vehicle air conditioner Download PDF

Info

Publication number
JP4206817B2
JP4206817B2 JP2003138407A JP2003138407A JP4206817B2 JP 4206817 B2 JP4206817 B2 JP 4206817B2 JP 2003138407 A JP2003138407 A JP 2003138407A JP 2003138407 A JP2003138407 A JP 2003138407A JP 4206817 B2 JP4206817 B2 JP 4206817B2
Authority
JP
Japan
Prior art keywords
adsorption
heat
refrigerant
adsorber
adsorbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003138407A
Other languages
Japanese (ja)
Other versions
JP2004340493A (en
Inventor
浩司 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003138407A priority Critical patent/JP4206817B2/en
Publication of JP2004340493A publication Critical patent/JP2004340493A/en
Application granted granted Critical
Publication of JP4206817B2 publication Critical patent/JP4206817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒の蒸発作用により冷凍能力を発生させるとともに、蒸発した蒸気冷媒を吸着し、かつ、加熱されることにより吸着していた冷媒を脱離する吸着剤を有する吸着式冷凍機に関するもので、走行用エンジン(内燃機関)のエンジン冷却水等の車両で発生する廃熱を熱源として作動する車両用空調装置に適用して有効である。
【0002】
【従来の技術発明が解決しようとする課題】
吸着式冷凍機とは、周知のごとく、吸着剤を冷却して蒸気冷媒の吸着を促進して液相冷媒の蒸発を促す吸着工程と、冷媒が吸着された吸着剤を加熱して吸着されている冷媒を吸着剤から脱離させる脱離工程とを切り換えて冷凍能力を発生させるものである。
【0003】
しかし、脱離工程中は冷凍能力を得ることができないので、通常は、少なくとも2個の吸着器を設け、吸着工程にある吸着器と脱離工程にある吸着器とを、例えば所定時間毎に切り換えることにより、連続的に冷凍能力を得ることができるように構成している。
【0004】
ところで、仮に、第1吸着器が吸着工程から脱離工程に移行して、第2吸着器が脱離工程から吸着工程に移行したときに、第2吸着器内の吸着剤が十分に冷媒を脱離放出していないと、吸着工程に移行した第2吸着器内の吸着剤は十分な量の冷媒を吸着することができないため、十分な冷凍能力を得ることができない。
【0005】
したがって、エンジン始動前やエンジン始動直後等の廃熱温度及び廃熱量が低いときには、十分に吸着剤を加熱することができないので、十分に冷媒を脱離放出することができず、エンジン始動前やエンジン始動直後等の廃熱温度及び廃熱量が低いときには、十分な冷凍能力を得ることが難しい。
【0006】
本発明は、上記点に鑑み、第1には、従来と異なる新規な吸着式冷凍機を提供し、第2には、熱源の始動前や始動直後等の熱源温度及び熱量が低いときであっても、十分な冷凍能力を得ることを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、冷媒の蒸発作用により冷凍能力を発生させるとともに、蒸発した蒸気冷媒を吸着し、かつ、加熱されることにより吸着していた冷媒を脱離する吸着剤を有する吸着式冷凍機であって、吸着剤及び冷媒が収納された複数個の吸着器(12)と、複数個の吸着器(12)のうち、第1吸着器(12)を吸着剤を冷却して蒸気冷媒の吸着を促進して液相冷媒の蒸発を促す吸着工程とし、かつ、第2吸着器(12)を熱源で発生した熱にて吸着剤を加熱して冷媒を脱離させる脱離工程とする第1状態、および、第2吸着器(12)を吸着工程とし、かつ、第1吸着器(12)を脱離工程とする第2状態を切り換える切換制御手段(V1〜V4)と、熱源が停止したときに、熱源に蓄えられた余熱により複数個の吸着器(12)を脱離工程とする余熱脱離制御手段(S2〜S8)とを備え、切換制御手段(V1〜V4)は、第1、第2吸着器(12)のうち、いずれか一方を吸着工程として連続的に冷凍能力を発揮させるように設定された切換時間毎に第1状態と第2状態とを切り換えるようになっており、さらに、熱源を始動させる前であって、かつ、熱源で発生した熱が脱離工程を行うために十分な温度以下のときに、複数個の吸着器(12)のうち少なくとも1つの吸着器(12)のみを吸着工程とするプレ空調運転を実行するようになっており、プレ空調運転を実行する時間は、前記切換時間未満であることを特徴とする。
【0008】
これにより、次回始動時に、全ての吸着器(12)内の冷媒を十分に脱離再生した状態で吸着式冷凍機を始動することができ得るので、熱源の温度及び熱量が低いときであって、十分な冷凍能力を得ることができる。
また、請求項2に記載の発明では、冷媒の蒸発作用により冷凍能力を発生させるとともに、蒸発した蒸気冷媒を吸着し、かつ、加熱されることにより吸着していた冷媒を脱離する吸着剤を有する吸着式冷凍機であって、吸着剤及び冷媒が収納された複数個の吸着器(12)と、複数個の吸着器(12)のうち、第1吸着器(12)を吸着剤を冷却して蒸気冷媒の吸着を促進して液相冷媒の蒸発を促す吸着工程とし、かつ、第2吸着器(12)を熱源で発生した熱にて吸着剤を加熱して冷媒を脱離させる脱離工程とする第1状態、および、第2吸着器(12)を吸着工程とし、かつ、第1吸着器(12)を脱離工程とする第2状態を切り換える切換制御手段(V1〜V4)と、熱源が停止したときに、熱源に蓄えられた余熱により複数個の吸着器(12)を脱離工程とする余熱脱離制御手段(S2〜S8)と、吸着工程の吸着器(12)にて冷却された熱媒体と室内送風空気とを熱交換させる熱交換機(3)と、熱交換機(3)へ室内送風空気を送風する送風機(2)とを備え、切換制御手段(V1〜V4)は、第1、第2吸着器(12)のうち、いずれか一方を吸着工程として連続的に冷凍能力を発揮させるように設定された切換時間毎に第1状態と第2状態とを切り換えるようになっており、さらに、熱源を始動させる前であって、かつ、熱源で発生した熱が脱離工程を行うために十分な温度以下のときに、複数個の吸着器(12)のうち少なくとも1つの吸着器(12)のみを吸着工程とするプレ空調運転を実行するようになっており、プレ空調運転時には、送風機(2)の送風空気量を低下させることによって、プレ空調運転を実行する時間を、切換時間以上に拡大可能に構成されていることを特徴とする。これにより、請求項1に記載の発明と同様の効果を得ることができる。
【0009】
請求項に記載の発明では、余熱脱離制御手段(S2〜S8)は、熱源が停止した時から所定時間は、複数個の吸着器(12)を脱離工程とすることを特徴とするものである。
【0010】
請求項に記載の発明では、吸着器(12)は、吸着剤を加熱又は冷却するための吸着コア(12c)が収納された吸着室(12d)と、液相冷媒が溜まる蒸発室(12e)とに分離されており、少なくとも、脱離工程の終了後、吸着工程が開始するまで、吸着室(12d)と蒸発室(12e)とを連通させる連通路を閉じる開閉弁(12f)を備えることを特徴とする。
【0011】
これにより、吸着式冷凍機を停止している間に、脱離した冷媒が再び冷媒を吸着してしまうことを防止できるので、次回始動時に、全ての吸着器(12)内の冷媒を十分に脱離再生した状態で吸着式冷凍機を始動することができ得る。
【0012】
請求項に記載の発明では、余熱脱離制御手段(S2〜S8)にて複数個の吸着器(12)を脱離工程とした後、冷凍能力を発生させる場合であって、熱源の温度が所定温度以下のときには、少なくとも複数個の吸着器(12)のうちいずれか1つの開閉弁(12f)を閉じた状態で、その他の吸着器(12)内の冷媒を蒸発させることを特徴とするものである。
【0013】
請求項に記載の発明では、請求項1ないしのいずれか1つに記載の吸着式冷凍機にて車室内に吹き出す空気を冷却するとともに、内燃機関を熱源とする車両用空調装置であって、イグニッションスイッチが遮断されたときに、熱源に蓄えられた余熱により複数個の吸着器(12)を脱離工程とする余熱脱離制御手段(S2〜S8)とを備えることを特徴とするものである。
【0014】
請求項に記載の発明では、余熱脱離制御手段(S2〜S8)は、イグニッションスイッチが遮断された時から所定時間は、複数個の吸着器(12)を脱離工程とすることを特徴とするものである。
【0015】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0016】
【発明の実施の形態】
本実施形態は、本発明に係る吸着式冷凍機をリヒート式の車両用空調装置に適用したものであって、図1、2は本実施形態に係る空調装置(空調ユニット)の模式図である。
【0017】
図1中、空調ケーシング1は室内に吹き出される空気が流れるダクト手段であり、空気流れ最上流側には、室内又は室外から空気を吸引して室内に空気を送風する遠心式の送風機2が設けられている。
【0018】
なお、本実施形態では、空調ケーシング1(空調ユニット)は、車両床下又はシート下に搭載されている。
【0019】
また、空調ケーシング1の空気流れ最下流側は、乗員の上半身側に向けて空気を吹き出すフェイス吹出口、乗員の下半身側に向けて空気を吹き出すフット吹出口、及び窓ガラスに向けて空気を吹き出すデフロスタ吹出口等に連通しているとともに、吹出モード、つまり空気を吹き出させる吹出口を切り替える吹出モード切換装置が設けられている。
【0020】
また、空調ケーシング1内のうち、送風機2より空気流れ下流側であって、吹出モード切換装置より上流側には、室内に吹き出す空気と熱媒体とを熱交換する第1、2熱交換器3、4が収納されており、空気流れ上流側に収納された第1熱交換器3は、主に室内に吹き出す空気を冷却する熱交換器であり、空気流れ下流側に収納された第2熱交換器4は、主に室内に吹き出す空気を加熱する熱交換器である。
【0021】
そして、第1熱交換器3は、空気流れに対して直列に配置された複数個(本実施形態では、2個)の熱交換部3a、3bを有し、かつ、第1熱交換器3に供給される冷却用の媒体が、空気流れ上流側に配置された熱交換部3aから空気流れ下流側に配置された熱交換部3bに向けて流れるように構成されている。
【0022】
また、第1熱交換器3に供給される冷却用の熱媒体は、吸着式冷凍機により生成(冷却)された流体で、第1熱交換器3に流入した熱媒体は、第1熱交換器3内で相変化することなく、室内吹き出す空気から吸熱しながら吸熱量に略比例して温度が上昇してそのエンタルピを上昇させる。
【0023】
なお、吸着式冷凍機とは、吸着剤が気相冷媒を吸着する作用を利用して冷媒を蒸発させ、その蒸発潜熱により冷凍能力を発揮するもので、その詳細は後述する。
【0024】
一方、第2熱交換器4に供給される加熱用の熱媒体は、エンジン冷却水、つまりエンジンにて過熱された熱媒体であり、本実施形態では、両熱交換器3、4に供給される熱媒体を同一のものとしている。
【0025】
因みに、熱媒体は水(エチレングリコール等の不凍液が混合されたものも含む。)であり、走行用駆動源をなすエンジン(内燃機関)を冷却するエンジン冷却水と同じ流体である。
【0026】
次に、吸着式冷凍機10について図3を用いて述べる。
【0027】
吸着剤は、吸着剤の関係湿度、つまり吸着剤表面の相対湿度に応じた量の冷媒(本実施形態では、水)を吸着するものである。このため、吸着剤を加熱すると関係湿度が低下するため吸着していた冷媒を脱離放出し、冷却する関係湿度が上昇するため雰囲気中の冷媒を吸着する。
【0028】
なお、吸着剤が冷媒(水蒸気)を吸着する際には、凝縮熱相当の吸着熱が発生するので、吸着剤の吸着能力を維持するには、吸着剤を冷却しながら冷媒を吸着させる必要がある。
【0029】
因みに、本実施形態では、吸着剤としてシリカゲルを用いていたが、活性アルミナ、活性炭、ゼオライト、モレキュラーシービングカーボン等を用いてもよいことは言うまでもない。
【0030】
室外熱交換器11は吸着器12内を循環した熱媒体と室外空気とを熱交換する熱交換器であり、吸着していた冷媒を脱離放出させる際には、エンジン等の車両で発生した熱(本実施形態では、エンジン冷却水)を吸着器12内に循環させる。なお、切換弁V1〜V4は熱媒体の循環経路を切り換えるものである。
【0031】
また、2台の吸着器12は、内部が略真空に保たれた状態で冷媒(本実施形態では、水)が封入されたステンレス(本実施形態では、SUS304)製のケーシング12a、熱媒体とケーシング12a内の冷媒との間で熱交換を行う蒸発/凝縮コアをなす第1熱交換器12b、及び吸着剤を冷却又は加熱する吸着コアをなす第2熱交換器12cから等から構成されている。
【0032】
そして、ケーシング12aは、第2熱交換器12cが収納された吸着室12dと、第1熱交換器12bが収納された液相冷媒が溜まる蒸発/凝縮室12eとに分離されており、吸着室12dと蒸発/凝縮室12eとを連通させる連通路には、連通路を開閉する電磁弁12f等の開閉弁が設けられている。因みに、電磁弁12fは、非通電時閉(ノーマルクローズ)型の電磁弁である。
【0033】
次に、吸着式冷凍機10の概略作動を述べる。
【0034】
1.通常運転作動
先ず、切換弁V1〜V4を図3の実線に示すように作動させて、紙面上側の吸着器(以下、第1吸着器12と表記する。)の第1熱交換器12bと第1熱交換器3との間、第1吸着器12の第2熱交換器12cと室外熱交換器11との間、並びに紙面下側の吸着器(以下、第2吸着器12と表記する。)の第1熱交換器と室外熱交換器11との間、第2吸着器12の第2熱交換器12cとエンジンとの間に熱媒体を循環させる。
【0035】
これにより、第1吸着器12が吸着工程となり、第2吸着器12が脱離工程となるので、第1吸着器12で発生した冷凍能力により室内に吹き出す空気が冷却され、第2吸着器12にて吸着剤の再生が行われる。
【0036】
つまり、この状態(以下、第1状態と呼ぶ。)では、第1吸着器12の第1熱交換器12bは液相冷媒を蒸発させて冷凍能力を発生させる蒸発器として機能し、第1吸着器12の第2熱交換器12cは吸着剤を冷却する冷却器として機能し、第2吸着器12の第1熱交換器12bは吸着剤から脱離した水蒸気を冷却する凝縮器として機能し、第2吸着器12の第2熱交換器12cは吸着剤を加熱する加熱器として機能する。
【0037】
そして、第1状態で所定時間(本実施形態では、60秒〜100秒)が経過したときに、切換弁V1〜V4を図4の実線に示すように作動させて、第2吸着器12の第1熱交換器12bと第1熱交換器3との間、第2吸着器12の第2熱交換器12cと室外熱交換器11との間、並びに第1吸着器12の第1熱交換器と室外熱交換器11との間、第1吸着器12の第2熱交換器12cとエンジンとの間に熱媒体を循環させる。
【0038】
これにより、第2吸着器12が吸着工程となり、第1吸着器12が脱離工程となるので、第2吸着器12で発生した冷凍能力により室内に吹き出す空気が冷却され、第1吸着器12にて吸着剤の再生が行われる。
【0039】
つまり、この状態(以下、第2状態と呼ぶ。)では、第2吸着器12の第1熱交換器12bは液相冷媒を蒸発させて冷凍能力を発生させる蒸発器として機能し、第2吸着器12の第2熱交換器12cは吸着剤を冷却する冷却器として機能し、第1吸着器12の第1熱交換器12bは吸着剤から脱離した水蒸気を冷却する凝縮器として機能し、第1吸着器12の第2熱交換器12cは吸着剤を加熱する加熱器として機能する。
【0040】
そして、第2状態で所定時間が経過したとき、切換弁V1〜V4作動させて再び第1状態とする。このように、第1状態及び第2状態を所定時間毎に交互に繰り返して、空調装置を連続的に稼働させる。
【0041】
なお、所定時間は、ケーシング12a内に存在する液相冷媒の残量や吸着剤の吸着能力等に基づいて適宜選定されるものであり、以下この所定時間を、切換時間と呼ぶ。
【0042】
2.パージ運転
この運転モードは、イグニッションスイッチが遮断され、熱源をなすエンジンが停止した時から所定時間行われものである。
【0043】
具体的には、エンジンに蓄えられた余熱にて暖められたエンジン冷却水を電動ポンプ(図示せず。)にて第2熱交換器12cを循環させて、第1、2吸着器12内の吸着剤に吸着された冷媒を脱離放出させた後、次回、吸着式冷凍機10(空調装置)を始動させるまで、つまり第1、2吸着器12のうちいずれか一方の吸着器の第2熱交換器12cに冷水を循環させて、吸着剤を冷却して蒸気冷媒の吸着を促進することにより液相冷媒の蒸発を促す吸着工程とするまで両方の電磁弁12fを閉じるものである。
【0044】
なお、図5はパージ運転時の制御フローを示すフローチャートであり、イグニッションスイッチが遮断されると、送風機2が停止する(S1)。
【0045】
そして、現在、脱離工程となっている吸着器12の脱離工程を最後まで実施した後、その吸着器12の電磁弁12fを閉じる(S2〜S4)。
【0046】
次に、他方側の吸着器12を脱離工程として脱離工程を最後まで実施した後、その吸着器12の電磁弁12fを閉じる(S5〜S8)、電動ポンプを停止させる(S9)。
【0047】
次に、空調装置の作動について述べる。
【0048】
1.プレ空調運転
この運転モードは、エンジンを始動させる前、つまり熱源をなすエンジン(エンジン冷却水)の温度が脱離工程を行うに十分な温度以下のときに、事前に空調装置を稼動させて車室内の温度を適正な温度としておくものである。
【0049】
具体的には、図6に示すように、遠隔操作又はタイマーにてエンジンを始動させる前、つまり人員が乗車する前に、第1、2吸着器12のうちいずれか一方の電磁弁12fを開いて吸着式冷凍機にて冷凍能力を発生させるとともに、送風機2を作動させた状態で、電動ポンプにて吸着式冷凍機にて冷却された熱媒体を第1熱交換器3に供給する(S10〜S13)。
【0050】
そして、一方の吸着器12の吸着能力が飽和する前に、イグニッションスイッチが投入されてエンジンが始動したときには、一方の吸着器12を脱離工程とするとともに、他方の吸着器12を吸着工程として通常運転作動とする(S14〜S16)。
【0051】
なお、上記作動説明からも明らかなように、プレ空調運転は、一方の吸着器12のみで空調(冷房)を行い、他方の吸着器12はエンジン始動後に空調(冷房)に用いることが望ましいので、プレ空調時間は切換時間未満とすることが望ましいが、プレ空調時における送風機2の送風量を吸着剤の水分吸着能力低下、つまり吸着工程開始時からの時間経過に応じて低下させる等して、プレ空調時間を切換時間以上としてもよい。
【0052】
2.最大冷房運転(クールダウン)
目標吹出温度TAOが第1所定値より小さくなったとき、又は乗員が手動操作にて最大冷房運転を選択したときには、図7(a)に示すように、図示しない温水バルブを閉じて第2熱交換器4への熱媒体(温水)供給を停止した状態で、第1熱交換器3に吸着式冷凍機で生成された温度の低い熱媒体を供給する。
【0053】
因みに、目標吹出温度TAOとは、乗員が設定した希望室内温度や室内温度などに基づいて決定される制御パラメータを成すもので、目標吹出温度TAOが小さくなるほど大きな冷房能力が必要であるとみなされ、逆に目標吹出温度TAOが大きくなるほど大きな暖房能力が必要であるとみなされる。
【0054】
そして、本実形態では、目標吹出温度TAOに基づいて最大冷房運転(クールダウン)や温度コントロール運転等の運転モード、エアミックスドア5の開度及び吹出モード等が自動制御される。
【0055】
3.温度コントロールモード(除湿暖房運転)
目標吹出温度TAOが第1所定値より大きく、かつ、第1所定値より大きい第2所定値以下となったとき、又はやデフロスタ吹出モード等の曇り除去運転が手動操作にて選択された場合等には、図7(b)に示すように、温水バルブを開いて第2熱交換器4へ熱媒体(温水)を供給した状態で、第1熱交換器3に吸着式冷凍機で生成された温度の低い熱媒体を供給する。
【0056】
これにより、第1熱交換器3にて除湿冷却された空気が第2熱交換器4にて所定温度まで加熱されて室内に吹き出される。なお、室内に吹き出す空気の温度は、温水バルブにて第2熱交換器4での加熱能力を調節することにより行う。
【0057】
4.(除湿不要)暖房運転
目標吹出温度TAOが第2所定値より大きくなったとき、又はや最大暖房運転が手動操作にて選択された場合等には、図7(c)に示すように、吸着式冷凍機10を停止して第1熱交換器3への熱媒体の供給を停止した状態で、温水バルブを開いて第2熱交換器4へ熱媒体(温水)を供給する。
【0058】
次に、本実施形態の作用効果を述べる。
【0059】
本実施形態では、エンジンに蓄えられた余熱にて暖められたエンジン冷却水を第2熱交換器12cを循環させて、第1、2吸着器12内の吸着剤に吸着された冷媒を脱離放出させるので、次回始動時に、両吸着器12内の冷媒を十分に脱離再生した状態で吸着式冷凍機10を始動することができる。
【0060】
したがって、エンジン始動前やエンジン始動直後等の廃熱温度及び廃熱量が低いときであって、十分な冷凍能力を得ることができるので、十分な冷房能力を得ることができる。
【0061】
また、両吸着器12内の冷媒を十分に脱離再生し後、次回、吸着式冷凍機10(空調装置)を始動させるまで、両方の電磁弁12fを閉じるので、吸着式冷凍機10を停止している間に、脱離した冷媒が再び冷媒を吸着してしまうことを防止できるので、次回始動時に、両吸着器12内の冷媒を十分に脱離再生した状態で吸着式冷凍機10を始動することができる。
【0062】
(その他の実施形態)
上述の実施形態では、熱源としてエンジンを用いたが、本発明はこれに限定されるものではなく、例えば電気自動車にあっては、燃料電池、走行用電動モータ及びモータ制御用インバータ等からの廃熱を熱源としてもよい。
【0063】
また、プレ空調時に駐車時換気システムを連動させて作動させてもよい。
【0064】
また、上述の実施形態では、本発明に係る吸着式冷凍機を車両用空調装置に適用したが、本発明の適用はこれに限定されるものではない。
【0065】
また、上述の実施形態では、吸着器12を2台としたが、本発明はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の実施形態に係る空調装置(空調ユニット)の模式図である。
【図2】本発明の実施形態に係る空調装置(空調ユニット)の模式図である。
【図3】本発明の実施形態に係る吸着式冷凍機の模式図である。
【図4】本発明の実施形態に係る吸着式冷凍機の模式図である。
【図5】本発明の実施形態に係る吸着式冷凍機の制御作動を示すフローチャートである。
【図6】本発明の実施形態に係る吸着式冷凍機の制御作動を示すフローチャートである。
【図7】本発明の実施形態に係る空調装置の作動説明図である。
【符号の説明】
10…吸着式冷凍機、11…室外熱交換器、12…吸着器、
12a…ケーシング、12b…蒸発/凝縮コア(第1熱交換器)、
12c…吸着コア(第2熱交換器)、12d…吸着室、
12e…蒸発/凝縮室、12f…電磁弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorption-type refrigerator having an adsorbent that generates a refrigerating capacity by the evaporating action of a refrigerant, adsorbs vapor vapor refrigerant, and desorbs the adsorbed refrigerant by being heated. Thus, the present invention is effective when applied to a vehicle air conditioner that operates using waste heat generated in a vehicle such as engine coolant of a traveling engine (internal combustion engine) as a heat source.
[0002]
[Problems to be solved by the prior art invention]
As is well known, the adsorption refrigerator is an adsorption process that cools the adsorbent and promotes the adsorption of the vapor refrigerant to promote the evaporation of the liquid phase refrigerant, and heats and adsorbs the adsorbent on which the refrigerant is adsorbed. The refrigeration capacity is generated by switching between the desorption step of desorbing the refrigerant from the adsorbent.
[0003]
However, since the refrigeration capacity cannot be obtained during the desorption process, usually at least two adsorbers are provided, and the adsorber in the adsorption process and the adsorber in the desorption process are, for example, at predetermined intervals. By switching, the refrigeration capacity can be obtained continuously.
[0004]
By the way, if the first adsorber shifts from the adsorption step to the desorption step and the second adsorber shifts from the desorption step to the adsorption step, the adsorbent in the second adsorber sufficiently absorbs the refrigerant. If it is not desorbed and released, the adsorbent in the second adsorber that has shifted to the adsorption step cannot adsorb a sufficient amount of refrigerant, and hence sufficient refrigeration capacity cannot be obtained.
[0005]
Therefore, when the waste heat temperature and the amount of waste heat are low before starting the engine or immediately after starting the engine, the adsorbent cannot be heated sufficiently, so that the refrigerant cannot be sufficiently desorbed and released. When the waste heat temperature and the amount of waste heat are low, such as immediately after engine startup, it is difficult to obtain sufficient refrigeration capacity.
[0006]
In view of the above points, the present invention firstly provides a novel adsorption refrigeration machine different from the conventional one, and secondly, when the heat source temperature and quantity of heat are low before or immediately after the heat source is started. However, it aims at obtaining sufficient freezing capacity.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the invention according to claim 1 generates refrigeration capacity by evaporating action of the refrigerant, adsorbs the evaporated vapor refrigerant, and adsorbs it by being heated. An adsorption refrigerator having an adsorbent that desorbs the refrigerant that has been stored, wherein a plurality of adsorbers (12) containing the adsorbent and the refrigerant, and a first of the plurality of adsorbers (12). The adsorber (12) is an adsorption step that cools the adsorbent to promote the adsorption of the vapor refrigerant and promotes the evaporation of the liquid refrigerant, and the second adsorber (12) is adsorbed by the heat generated by the heat source. And a second state in which the second adsorber (12) is an adsorption step and the first adsorber (12) is a desorption step. and switching control means for switching (V1-V4), when the heat source is stopped,蓄the heat source Provided with a plurality of the adsorber (12) the residual heat elimination control means for the desorption step (S2 to S8) by the residual heat, the switching control means (V1-V4) are, first, second adsorber ( 12) is switched between the first state and the second state at each switching time set so that either one of the adsorption steps is used to continuously exhibit the refrigerating capacity, and the heat source is started. When at least one adsorber (12) out of the plurality of adsorbers (12) is adsorbed before the heat is generated and the heat generated by the heat source is below a temperature sufficient to perform the desorption process A pre-air conditioning operation as a process is performed, and the time for performing the pre-air conditioning operation is less than the switching time .
[0008]
Thus, at the next start-up, the adsorption refrigeration machine can be started in a state in which the refrigerant in all the adsorbers (12) is sufficiently desorbed and regenerated, so that the temperature and amount of heat of the heat source are low. Sufficient refrigeration capacity can be obtained.
Further, in the invention according to claim 2, an adsorbent that generates refrigeration capacity by the evaporating action of the refrigerant, adsorbs the evaporated vapor refrigerant, and desorbs the adsorbed refrigerant by being heated. An adsorbing refrigerator having a plurality of adsorbers (12) containing adsorbents and refrigerants, and of the plurality of adsorbers (12), the first adsorber (12) is cooled by the adsorbent. Thus, the adsorption process for accelerating the adsorption of the vapor refrigerant to promote the evaporation of the liquid-phase refrigerant and the second adsorber (12) to remove the refrigerant by heating the adsorbent with the heat generated by the heat source. Switching control means (V1 to V4) for switching between the first state for the separation step and the second state for the second adsorber (12) as the adsorption step and the first adsorber (12) as the desorption step When the heat source is stopped, multiple adsorption is performed by the residual heat stored in the heat source. The heat exchanger (3) for exchanging heat between the residual heat desorption control means (S2 to S8) using (12) as a desorption step and the heat medium cooled by the adsorber (12) in the adsorption step and the indoor air. And a blower (2) for blowing indoor blown air to the heat exchanger (3), and the switching control means (V1 to V4) adsorb one of the first and second adsorbers (12). As the process, the first state and the second state are switched at every switching time set so as to continuously exhibit the refrigerating capacity, and further before the heat source is started and at the heat source. When the generated heat is equal to or lower than a temperature sufficient for performing the desorption process, the pre-air-conditioning operation is performed in which only the at least one adsorber (12) among the plurality of adsorbers (12) is the adsorption process. The air blower (2) is sent during pre-air conditioning operation. By reducing the amount of air, the time to perform pre-air conditioning operation, characterized in that it is expandable configured above switching time. Thereby, the same effect as that of the invention described in claim 1 can be obtained.
[0009]
In the invention described in claim 3 , the residual heat desorption control means (S2 to S8) is characterized in that a plurality of adsorbers (12) are set as the desorption step for a predetermined time from when the heat source is stopped. Is.
[0010]
In the invention according to claim 4 , the adsorber (12) includes an adsorption chamber (12d) in which an adsorption core (12c) for heating or cooling the adsorbent is accommodated, and an evaporation chamber (12e) in which a liquid-phase refrigerant is accumulated. And an open / close valve (12f) that closes the communication path that connects the adsorption chamber (12d) and the evaporation chamber (12e) until at least the adsorption step starts after the desorption step is completed. It is characterized by that.
[0011]
As a result, it is possible to prevent the desorbed refrigerant from adsorbing the refrigerant again while the adsorption refrigerator is stopped, so that the refrigerant in all the adsorbers (12) can be sufficiently discharged at the next start-up. The adsorption refrigerator can be started in the desorbed and regenerated state.
[0012]
The invention according to claim 5 is a case where a plurality of adsorbers (12) are set in the desorption process by the residual heat desorption control means (S2 to S8), and then the refrigeration capacity is generated, and the temperature of the heat source When the temperature is equal to or lower than a predetermined temperature, the refrigerant in the other adsorbers (12) is evaporated while at least one of the on-off valves (12f) among the plurality of adsorbers (12) is closed. To do.
[0013]
According to a sixth aspect of the present invention, there is provided a vehicle air conditioner that cools the air blown into the passenger compartment by the adsorption refrigeration unit according to any one of the first to fifth aspects and uses the internal combustion engine as a heat source. And a residual heat desorption control means (S2 to S8) that uses a plurality of adsorbers (12) as a desorption step by the residual heat stored in the heat source when the ignition switch is shut off. Is.
[0014]
In the invention according to claim 7 , the residual heat desorption control means (S2 to S8) is characterized in that a plurality of adsorbers (12) are set as a desorption process for a predetermined time from when the ignition switch is shut off. It is what.
[0015]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the present embodiment, the adsorption refrigerator according to the present invention is applied to a reheat type vehicle air conditioner, and FIGS. 1 and 2 are schematic views of the air conditioner (air conditioner unit) according to the present embodiment. .
[0017]
In FIG. 1, an air-conditioning casing 1 is duct means through which air blown into the room flows, and a centrifugal blower 2 that sucks air from the room or the outside and blows air into the room is provided on the most upstream side of the air flow. Is provided.
[0018]
In the present embodiment, the air conditioning casing 1 (air conditioning unit) is mounted under the vehicle floor or under the seat.
[0019]
Further, the most downstream side of the air flow of the air conditioning casing 1 blows air toward the face blowout port that blows air toward the upper body side of the occupant, the foot blowout port that blows air toward the lower body side of the occupant, and the window glass. An air outlet mode switching device is provided that communicates with a defroster air outlet and the like, and that changes an air outlet mode, that is, an air outlet that blows out air.
[0020]
Further, in the air conditioning casing 1, on the downstream side of the air flow from the blower 2 and upstream of the blowing mode switching device, the first and second heat exchangers 3 for exchanging heat between the air blown into the room and the heat medium. 4, the first heat exchanger 3 housed on the upstream side of the air flow is a heat exchanger that mainly cools the air blown into the room, and the second heat housed on the downstream side of the air flow. The exchanger 4 is a heat exchanger that mainly heats the air blown into the room.
[0021]
The first heat exchanger 3 includes a plurality (two in this embodiment) of heat exchange portions 3a and 3b arranged in series with respect to the air flow, and the first heat exchanger 3 The cooling medium supplied to the air flow is configured to flow from the heat exchange unit 3a disposed on the upstream side of the air flow toward the heat exchange unit 3b disposed on the downstream side of the air flow.
[0022]
In addition, the cooling heat medium supplied to the first heat exchanger 3 is a fluid generated (cooled) by the adsorption refrigerator, and the heat medium flowing into the first heat exchanger 3 is the first heat exchange. Without changing the phase in the vessel 3, the temperature rises in proportion to the amount of heat absorbed while absorbing heat from the air blown out indoors, and the enthalpy is raised.
[0023]
The adsorption refrigerator is an apparatus that evaporates the refrigerant by using the action of the adsorbent adsorbing the gas-phase refrigerant, and exhibits the refrigerating capacity by the latent heat of vaporization, the details of which will be described later.
[0024]
On the other hand, the heating heat medium supplied to the second heat exchanger 4 is engine cooling water, that is, a heat medium overheated by the engine. In the present embodiment, the heat medium is supplied to both the heat exchangers 3 and 4. The same heat medium is used.
[0025]
Incidentally, the heat medium is water (including a mixture of antifreeze such as ethylene glycol), and is the same fluid as engine cooling water that cools the engine (internal combustion engine) that forms the driving source for traveling.
[0026]
Next, the adsorption refrigerator 10 will be described with reference to FIG.
[0027]
The adsorbent adsorbs a refrigerant (in this embodiment, water) in an amount corresponding to the relative humidity of the adsorbent, that is, the relative humidity of the adsorbent surface. For this reason, when the adsorbent is heated, the relative humidity decreases, so the adsorbed refrigerant is desorbed and released, and the relative humidity for cooling increases, so that the refrigerant in the atmosphere is adsorbed.
[0028]
When the adsorbent adsorbs the refrigerant (water vapor), heat of adsorption equivalent to the heat of condensation is generated. Therefore, in order to maintain the adsorption capacity of the adsorbent, it is necessary to adsorb the refrigerant while cooling the adsorbent. is there.
[0029]
Incidentally, although silica gel is used as the adsorbent in the present embodiment, it goes without saying that activated alumina, activated carbon, zeolite, molecular sieving carbon or the like may be used.
[0030]
The outdoor heat exchanger 11 is a heat exchanger that exchanges heat between the heat medium circulated in the adsorber 12 and the outdoor air, and is generated in a vehicle such as an engine when desorbing and releasing the adsorbed refrigerant. Heat (in this embodiment, engine cooling water) is circulated in the adsorber 12. Incidentally, the switching valve V1~V4 are those for switching the circulation path of the heat medium.
[0031]
Further, the two adsorbers 12 are made of a stainless steel (SUS304 in this embodiment) casing 12a in which a refrigerant (in this embodiment, water) is sealed in a state where the inside is maintained in a substantially vacuum, a heat medium, The first heat exchanger 12b that forms an evaporation / condensation core that exchanges heat with the refrigerant in the casing 12a, the second heat exchanger 12c that forms an adsorption core that cools or heats the adsorbent, and the like are included. Yes.
[0032]
The casing 12a is separated into an adsorption chamber 12d in which the second heat exchanger 12c is accommodated and an evaporation / condensation chamber 12e in which the liquid phase refrigerant in which the first heat exchanger 12b is accommodated. The communication passage that connects the 12d and the evaporation / condensation chamber 12e is provided with an open / close valve such as an electromagnetic valve 12f that opens and closes the communication passage. Incidentally, the solenoid valve 12f is a normally closed solenoid valve.
[0033]
Next, the general operation of the adsorption refrigerator 10 will be described.
[0034]
1. Normal operation operation First, the switching valves V1 to V4 are operated as shown by the solid lines in FIG. 3, and the first heat exchanger 12b and the first heat exchanger 12b of the upper side adsorber (hereinafter referred to as the first adsorber 12) are operated. Between the first heat exchanger 3, between the second heat exchanger 12 c of the first adsorber 12 and the outdoor heat exchanger 11, and on the lower side of the paper (hereinafter referred to as the second adsorber 12). ) Is circulated between the first heat exchanger and the outdoor heat exchanger 11) and between the second heat exchanger 12 c of the second adsorber 12 and the engine.
[0035]
As a result, the first adsorber 12 becomes the adsorption step and the second adsorber 12 becomes the desorption step, so that the air blown into the room is cooled by the refrigeration capacity generated in the first adsorber 12, and the second adsorber 12 is cooled. The adsorbent is regenerated at.
[0036]
In other words, in this state (hereinafter referred to as the first state), the first heat exchanger 12b of the first adsorber 12 functions as an evaporator that evaporates the liquid-phase refrigerant and generates a refrigeration capacity, and the first adsorption. The second heat exchanger 12c of the vessel 12 functions as a cooler for cooling the adsorbent, and the first heat exchanger 12b of the second adsorber 12 functions as a condenser for cooling the water vapor desorbed from the adsorbent, The second heat exchanger 12c of the second adsorber 12 functions as a heater that heats the adsorbent.
[0037]
Then, when a predetermined time (60 seconds to 100 seconds in the present embodiment) has elapsed in the first state, the switching valves V1 to V4 are operated as shown by the solid line in FIG. Between the 1st heat exchanger 12b and the 1st heat exchanger 3, between the 2nd heat exchanger 12c of the 2nd adsorption device 12 and the outdoor heat exchanger 11, and the 1st heat exchange of the 1st adsorption device 12 A heat medium is circulated between the heat exchanger and the outdoor heat exchanger 11 and between the second heat exchanger 12c of the first adsorber 12 and the engine.
[0038]
As a result, the second adsorber 12 becomes the adsorption step and the first adsorber 12 becomes the desorption step, so that the air blown into the room is cooled by the refrigerating capacity generated in the second adsorber 12, and the first adsorber 12 is cooled. The adsorbent is regenerated at.
[0039]
In other words, in this state (hereinafter referred to as the second state), the first heat exchanger 12b of the second adsorber 12 functions as an evaporator that evaporates the liquid-phase refrigerant and generates a refrigerating capacity, and the second adsorption. The second heat exchanger 12c of the vessel 12 functions as a cooler for cooling the adsorbent, the first heat exchanger 12b of the first adsorber 12 functions as a condenser for cooling the water vapor desorbed from the adsorbent, The second heat exchanger 12c of the first adsorber 12 functions as a heater that heats the adsorbent.
[0040]
And when predetermined time passes in a 2nd state, the switching valves V1-V4 are operated and it is set as a 1st state again. As described above, the air conditioner is continuously operated by alternately repeating the first state and the second state every predetermined time.
[0041]
The predetermined time is appropriately selected based on the remaining amount of the liquid-phase refrigerant present in the casing 12a, the adsorption capacity of the adsorbent, and the like. Hereinafter , the predetermined time is referred to as a switching time.
[0042]
2. Purge operation This mode of operation, the ignition switch is turned off, in which the engine constituting the heat source is Ru performed a predetermined time from the time of stop.
[0043]
Specifically, the engine cooling water warmed by the residual heat stored in the engine is circulated through the second heat exchanger 12c by an electric pump (not shown), and the inside of the first and second adsorbers 12 is circulated. After the refrigerant adsorbed by the adsorbent is desorbed and released, until the next time the adsorption refrigerator 10 (air conditioner) is started, that is, the second of the first and second adsorbers 12. Cold water is circulated through the heat exchanger 12c to cool both the adsorbents and promote the adsorption of the vapor refrigerant, thereby closing both solenoid valves 12f until the adsorption process promotes the evaporation of the liquid phase refrigerant.
[0044]
FIG. 5 is a flowchart showing a control flow during the purge operation. When the ignition switch is shut off, the blower 2 stops (S1).
[0045]
Then, after performing the desorption process of the adsorber 12 which is currently the desorption process, the electromagnetic valve 12f of the adsorber 12 is closed (S2 to S4).
[0046]
Next, after performing the desorption process to the end with the other adsorber 12 as a desorption process, the electromagnetic valve 12f of the adsorber 12 is closed (S5 to S8), and the electric pump is stopped (S9).
[0047]
Next, the operation of the air conditioner will be described.
[0048]
1. Pre-air-conditioning operation This mode of operation is performed by operating the air-conditioner in advance before starting the engine, that is, when the temperature of the engine (engine cooling water) that is the heat source is below the temperature sufficient for the desorption process. The room temperature is set to an appropriate temperature.
[0049]
Specifically, as shown in FIG. 6, before starting the engine by a remote operation or timer, that is, before a person gets on, either one of the first and second adsorbers 12 is opened. In addition, the refrigeration capacity is generated by the adsorption chiller and the heat medium cooled by the adsorption chiller by the electric pump is supplied to the first heat exchanger 3 while the blower 2 is operated (S10). To S13).
[0050]
When the ignition switch is turned on and the engine is started before the adsorption capacity of one adsorber 12 is saturated, one adsorber 12 is set as a desorption process and the other adsorber 12 is set as an adsorption process. Normal operation is performed (S14 to S16).
[0051]
As is clear from the above description of the operation, it is desirable that the pre-air-conditioning operation performs air conditioning (cooling) with only one adsorber 12, and the other adsorber 12 is used for air conditioning (cooling) after the engine is started. The pre-air conditioning time is preferably less than the switching time, but the amount of air blown from the blower 2 during pre-air conditioning is reduced according to the decrease in the moisture adsorption capacity of the adsorbent, that is, with the passage of time from the start of the adsorption process. The pre-air conditioning time may be longer than the switching time.
[0052]
2. Maximum cooling operation (cool down)
When the target blowout temperature TAO becomes smaller than the first predetermined value or when the occupant selects the maximum cooling operation by manual operation, as shown in FIG. With the supply of the heat medium (warm water) to the exchanger 4 stopped, the heat medium having a low temperature generated by the adsorption refrigerator is supplied to the first heat exchanger 3.
[0053]
Incidentally, the target blowing temperature TAO is a control parameter that is determined based on the desired room temperature or room temperature set by the occupant, and is considered to require a larger cooling capacity as the target blowing temperature TAO decreases. On the contrary, it is considered that a larger heating capacity is required as the target blowing temperature TAO increases.
[0054]
In the present implementation mode, the maximum cooling operation based on the target air temperature TAO (cool-down) and a temperature control operation such operation mode, opening and an air outlet mode such as the air mixing door 5 is automatically controlled.
[0055]
3. Temperature control mode (dehumidifying heating operation)
When the target blowing temperature TAO is greater than the first predetermined value and less than or equal to the second predetermined value greater than the first predetermined value, or when the defogging operation such as the defroster blowing mode is selected by manual operation, etc. 7 (b), the hot water valve is opened and the heat medium (warm water) is supplied to the second heat exchanger 4, and the first heat exchanger 3 is generated by an adsorption refrigeration machine. Supply a low-temperature heat medium.
[0056]
Thereby, the air dehumidified and cooled by the first heat exchanger 3 is heated to a predetermined temperature by the second heat exchanger 4 and blown out into the room. In addition, the temperature of the air which blows off indoors is performed by adjusting the heating capability in the 2nd heat exchanger 4 with a warm water valve.
[0057]
4). (Dehumidification not required) When the heating operation target blowout temperature TAO becomes larger than the second predetermined value, or when the maximum heating operation is selected by manual operation, as shown in FIG. The hot water valve is opened to supply the heat medium (warm water) to the second heat exchanger 4 in a state in which the type refrigerator 10 is stopped and supply of the heat medium to the first heat exchanger 3 is stopped.
[0058]
Next, the function and effect of this embodiment will be described.
[0059]
In the present embodiment, the engine cooling water heated by the residual heat stored in the engine is circulated through the second heat exchanger 12c, and the refrigerant adsorbed by the adsorbent in the first and second adsorbers 12 is desorbed. Since it is discharged, at the next start, the adsorption refrigeration machine 10 can be started with the refrigerant in both adsorbers 12 fully desorbed and regenerated.
[0060]
Therefore, when the waste heat temperature and the amount of waste heat are low before the engine is started or immediately after the engine is started, sufficient refrigeration capacity can be obtained, so that sufficient cooling capacity can be obtained.
[0061]
In addition, after the refrigerant in both adsorbers 12 is sufficiently desorbed and regenerated, both the solenoid valves 12f are closed until the next time the adsorption refrigerator 10 (air conditioner) is started, so the adsorption refrigerator 10 is stopped. Since the desorbed refrigerant can be prevented from adsorbing the refrigerant again during the operation, the adsorption refrigeration machine 10 can be operated with the refrigerant in both adsorbers 12 fully desorbed and regenerated at the next start-up. Can be started.
[0062]
(Other embodiments)
In the above-described embodiment, the engine is used as the heat source. However, the present invention is not limited to this. For example, in the case of an electric vehicle, the waste from the fuel cell, the driving electric motor, the motor control inverter, and the like. Heat may be used as a heat source.
[0063]
Further, the parking ventilation system may be operated in conjunction with the pre-air conditioning.
[0064]
Moreover, in the above-mentioned embodiment, although the adsorption-type refrigerator which concerns on this invention was applied to the vehicle air conditioner, application of this invention is not limited to this.
[0065]
Moreover, in the above-mentioned embodiment, although the two adsorbers 12 were used, this invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an air conditioner (air conditioning unit) according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of an air conditioner (air conditioning unit) according to an embodiment of the present invention.
FIG. 3 is a schematic diagram of an adsorption refrigerator according to an embodiment of the present invention.
FIG. 4 is a schematic diagram of an adsorption refrigerator according to an embodiment of the present invention.
FIG. 5 is a flowchart showing a control operation of the adsorption refrigerator according to the embodiment of the present invention.
FIG. 6 is a flowchart showing a control operation of the adsorption refrigerator according to the embodiment of the present invention.
FIG. 7 is an operation explanatory diagram of the air conditioner according to the embodiment of the present invention.
[Explanation of symbols]
10 ... Adsorption refrigerator, 11 ... Outdoor heat exchanger, 12 ... Adsorber,
12a ... casing, 12b ... evaporation / condensation core (first heat exchanger),
12c ... Adsorption core (second heat exchanger), 12d ... Adsorption chamber,
12e: evaporation / condensation chamber, 12f: solenoid valve.

Claims (7)

冷媒の蒸発作用により冷凍能力を発生させるとともに、蒸発した蒸気冷媒を吸着し、かつ、加熱されることにより吸着していた冷媒を脱離する吸着剤を有する吸着式冷凍機であって、
前記吸着剤及び冷媒が収納された複数個の吸着器(12)と、
前記複数個の吸着器(12)のうち、第1吸着器(12)を前記吸着剤を冷却して蒸気冷媒の吸着を促進して液相冷媒の蒸発を促す吸着工程とし、かつ、第2吸着器(12)を熱源で発生した熱にて前記吸着剤を加熱して冷媒を脱離させる脱離工程とする第1状態、および、前記第2吸着器(12)を前記吸着工程とし、かつ、前記第1吸着器(12)を前記脱離工程とする第2状態を切り換える切換制御手段(V1〜V4)と、
前記熱源が停止したときに、前記熱源に蓄えられた余熱により前記複数個の吸着器(12)を前記脱離工程とする余熱脱離制御手段(S2〜S8)とを備え、
前記切換制御手段(V1〜V4)は、前記第1、第2吸着器(12)のうち、いずれか一方を前記吸着工程として連続的に冷凍能力を発揮させるように設定された切換時間毎に前記第1状態と前記第2状態とを切り換えるようになっており、
さらに、前記熱源を始動させる前であって、かつ、前記熱源で発生した熱が前記脱離工程を行うために十分な温度以下のときに、前記複数個の吸着器(12)のうち少なくとも1つの吸着器(12)のみを吸着工程とするプレ空調運転を実行するようになっており、
前記プレ空調運転を実行する時間は、前記切換時間未満であることを特徴とする吸着式冷凍機。
An adsorbing refrigerator having an adsorbent that generates refrigeration capacity by the evaporating action of the refrigerant, adsorbs the evaporated vapor refrigerant, and desorbs the adsorbed refrigerant by being heated,
A plurality of adsorbers (12) containing the adsorbent and refrigerant;
Among the plurality of adsorbers (12), the first adsorber (12) is an adsorption step that cools the adsorbent to promote adsorption of vapor refrigerant and promotes evaporation of liquid refrigerant, and second A first state in which the adsorber (12) is a desorption process in which the adsorbent is heated by heat generated by a heat source to desorb the refrigerant; and the second adsorber (12) is the adsorption process, And the switching control means (V1-V4) which switches the 2nd state which makes the said 1st adsorption device (12) the said desorption process ,
A residual heat desorption control means (S2 to S8) that uses the plurality of adsorbers (12) as the desorption step by the residual heat stored in the heat source when the heat source is stopped;
The switching control means (V1 to V4) is set at every switching time set so that one of the first and second adsorbers (12) is continuously used as the adsorption step and the refrigeration capacity is continuously exhibited. Switching between the first state and the second state;
Further, at least one of the plurality of adsorbers (12) before starting the heat source and when the heat generated by the heat source is not more than a temperature sufficient for performing the desorption process. The pre-air-conditioning operation in which only one adsorber (12) is used as an adsorption process is executed,
The adsorption refrigeration machine characterized in that the time for performing the pre-air conditioning operation is less than the switching time .
冷媒の蒸発作用により冷凍能力を発生させるとともに、蒸発した蒸気冷媒を吸着し、かつ、加熱されることにより吸着していた冷媒を脱離する吸着剤を有する吸着式冷凍機であって、An adsorbing refrigerator having an adsorbent that generates refrigeration capacity by the evaporating action of the refrigerant, adsorbs the evaporated vapor refrigerant, and desorbs the adsorbed refrigerant by being heated,
前記吸着剤及び冷媒が収納された複数個の吸着器(12)と、A plurality of adsorbers (12) containing the adsorbent and refrigerant;
前記複数個の吸着器(12)のうち、第1吸着器(12)を前記吸着剤を冷却して蒸気冷媒の吸着を促進して液相冷媒の蒸発を促す吸着工程とし、かつ、第2吸着器(12)を熱源で発生した熱にて前記吸着剤を加熱して冷媒を脱離させる脱離工程とする第1状態、および、前記第2吸着器(12)を前記吸着工程とし、かつ、前記第1吸着器(12)を前記脱離工程とする第2状態を切り換える切換制御手段(V1〜V4)と、Among the plurality of adsorbers (12), the first adsorber (12) is an adsorption step that cools the adsorbent to promote adsorption of vapor refrigerant and promotes evaporation of liquid refrigerant, and second A first state in which the adsorber (12) is a desorption process in which the adsorbent is heated by heat generated by a heat source to desorb the refrigerant; and the second adsorber (12) is the adsorption process, And the switching control means (V1-V4) which switches the 2nd state which makes the said 1st adsorption device (12) the said desorption process,
前記熱源が停止したときに、前記熱源に蓄えられた余熱により前記複数個の吸着器(12)を前記脱離工程とする余熱脱離制御手段(S2〜S8)と、Residual heat desorption control means (S2 to S8) that use the plurality of adsorbers (12) as the desorption step by the residual heat stored in the heat source when the heat source is stopped;
前記吸着工程の吸着器(12)にて冷却された熱媒体と室内送風空気とを熱交換させる熱交換機(3)と、A heat exchanger (3) for exchanging heat between the heat medium cooled in the adsorber (12) in the adsorption step and the indoor air.
前記熱交換機(3)へ前記室内送風空気を送風する送風機(2)とを備え、A blower (2) for blowing the indoor blown air to the heat exchanger (3),
前記切換制御手段(V1〜V4)は、前記第1、第2吸着器(12)のうち、いずれか一方を前記吸着工程として連続的に冷凍能力を発揮させるように設定された切換時間毎に前記第1状態と前記第2状態とを切り換えるようになっており、The switching control means (V1 to V4) is set at every switching time set so that one of the first and second adsorbers (12) is continuously used as the adsorption step and the refrigeration capacity is continuously exhibited. Switching between the first state and the second state;
さらに、前記熱源を始動させる前であって、かつ、前記熱源で発生した熱が前記脱離工程を行うために十分な温度以下のときに、前記複数個の吸着器(12)のうち少なくとも1つの吸着器(12)のみを吸着工程とするプレ空調運転を実行するようになっており、Further, at least one of the plurality of adsorbers (12) before starting the heat source and when the heat generated by the heat source is not more than a temperature sufficient for performing the desorption process. The pre-air-conditioning operation in which only one adsorber (12) is used as an adsorption process is executed,
前記プレ空調運転時には、前記送風機(2)の送風空気量を低下させることによって、前記プレ空調運転を実行する時間を、前記切換時間以上に拡大可能に構成されていることを特徴とする吸着式冷凍機。At the time of the pre-air-conditioning operation, the adsorption type is characterized in that the time for executing the pre-air-conditioning operation can be extended more than the switching time by reducing the amount of air blown from the blower (2). refrigerator.
前記余熱脱離制御手段(S2〜S8)は、前記熱源が停止した時から所定時間は、前記複数個の吸着器(12)を前記脱離工程とすることを特徴とする請求項1または2に記載の吸着式冷凍機。The residual heat elimination control means (S2 to S8) is a predetermined time when the heat source is stopped, according to claim 1 or 2, characterized in said plurality of adsorber (12) to said elimination step An adsorption refrigerator as described in 1. 前記吸着器(12)は、前記吸着剤を加熱又は冷却するための吸着コア(12c)が収納された吸着室(12d)と、液相冷媒が溜まる蒸発室(12e)とに分離されており、
少なくとも、前記脱離工程の終了後、前記吸着工程が開始するまで、前記吸着室(12d)と前記蒸発室(12e)とを連通させる連通路を閉じる開閉弁(12f)を備えることを特徴とする請求項1ないし3のいずれか1つに記載の吸着式冷凍機。
The adsorber (12) is separated into an adsorbing chamber (12d) in which an adsorbing core (12c) for heating or cooling the adsorbent is housed and an evaporation chamber (12e) in which a liquid phase refrigerant is accumulated. ,
At least, after the end of the desorption step, an open / close valve (12f) that closes the communication path that connects the adsorption chamber (12d) and the evaporation chamber (12e) until the adsorption step starts is provided. The adsorption type refrigerator according to any one of claims 1 to 3 .
前記余熱脱離制御手段(S2〜S8)にて前記複数個の吸着器(12)を前記脱離工程とした後、冷凍能力を発生させる場合であって、前記熱源の温度が所定温度以下のときには、少なくとも前記複数個の吸着器(12)のうちいずれか1つの前記開閉弁(12f)を閉じた状態で、その他の前記吸着器(12)内の冷媒を蒸発させることを特徴とする請求項に記載の吸着式冷凍機。The residual heat desorption control means (S2 to S8) uses the plurality of adsorbers (12) as the desorption step and then generates a refrigeration capacity, and the temperature of the heat source is equal to or lower than a predetermined temperature. In some cases, the refrigerant in the other adsorbers (12) is evaporated while at least one of the plurality of adsorbers (12) is closed with the on-off valve (12f). Item 5. The adsorption refrigerator according to item 4 . 請求項1ないしのいずれか1つに記載の吸着式冷凍機にて車室内に吹き出す空気を冷却するとともに、内燃機関を前記熱源とする車両用空調装置であって、
イグニッションスイッチが遮断されたときに、前記熱源に蓄えられた余熱により前記複数個の吸着器(12)を前記脱離工程とする余熱脱離制御手段(S2〜S8)とを備えることを特徴とする車両用空調装置。
An air conditioner for a vehicle that cools air blown into the passenger compartment by the adsorption refrigeration unit according to any one of claims 1 to 5 and uses an internal combustion engine as the heat source,
And a residual heat desorption control means (S2 to S8) that uses the plurality of adsorbers (12) as the desorption step by the residual heat stored in the heat source when the ignition switch is shut off. A vehicle air conditioner.
前記余熱脱離制御手段(S2〜S8)は、前記イグニッションスイッチが遮断された時から所定時間は、前記複数個の吸着器(12)を前記脱離工程とすることを特徴とする請求項に記載の車両用空調装置。Claim 6, wherein the residual heat removal control means (S2 to S8) is a predetermined time from when the ignition switch is interrupted, wherein said plurality of adsorber (12) and the desorption step The vehicle air conditioner described in 1.
JP2003138407A 2003-05-16 2003-05-16 Adsorption refrigerator and vehicle air conditioner Expired - Fee Related JP4206817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138407A JP4206817B2 (en) 2003-05-16 2003-05-16 Adsorption refrigerator and vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138407A JP4206817B2 (en) 2003-05-16 2003-05-16 Adsorption refrigerator and vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2004340493A JP2004340493A (en) 2004-12-02
JP4206817B2 true JP4206817B2 (en) 2009-01-14

Family

ID=33527783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138407A Expired - Fee Related JP4206817B2 (en) 2003-05-16 2003-05-16 Adsorption refrigerator and vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP4206817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533348B1 (en) * 2012-12-05 2015-07-03 한라비스테온공조 주식회사 Absorption type air conditioning system for automotive vehicles
KR101578492B1 (en) 2013-01-31 2015-12-17 한온시스템 주식회사 Air conditioning system for automotive vehicles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940067B (en) * 2019-12-16 2021-07-06 宁波奥克斯电气股份有限公司 Control method and device for automatically supplementing liquid adding amount in refrigeration mode and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533348B1 (en) * 2012-12-05 2015-07-03 한라비스테온공조 주식회사 Absorption type air conditioning system for automotive vehicles
KR101578492B1 (en) 2013-01-31 2015-12-17 한온시스템 주식회사 Air conditioning system for automotive vehicles

Also Published As

Publication number Publication date
JP2004340493A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4281564B2 (en) Air conditioner for vehicles
JP6562004B2 (en) Vehicle air conditioner equipped with adsorption heat pump
JP3870432B2 (en) Adsorption cooling system
JP4206817B2 (en) Adsorption refrigerator and vehicle air conditioner
JPH1183235A (en) Refrigerating equipment and air conditioner
KR101533348B1 (en) Absorption type air conditioning system for automotive vehicles
JP6139125B2 (en) Adsorption type air conditioner
JP4341090B2 (en) Adsorption refrigerator for vehicles
JP4341091B2 (en) Adsorption air conditioner for vehicles
JP4082192B2 (en) Air conditioner
JP4082191B2 (en) Air conditioner
JP3774963B2 (en) Heating system
JP4158235B2 (en) Air conditioner for vehicles
JP2008201199A (en) Air conditioner for vehicle
JP2010121920A (en) Air conditioning system equipped with heat pump unit
WO2017154569A1 (en) Adsorption refrigeration system, and vehicle air-conditioning device
JP2020006865A (en) Humidified air supply device
JP3424385B2 (en) Adsorption refrigeration equipment and adsorption air conditioning equipment
JP4022944B2 (en) Adsorption refrigeration system
JP2004284432A (en) Vehicular adsorption type air-conditioner
JP2002048428A (en) Adsorption type refrigerating machine
JP2002178742A (en) Adsorption type refrigerator for vehicle
JP3921815B2 (en) Air conditioner for vehicles
JPH1071848A (en) Brine type air conditioner
JP3156256B2 (en) Automotive air conditioners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees