JPH0674572A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH0674572A
JPH0674572A JP22880692A JP22880692A JPH0674572A JP H0674572 A JPH0674572 A JP H0674572A JP 22880692 A JP22880692 A JP 22880692A JP 22880692 A JP22880692 A JP 22880692A JP H0674572 A JPH0674572 A JP H0674572A
Authority
JP
Japan
Prior art keywords
evaporator
compressor
temperature
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22880692A
Other languages
Japanese (ja)
Other versions
JP3260844B2 (en
Inventor
Yozo Ohata
畑 洋 三 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22880692A priority Critical patent/JP3260844B2/en
Publication of JPH0674572A publication Critical patent/JPH0674572A/en
Application granted granted Critical
Publication of JP3260844B2 publication Critical patent/JP3260844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent the refrigerant in the liquid state from returning from the evaporator to the compressor when the load is small. CONSTITUTION:A compressor 1, condenser 2, externally equalized expansion valve 3, and evaporator 4 are connected in this sequence to constitute a system of refrigeration cycle. An equalizing line 5 is connected from the externally equalized expansion valve 3 to a point between the compressor 1 and the evaporator 4. A temperature-sensing cylinder 6 for the externally equalized expansion valve 3 is provided at a point between the equalizing line 5 and the evaporator 4. A bypass 8 having its inlet between the compressor 1 and the condenser 2 and the outlet between the equalizing line 5 and the temperature-sensing cylinder 6 is connected. A solenoid valve 7 is provided in the bypass 8. When the load is small, the solenoid valve 7 is opened so as to return part of the refrigerant discharged from the compressor 1 to the compressor 1 directly through the bypass 8. This return of refrigerant causes the pressure in the equalizing line 5 to increase and the externally equalized expansion valve 3 to be narrowed. As a result, the amount of refrigerant sent to the evaporator 4 decreases and it does not occur for refrigerant in the liquid state to return to the compressor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外均式膨張弁を用いた
空気調和機に係り、特に液状の冷媒が蒸発器から圧縮機
に戻るのを防止することができる空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an external equalization type expansion valve, and more particularly to an air conditioner capable of preventing liquid refrigerant from returning from an evaporator to a compressor.

【0002】[0002]

【従来の技術】図7は、外均式膨張弁を用いた従来の空
気調和機を示すもので、図中、符号1は圧縮機であり、
この圧縮機1には、凝縮器2、外均式膨張弁3および蒸
発器4が順次接続されて冷凍サイクルを構成している。
また、前記外均式膨張弁3の均圧管5は、図7に示すよ
うに、圧縮機1と蒸発器4との間に接続されているとと
もに、この接続部よりも上流側、すなわち蒸発器4側の
位置には、外均式膨張弁3の感温筒6が設置されてい
る。
2. Description of the Related Art FIG. 7 shows a conventional air conditioner using an external equalization type expansion valve. In the figure, reference numeral 1 is a compressor,
A condenser 2, an external equalization type expansion valve 3 and an evaporator 4 are sequentially connected to the compressor 1 to form a refrigeration cycle.
Further, as shown in FIG. 7, the pressure equalizing pipe 5 of the external equalization type expansion valve 3 is connected between the compressor 1 and the evaporator 4, and is upstream of this connecting portion, that is, the evaporator. The temperature sensing cylinder 6 of the external equalization type expansion valve 3 is installed at the position on the 4th side.

【0003】一方、前記圧縮機1の吐出側には、図7に
示すように、電磁弁7を有するバイパス回路8の一端が
接続されており、このバイパス回路8の他端は、前記均
圧管5よりも下流側の圧縮機1の吸込側に接続されてい
る。
On the other hand, as shown in FIG. 7, one end of a bypass circuit 8 having an electromagnetic valve 7 is connected to the discharge side of the compressor 1, and the other end of the bypass circuit 8 is connected to the pressure equalizing pipe. It is connected to the suction side of the compressor 1 downstream of 5.

【0004】以上の構成において、低負荷時の運転中
に、蒸発器4が凍結し始めると、蒸発温度が低下する。
そして、この蒸発温度が設定値を下回ると、電磁弁7が
開となり、圧縮機1から吐出された冷媒の一部が、直接
圧縮機1の吸込側に戻される。このため、蒸発器4への
冷媒循環量が低減し、蒸発器4の凍結が防止される。
In the above construction, if the evaporator 4 starts to freeze during operation under a low load, the evaporation temperature will drop.
Then, when the evaporation temperature falls below the set value, the solenoid valve 7 is opened, and a part of the refrigerant discharged from the compressor 1 is directly returned to the suction side of the compressor 1. For this reason, the refrigerant circulation amount to the evaporator 4 is reduced, and the evaporator 4 is prevented from freezing.

【0005】[0005]

【発明が解決しようとする課題】前記従来の空気調和機
においては、低負荷時に蒸発器4の凍結を防止すること
ができるが、さらに低負荷となった場合には、蒸発器4
で冷媒が蒸発しきれず、液状の冷媒が直接圧縮機1に戻
る、いわゆる液バックが発生し、この状態で運転を継続
すると、圧縮機1が故障するという問題がある。本発明
は、かかる現況に鑑みなされたもので、蒸発器からの液
バックをなくして圧縮機の液圧縮による故障を防止する
ことができる空気調和機を提供することを目的とする。
In the conventional air conditioner described above, the evaporator 4 can be prevented from freezing when the load is low, but when the load is further lower, the evaporator 4 can be prevented.
Therefore, there is a problem that the refrigerant cannot be completely evaporated and the liquid refrigerant directly returns to the compressor 1, so-called liquid back occurs, and if the operation is continued in this state, the compressor 1 fails. The present invention has been made in view of the current situation, and an object thereof is to provide an air conditioner capable of preventing a liquid bag from an evaporator and preventing a failure due to liquid compression of a compressor.

【0006】[0006]

【課題を解決するための手段】本発明は、前記目的を達
成する手段として、圧縮機、凝縮器、外均式膨張弁、お
よび蒸発器を順次接続して冷凍サイクルを構成するとと
もに、前記圧縮機の吐出側と吸込側とを、開閉弁を有す
るバイパス回路で接続し、蒸発器での蒸発温度が低下し
た際に、前記開閉弁を開いて蒸発器への冷媒循環量を低
減させる空気調和機において、前記外均式膨張弁の均圧
管を、圧縮機と蒸発器との間に接続するとともに、この
接続部よりも蒸発器寄りに、外均式膨張弁の感温筒を設
け、かつ前記バイパス回路を、前記均圧管の接続部と感
温筒との間に接続するようにしたことを特徴とする。
As a means for achieving the above object, the present invention constitutes a refrigeration cycle by sequentially connecting a compressor, a condenser, an external equalization type expansion valve, and an evaporator, and An air conditioner that connects the discharge side and the suction side of the machine with a bypass circuit having an on-off valve and opens the on-off valve to reduce the amount of refrigerant circulation to the evaporator when the evaporation temperature in the evaporator decreases. In the machine, the pressure equalizing pipe of the external equalization expansion valve is connected between the compressor and the evaporator, and the temperature-sensing cylinder of the external equalization expansion valve is provided closer to the evaporator than this connecting portion, and The bypass circuit is connected between the connecting portion of the pressure equalizing tube and the temperature sensitive tube.

【0007】[0007]

【作用】本発明に係る空気調和機においては、バイパス
回路からの冷媒が、外均式膨張弁の均圧管接続部よりも
上流側に戻される。このため、冷媒がバイパスすると、
均圧管圧力が上昇し、見掛け上の過熱度が低下する。そ
してこれにより、外均式膨張弁の開度が絞られて蒸発器
への冷媒循環量がさらに低減し、蒸発器からの液バック
がなくなる。
In the air conditioner according to the present invention, the refrigerant from the bypass circuit is returned to the upstream side of the pressure equalizing pipe connecting portion of the external equalization type expansion valve. Therefore, when the refrigerant bypasses,
The pressure equalizing pipe pressure rises, and the apparent degree of superheat decreases. As a result, the opening degree of the external equalization type expansion valve is narrowed, the refrigerant circulation amount to the evaporator is further reduced, and liquid back from the evaporator is eliminated.

【0008】[0008]

【実施例】以下、本発明を図面を参照して説明する。図
1は、本発明の第1実施例に係る空気調和機を示すもの
で、図中、符号1は圧縮機であり、この圧縮機1には、
凝縮器2、外均式膨張弁3および蒸発器4が順次接続さ
れて冷凍サイクルを構成している。そして、圧縮機1の
吐出関温度tdは、吐出管温度センサ9により検出され
るとともに、この凝縮器2の凝縮温度tcは、凝縮温度
センサ10により検出され、さらに蒸発器4の蒸発温度
teは、蒸発温度センサ11により検出されるようにな
っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows an air conditioner according to a first embodiment of the present invention. In the figure, reference numeral 1 is a compressor, and the compressor 1 includes:
The condenser 2, the external equalization type expansion valve 3 and the evaporator 4 are sequentially connected to form a refrigeration cycle. The discharge temperature td of the compressor 1 is detected by the discharge pipe temperature sensor 9, the condensation temperature tc of the condenser 2 is detected by the condensation temperature sensor 10, and the evaporation temperature te of the evaporator 4 is The evaporation temperature sensor 11 detects the evaporation temperature.

【0009】前記外均式膨張弁3の均圧管5は、図1に
示すように、圧縮機1と蒸発器4との間に接続されてお
り、この接続部4との間には、外均式膨張弁3の感温筒
6が設置されている。また、前記圧縮機1の吐出側に
は、図1に示すように、電磁弁7を有するバイパス回路
8の一端が接続されており、このバイパス回路8の他端
は、前記均圧管5の接続部よりも上流側でしかも感温筒
6よりも下流側の部位に接続されている。そして、この
バイパス回路8の電磁弁7は、図2に示す制御フローに
従い、前記蒸発温度センサ11からの蒸発温度teに基
づき開閉制御されるようになっている。
The pressure equalizing pipe 5 of the external equalization type expansion valve 3 is connected between the compressor 1 and the evaporator 4 as shown in FIG. The temperature-sensitive cylinder 6 of the uniform expansion valve 3 is installed. Also, as shown in FIG. 1, one end of a bypass circuit 8 having an electromagnetic valve 7 is connected to the discharge side of the compressor 1, and the other end of the bypass circuit 8 is connected to the pressure equalizing pipe 5. It is connected to a site upstream of the section and downstream of the temperature-sensitive cylinder 6. The solenoid valve 7 of the bypass circuit 8 is controlled to open / close based on the evaporation temperature te from the evaporation temperature sensor 11 according to the control flow shown in FIG.

【0010】次に、本実施例の作用について説明する。
図2において、低負荷時の運転中(ステップS1)に、
蒸発器4が凍結し始めると、蒸発温度teが低下する。
そこで、ステップS2において、蒸発温度teが電磁弁
開温度TE1より低いか否かを判別する。そして、低いば
あには、ステップS3において、電磁弁7を開く。する
と、圧縮機1の吐出側から吸込側に、冷媒の一部がバイ
パスされ、蒸発器4への冷媒循環量が低下する。これに
より、蒸発器4の凍結が防止される。
Next, the operation of this embodiment will be described.
In FIG. 2, during operation at low load (step S1),
When the evaporator 4 starts to freeze, the evaporation temperature te decreases.
Therefore, in step S2, it is determined whether the evaporation temperature te is lower than the electromagnetic valve opening temperature T E1 . Then, in the low level, the solenoid valve 7 is opened in step S3. Then, a part of the refrigerant is bypassed from the discharge side of the compressor 1 to the suction side, and the refrigerant circulation amount to the evaporator 4 is reduced. This prevents the evaporator 4 from freezing.

【0011】次いで、ステップS4において、蒸発温度
teが電磁弁閉温度TE2よりも高いか否かを判別し、高
い場合には、ステップS5において、電磁弁7を閉じた
後、ステップS2に戻る。ところで、ステップS3にお
いて、電磁弁7が開いて、冷媒の一部がバイパスされる
と、バイパスされた冷媒は、外均式膨張弁3の均圧管5
の上流側に戻されることになる。ここで、膨張弁3は、
次式により過熱度SHを一定に保つように構成されてい
る。 過熱度SH=感温筒温度−均圧管圧力の飽和温度 したがって、電磁弁7が開いて均圧管が上昇すると、見
掛け上の過熱度SHが低下し、外均式膨張弁3は、さら
に開度が絞られることになる。このため、蒸発器4への
冷媒循環量がさらに低減し、大幅に低負荷となった場合
であっても、液バックを防止して、液圧縮にる圧縮機1
の故障を防止することができる。
Next, in step S4, it is judged whether or not the evaporation temperature te is higher than the electromagnetic valve closing temperature T E2 , and if it is higher, the electromagnetic valve 7 is closed in step S5 and the process returns to step S2. . By the way, in step S3, when the solenoid valve 7 is opened and a part of the refrigerant is bypassed, the bypassed refrigerant is supplied to the pressure equalizing pipe 5 of the outer equalization expansion valve 3.
Will be returned to the upstream side of. Here, the expansion valve 3 is
The following formula is used to keep the superheat degree SH constant. Superheat degree SH = Temperature-sensing cylinder temperature-Saturation temperature of pressure equalizing pipe pressure Therefore, when the solenoid valve 7 opens and the pressure equalizing pipe rises, the apparent superheat degree SH decreases, and the outer equalizing expansion valve 3 further opens. Will be narrowed down. For this reason, even if the refrigerant circulation amount to the evaporator 4 is further reduced and the load is drastically reduced, liquid back is prevented and the compressor 1 that performs liquid compression is used.
It is possible to prevent the breakdown.

【0012】図3は、本発明の第2実施例を示すもの
で、電磁弁7の開閉制御を、凝縮温度tcに基づき行な
うようにしたものである。すなわち、図3において、低
負荷時の運転中(ステップS11)に、蒸発器4が凍結
し始めると、凝縮温度tcが低下する。そこで、ステッ
プS12において、凝縮温度tcが電磁弁開温度Tc1
り低いか否かを判別する。そして、低い場合には、ステ
ップS13において、電磁弁7を開く。これにより、前
記第1実施例の場合と同様、蒸発器4への冷媒循環量が
低減し、蒸発器4の凍結が防止される。次いで、ステッ
プS14において、凝縮温度tcが電磁弁閉温度Tc2
り高いか否かを判別し、高い場合には、ステップS15
において、電磁弁7を閉じた後、ステップS12に戻
る。しかして、蒸発温度teに代えて凝縮温度tcを用
いても、前記第1実施例と同様の効果が期待できる。
FIG. 3 shows a second embodiment of the present invention, in which the opening / closing control of the solenoid valve 7 is performed based on the condensation temperature tc. That is, in FIG. 3, when the evaporator 4 starts to freeze during the operation under low load (step S11), the condensation temperature tc decreases. Therefore, in step S12, it is determined whether the condensing temperature tc is lower than the electromagnetic valve opening temperature T c1 . If it is lower, the solenoid valve 7 is opened in step S13. As a result, as in the case of the first embodiment, the refrigerant circulation amount to the evaporator 4 is reduced, and the evaporator 4 is prevented from freezing. Next, in step S14, it is determined whether or not the condensing temperature tc is higher than the electromagnetic valve closing temperature T c2 , and if it is higher, step S15.
In, after closing the solenoid valve 7, the process returns to step S12. Even if the condensation temperature tc is used instead of the evaporation temperature te, the same effect as that of the first embodiment can be expected.

【0013】図4は、本発明の第3実施例を示すもの
で、電磁弁7の開閉制御と、吐出管温度tdに基づき行
なうようにしたものである。すなわち、図4において、
低負荷時の運転中(ステップS21)に、蒸発器4が凍
結し始めると、吐出管温度tdが低下する。そこで、ス
テップS22において、吐出管温度tdが電磁弁tdが
電磁弁開温度TD1より低いか否かを判別する。そして、
低い場合には、ステップS23において、電磁弁7を開
く。これにより、前記第1実施例の場合と同様、蒸発器
4への冷媒循環量が低減し、蒸発器4の凍結が防止され
る。
FIG. 4 shows a third embodiment of the present invention, in which opening / closing control of the solenoid valve 7 and the discharge pipe temperature td are performed. That is, in FIG.
When the evaporator 4 starts to freeze during operation under low load (step S21), the discharge pipe temperature td decreases. Therefore, in step S22, it is determined whether the discharge pipe temperature td is lower than the solenoid valve open temperature T D1 of the solenoid valve td. And
If it is lower, the solenoid valve 7 is opened in step S23. As a result, as in the case of the first embodiment, the refrigerant circulation amount to the evaporator 4 is reduced, and the evaporator 4 is prevented from freezing.

【0014】次いで、ステップS24において、吐出管
温度tdが電磁弁閉温度TD2より高いか否かを判別し、
高い場合には、ステップS25において、電磁弁7を閉
じた後、ステップS22に戻る。しかして、蒸発温度t
eに代えて吐出管温度tdを用いても、前記第1実施例
と同様の効果が期待できる。
Next, at step S24, it is judged if the discharge pipe temperature td is higher than the electromagnetic valve closing temperature T D2 .
If it is higher, the solenoid valve 7 is closed in step S25, and the process returns to step S22. Then, the evaporation temperature t
Even if the discharge pipe temperature td is used instead of e, the same effect as that of the first embodiment can be expected.

【0015】図5は、本発明の第4実施例を示すもの
で、バイパス回路8の電磁弁7の出側位置に、キャピラ
リチューブ12を設けるようにしたものである。なお、
その他の点については、前記第1実施例と同一構成とな
っており、作用も同一である。
FIG. 5 shows a fourth embodiment of the present invention, in which a capillary tube 12 is provided at the exit side position of the solenoid valve 7 of the bypass circuit 8. In addition,
The other points are the same as those of the first embodiment, and the operation is the same.

【0016】しかして、キャピラリチューブ12を用い
ることにより、バイパス量を調整することができる。
Therefore, by using the capillary tube 12, the bypass amount can be adjusted.

【0017】図6は、本発明の第5実施例を示すもの
で、前記第4実施例の場合とは逆に、バイパス回路8の
電磁弁7入側位置に、キャピラリチューブ12を設ける
ようにしたものである。なお、その他の点については、
前記第1実施例と同一構成となっており、作用も同一で
ある。しかして、電磁弁7の入側位置にキャピラリチュ
ーブ12を設けても、前記第4実施例と同様の効果が期
待できる。
FIG. 6 shows a fifth embodiment of the present invention. Contrary to the case of the fourth embodiment, a capillary tube 12 is provided at the solenoid valve 7 inlet side position of the bypass circuit 8. It was done. Regarding other points,
It has the same structure as that of the first embodiment and the same operation. Therefore, even if the capillary tube 12 is provided at the inlet side position of the solenoid valve 7, the same effect as that of the fourth embodiment can be expected.

【0018】[0018]

【発明の効果】以上説明したように本発明は、バイパス
回路によりバイパスする冷媒は、外均式膨張弁の均圧管
よりも上流側に戻すようにしているので、大幅な低負荷
時においても、蒸発器からの液バックをなくし、液圧縮
による圧縮機の故障を防止することができる。
As described above, according to the present invention, the refrigerant bypassed by the bypass circuit is returned to the upstream side of the pressure equalizing pipe of the external equalization type expansion valve. By eliminating the liquid bag from the evaporator, it is possible to prevent breakdown of the compressor due to liquid compression.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る空気調和機を示す構
成図。
FIG. 1 is a configuration diagram showing an air conditioner according to a first embodiment of the present invention.

【図2】図1の電磁弁の制御手順を示すフローチャー
ト。
FIG. 2 is a flowchart showing a control procedure of the solenoid valve of FIG.

【図3】本発明の第2実施例に係る空気調和機を示す図
2相当図。
FIG. 3 is a view corresponding to FIG. 2 showing an air conditioner according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係る空気調和機を示す図
2相当図。
FIG. 4 is a view corresponding to FIG. 2 showing an air conditioner according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係る空気調和機を示す要
部構成図。
FIG. 5 is a main part configuration diagram showing an air conditioner according to a fourth embodiment of the present invention.

【図6】本発明の第5実施例に係る空気調和機を示す要
部構成図。
FIG. 6 is a main part configuration diagram showing an air conditioner according to a fifth embodiment of the present invention.

【図7】従来の空気調和機を示す構成図。FIG. 7 is a configuration diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 外均式膨張弁 4 蒸発器 5 均圧管 6 感温筒 7 電磁弁 8 バイパス回路 11 蒸発温度センサ 12 キャピラリチューブ 1 Compressor 2 Condenser 3 External equalization expansion valve 4 Evaporator 5 Pressure equalizing tube 6 Temperature sensing tube 7 Solenoid valve 8 Bypass circuit 11 Evaporation temperature sensor 12 Capillary tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、外均式膨張弁、および蒸
発器を順次接続して冷凍サイクルを構成するとともに、
前記圧縮機の吐出側と吸込側とを、開閉弁を有するバイ
パス回路で接続し、蒸発器での蒸発温度が低下した際
に、前記開閉弁を開いて蒸発器への冷媒循環量を低減さ
せる空気調和機において、前記外均式膨張弁の均圧管
を、圧縮機と蒸発器との間に接続するとともに、この接
続部よりも蒸発器寄りに、外均式膨張弁の感温筒を設
け、かつ前記バイパス回路を、前記均圧管の接続部と感
温筒との間に接続したことを特徴とする空気調和機。
1. A refrigeration cycle is constructed by sequentially connecting a compressor, a condenser, an external equalization type expansion valve, and an evaporator, and
The discharge side and the suction side of the compressor are connected by a bypass circuit having an opening / closing valve, and when the evaporation temperature in the evaporator is lowered, the opening / closing valve is opened to reduce the amount of refrigerant circulation to the evaporator. In the air conditioner, the pressure equalizing pipe of the external equalization expansion valve is connected between the compressor and the evaporator, and the temperature-sensing cylinder of the external equalization expansion valve is provided closer to the evaporator than this connecting portion. An air conditioner characterized in that the bypass circuit is connected between the connection part of the pressure equalizing pipe and the temperature sensing cylinder.
JP22880692A 1992-08-27 1992-08-27 Air conditioner Expired - Fee Related JP3260844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22880692A JP3260844B2 (en) 1992-08-27 1992-08-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22880692A JP3260844B2 (en) 1992-08-27 1992-08-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0674572A true JPH0674572A (en) 1994-03-15
JP3260844B2 JP3260844B2 (en) 2002-02-25

Family

ID=16882150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22880692A Expired - Fee Related JP3260844B2 (en) 1992-08-27 1992-08-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3260844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111705A (en) * 2022-08-25 2022-09-27 蘑菇物联技术(深圳)有限公司 Method, equipment and medium for detecting water flow bypass fault of water chilling unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111705A (en) * 2022-08-25 2022-09-27 蘑菇物联技术(深圳)有限公司 Method, equipment and medium for detecting water flow bypass fault of water chilling unit

Also Published As

Publication number Publication date
JP3260844B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JPH0232546B2 (en)
EP0676601B1 (en) Air conditioner with an operation control device
US5088296A (en) Air conditioner system with refrigerant condition detection for refrigerant recovering operation
JP2002081769A (en) Air conditioner
JPH0330795B2 (en)
JPH04340046A (en) Operation control device of air conditioner
JP2500517B2 (en) Refrigeration system operation controller
JP3175706B2 (en) Binary refrigeration equipment
JPH0674572A (en) Air-conditioner
JPH1038387A (en) Operation controller of air conditioner
JPH04366369A (en) Air conditioning apparatus
JPH0833245B2 (en) Refrigeration system operation controller
JP3303689B2 (en) Binary refrigeration equipment
JPH0799286B2 (en) Wet control device for air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JPH04217754A (en) Air conditioner
JPH0212339B2 (en)
JPH04263753A (en) Air conditioner
JPH05248716A (en) Operation control device for air conditioner
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPH02106662A (en) Freezer device
JPH06272971A (en) Air conditioner
JP2507400B2 (en) Refrigerant heating type air conditioner
WO2001038801A1 (en) Refrigerating device
JPH0345857A (en) Overheating preventing device for compressor for ice making machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

LAPS Cancellation because of no payment of annual fees