JPH0674257A - Manufacture of rotor for electromagnetic clutch - Google Patents

Manufacture of rotor for electromagnetic clutch

Info

Publication number
JPH0674257A
JPH0674257A JP5058734A JP5873493A JPH0674257A JP H0674257 A JPH0674257 A JP H0674257A JP 5058734 A JP5058734 A JP 5058734A JP 5873493 A JP5873493 A JP 5873493A JP H0674257 A JPH0674257 A JP H0674257A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
magnetic material
wall
bottom portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5058734A
Other languages
Japanese (ja)
Inventor
Yasuo Tabuchi
泰生 田渕
Junichi Oguchi
純一 大口
Akira Kishibuchi
昭 岸淵
Masashi Tobayama
昌史 鳥羽山
Yasuhiro Suzuki
康裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5058734A priority Critical patent/JPH0674257A/en
Publication of JPH0674257A publication Critical patent/JPH0674257A/en
Priority to US08/694,804 priority patent/US5791039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a rotor manufacturing method facilitating the compactness of a rotor with little magnetic leakage using a small number of part items without requiring centering so as to suppress the production of off-specification products. CONSTITUTION:A soft iron plate is punched into circular shape by press working. The center of disc material is then punched by press working, and the middle part is. recessed by cold forging. The middle part of the recessed part is then protruded onto the open side by cold forging to form a protruding part 20. The inner peripheral side and outer peripheral side are bent into cylinder shape by cold forging to form an inner wall 8 and an outer wall 9. A copper ring is placed in a bottom part 11, and copper is fused by heating so as to let the copper flow into the grooves 21a, 21b of the bottom part 11. Upon being cooled down, non-magnetic material 12 formed of copper is diffusion-jointed into the grooves 21a, 21b. Unnecessary parts are cut off by cutting, and a friction face 10a is formed by cutting, With this cutting, the non-magnetic material 12 is exposed onto the friction face 10a side so as to form magnetic cutoff parts 12a, 12b at a rotor 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁力によってアーマチ
ュアを吸着する電磁クラッチ用ロータの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electromagnetic clutch rotor which attracts an armature by magnetic force.

【0002】[0002]

【従来の技術】従来の電磁クラッチを図11に示す。電
磁クラッチ100は、リング状の電磁コイル101と、
この電磁コイル101を内包する断面コ字形のロータ1
02と、電磁コイル101の発生する磁力によってロー
タ102に吸着されるアーマチュア103とを備える。
そして、ロータ102とアーマチュア103との吸着力
を高めるために、アーマチュア103は中間部に磁気遮
断溝104が形成されるとともに、ロータ102の摩擦
壁105には、アーマチュア103の磁気遮断溝104
の内周側および外周側に対応する位置に磁気遮断部10
6が形成され、これによってロータ102とアーマチュ
ア103とに形成される磁路は破線α1 に示すように、
略W字形に形成される。上記の図11に示すブリッジタ
イプのロータ102は、磁性体のリング状板材を冷間鍛
造等によって断面コ字形の環状部材に形成し、摩擦壁1
05の内外周にプレスの打抜き加工によって磁気遮断部
106を形成している。一方、USP3,712,43
9号明細書に開示される非ブリッジタイプのロータ10
2は、図12に示すように、冷間鍛造等によって1つの
リング状板材から磁性体の外壁108および底部109
を曲折加工するとともに、この底部109を加工する
際、前記底部109の中間部を全周に亘って内側に突出
させてリング状突出部110を形成する。続いて、別体
に形成した磁性体の内壁107を底部109の内周に溶
接やネジ等で固着する。そして、底部109内に加熱し
て溶けた非磁性材111を配し、非磁性材111を底部
109内に接合する。その後、底部109の底面を切削
し、非磁性材111を摩擦面112に露出させる。
2. Description of the Related Art A conventional electromagnetic clutch is shown in FIG. The electromagnetic clutch 100 includes a ring-shaped electromagnetic coil 101,
A rotor 1 having a U-shaped cross section including the electromagnetic coil 101
02 and the armature 103 attracted to the rotor 102 by the magnetic force generated by the electromagnetic coil 101.
In order to increase the attraction force between the rotor 102 and the armature 103, the armature 103 has a magnetic cutoff groove 104 formed in the middle portion thereof, and the friction wall 105 of the rotor 102 has a magnetic cutoff groove 104 of the armature 103.
At the positions corresponding to the inner and outer peripheral sides of the
6 is formed, and the magnetic path formed by the rotor 102 and the armature 103 by this is as shown by the broken line α1.
It is formed in a substantially W shape. In the bridge type rotor 102 shown in FIG. 11 described above, a ring-shaped plate material made of a magnetic material is formed into an annular member having a U-shaped cross section by cold forging or the like.
The magnetic shield 106 is formed on the inner and outer circumferences of 05 by punching with a press. On the other hand, USP 3,712,43
Non-bridge type rotor 10 disclosed in No. 9 specification
As shown in FIG. 12, the reference numeral 2 designates an outer wall 108 and a bottom portion 109 of a magnetic body formed from one ring-shaped plate material by cold forging or the like.
When the bottom part 109 is bent and the bottom part 109 is processed, the middle part of the bottom part 109 is projected inward over the entire circumference to form a ring-shaped projection part 110. Subsequently, the inner wall 107 of the magnetic body formed separately is fixed to the inner circumference of the bottom portion 109 by welding, screws or the like. Then, the non-magnetic material 111 which is heated and melted is arranged in the bottom portion 109, and the non-magnetic material 111 is bonded to the inside of the bottom portion 109. After that, the bottom surface of the bottom portion 109 is cut to expose the nonmagnetic material 111 to the friction surface 112.

【0003】[0003]

【発明が解決しようとする課題】ブリッジタイプのロー
タ102は、摩擦壁105の内周部105aと中間部1
05bと、外周部105cとをそれぞれ繋ぐ連結部が存
在するため、この連結部を通る磁気漏れが発生する問題
点を備えていた。また、ブリッジタイプのロータ102
は、磁気遮断部106をプレスの打抜き加工によって形
成する制約から、ロータ102の小型化が困難で、結果
的に小型の電磁クラッチの作成が困難となっていた。U
SP3,712,439号公報に開示されるロータ10
2は、曲折加工された外壁108および底部109の部
材と、内壁107とを接合する際に、位置決めが必要と
なるため、組付け加工性が悪く、かつ部品点数も多いた
め、製造コストが高くなってしまう。また、曲折加工さ
れた外壁108および底部109の部材と内壁107と
の接合箇所に隙間が生じる可能性があり、隙間が生じる
と、溶けた非磁性材111が底部109の外部へ漏れ、
不良品が生じる可能性があった。
The bridge type rotor 102 includes the inner peripheral portion 105a of the friction wall 105 and the intermediate portion 1a.
Since there is a connecting portion that connects 05b and the outer peripheral portion 105c, there is a problem that magnetic leakage occurs through this connecting portion. In addition, the bridge type rotor 102
However, it is difficult to downsize the rotor 102 due to the restriction of forming the magnetic interruption portion 106 by punching with a press, and as a result, it is difficult to produce a small electromagnetic clutch. U
Rotor 10 disclosed in SP 3,712,439
No. 2 has a high manufacturing cost due to poor assembly workability and a large number of parts because positioning is required when joining the bent outer wall 108 and bottom 109 members to the inner wall 107. turn into. Further, there is a possibility that a gap will be formed between the bent outer wall 108 and the member of the bottom portion 109 and the inner wall 107. When the gap is formed, the melted non-magnetic material 111 leaks to the outside of the bottom portion 109,
There was a possibility of defective products.

【0004】本発明は、上記の事情に鑑みてなされたも
ので、その目的は、磁気漏れが抑えられ、ロータの小型
化が容易で、部品点数が少なく、芯出し作業が不要で、
不良が発生する可能性が低い、電磁クラッチ用ロータの
製造方法の提供にある。
The present invention has been made in view of the above circumstances, and an object thereof is to suppress magnetic leakage, easily reduce the size of a rotor, reduce the number of parts, and eliminate the need for centering work.
An object of the present invention is to provide a method for manufacturing a rotor for an electromagnetic clutch, which is less likely to cause defects.

【0005】[0005]

【課題を解決するための手段】本発明の電磁クラッチ用
ロータの製造方法は、磁性体のリング状板材を、塑性加
工によって内壁、外壁、およびこの内壁、外壁を繋ぐ底
部からなる環状部材に形成するとともに、前記底部の中
間部を全周に亘って前記環状部材の開放側に突出させて
リング状突出部を形成する曲折工程と、前記底部内に非
磁性材を接合する接合工程と、前記底部の底面を切削し
て摩擦面を形成するとともに、前記非磁性材を前記底面
に露出させる切削工程とからなる技術的手段を採用し
た。
In the method for manufacturing an electromagnetic clutch rotor according to the present invention, a ring-shaped plate material of magnetic material is formed into an annular member having an inner wall, an outer wall, and a bottom portion connecting the inner wall and the outer wall by plastic working. In addition, a bending step of forming a ring-shaped protrusion by protruding the intermediate portion of the bottom portion over the entire circumference toward the open side of the annular member, and a joining step of joining a non-magnetic material in the bottom portion, A technical means including a cutting step of cutting the bottom surface of the bottom to form a friction surface and exposing the non-magnetic material to the bottom surface was adopted.

【0006】[0006]

【発明の作用】まず、曲折工程において、磁性体のリン
グ状板材を、冷間鋳造、プレス加工等の塑性加工によっ
て内壁、外壁、この外壁、内壁を繋ぐ底部からなる断面
略コ字形の環状部材を形成する。この環状部材を加工す
る際、あるいはこの加工を行った後、底部の中間部に環
状部材の開放側へ突出する突出部を形成する。次の接合
工程では、環状部材の底部に非磁性材を接合する。続く
切削工程では底部の底面を切削してロータの摩擦面を形
成する。この摩擦面を形成する切削加工時、あるいはこ
の摩擦面を形成する切削加工時の前か後に、切削によっ
て底部内の非磁性材を底面側に露出させる。以上によっ
て、底部の内外周に非磁性材による磁気遮断部が形成さ
れたロータが形成される。
In the bending step, a ring-shaped plate member made of a magnetic material is subjected to plastic working such as cold casting and press working to form an inner wall, an outer wall, and an annular member having a substantially U-shaped cross section composed of a bottom portion connecting the outer wall and the inner wall. To form. When processing this annular member or after performing this processing, a protrusion that protrudes toward the open side of the annular member is formed in the middle of the bottom. In the next joining step, a non-magnetic material is joined to the bottom of the annular member. In the subsequent cutting step, the bottom surface of the bottom is cut to form the friction surface of the rotor. The nonmagnetic material in the bottom portion is exposed to the bottom surface side by cutting during the cutting process for forming the friction surface or before or after the cutting process for forming the friction surface. As described above, the rotor having the magnetic shield portion formed of the non-magnetic material on the inner and outer circumferences of the bottom portion is formed.

【0007】[0007]

【発明の効果】本発明の電磁クラッチ用ロータの製造方
法は、上記の作用で示したように、内壁、外壁、底部
が、1つのリング状板材を加工して設けられるため、芯
出しの必要なく、また部品点数が少なくて済む。このた
め、組付性に優れ、製造コストを抑えることができる。
また、非磁性材は、1つのリング状板材を曲折して設け
られた底部に配されるため、例えば溶けた非磁性材を底
部に接合する場合、溶けた非磁性材が底部の外部へ漏れ
ることがない。このため、溶けた非磁性材が底部の外部
へ漏れることによる不良品の発生を防ぐことができる。
磁気遮断部は、打抜き加工を用いることなく塑性加工で
設けられるため、磁気遮断部を打抜きによって加工した
従来のロータに比較して、ロータを小型化することがで
きる。さらに、内壁と底部、底部と外壁をそれぞれ結ぶ
磁性材が無いため、磁気漏れの少ない高性能のロータが
形成される。
As described above, in the method for manufacturing the electromagnetic clutch rotor of the present invention, since the inner wall, the outer wall and the bottom are formed by processing one ring-shaped plate material, centering is required. Moreover, the number of parts is small. Therefore, the assembling property is excellent, and the manufacturing cost can be suppressed.
Further, since the non-magnetic material is arranged at the bottom portion formed by bending one ring-shaped plate material, for example, when the melted non-magnetic material is joined to the bottom portion, the melted non-magnetic material leaks to the outside of the bottom portion. Never. Therefore, it is possible to prevent defective products from being generated due to the melted non-magnetic material leaking to the outside of the bottom portion.
Since the magnetic shutoff portion is provided by plastic working without using punching, the rotor can be made smaller than a conventional rotor in which the magnetic shutoff portion is punched. Further, since there is no magnetic material connecting the inner wall and the bottom portion and the bottom portion and the outer wall, a high-performance rotor with less magnetic leakage is formed.

【0008】[0008]

【実施例】次に、本発明の電磁クラッチ用ロータの製造
方法を、図に示す一実施例に基づき説明する。 〔実施例の構成〕図1ないし図5は本発明の実施例を示
すもので、図3は本発明を適用して作成したロータを使
用した電磁クラッチの断面図を示す。本実施例に示す電
磁クラッチ1は、エンジン(図示しない)から冷媒圧縮
機(図示しない)へ回転動力の遮断の断続を行うもので
ある。この電磁クラッチ1は、大別して、エンジンによ
って回転駆動されるプーリ2を備えるロータ3と、この
ロータ3と摩擦係合するアーマチュア4を備えた回転被
動体5と、通電されると磁力を発生してアーマチュア4
をロータ3に摩擦係合させる電磁コイル6とからなる。
電磁コイル6は、樹脂製の巻枠6aを介して磁性体製の
ステータ6bに固定されており、さらにステータ6bは
円板状のステー6cを介して圧縮機のハウジングHに固
定されている。
Next, a method for manufacturing an electromagnetic clutch rotor of the present invention will be described based on an embodiment shown in the drawings. [Structure of Embodiment] FIGS. 1 to 5 show an embodiment of the present invention, and FIG. 3 shows a sectional view of an electromagnetic clutch using a rotor produced by applying the present invention. The electromagnetic clutch 1 according to the present embodiment is for interrupting the interruption of the rotational power from the engine (not shown) to the refrigerant compressor (not shown). This electromagnetic clutch 1 is roughly classified into a rotor 3 provided with a pulley 2 which is rotationally driven by an engine, a rotary driven body 5 provided with an armature 4 frictionally engaged with the rotor 3, and a magnetic force generated when energized. Armature 4
And an electromagnetic coil 6 for frictionally engaging the rotor 3 with the rotor 3.
The electromagnetic coil 6 is fixed to a magnetic stator 6b via a resin winding frame 6a, and the stator 6b is fixed to a compressor housing H via a disk-shaped stay 6c.

【0009】プーリ2は、ロータ3の周囲に溶接によっ
て接合されたもので、多段Vベルト(図示しない)が掛
け渡される。ロータ3は、内周のベアリング7を介して
回転自在に支持されるもので、ベアリング7の内周は、
冷媒圧縮機のハウジングHに支持される。このロータ3
は、軟鉄などの磁性体金属材料を加工して設けたもの
で、電磁コイル6の内周側に位置する内壁8、電磁コイ
ル6の外周側に位置する外壁9、およびアーマチュア4
に摩擦係合する摩擦壁10からなる。摩擦壁10は、磁
性体の底部11と、この底部11の内周と外周に設けら
れた磁気遮断部12a、12bとを有する。底部11
は、電磁コイル6が配される側が、断面円弧状に形成さ
れている。また、磁気遮断部12a、12bは、内壁8
と底部11、底部11と外壁9を接合する銅などの非磁
性体金属材料よりなり、内壁8と底部11、底部11と
外壁9の間で磁路が形成されるのを阻止するものであ
る。また、摩擦壁10の摩擦面10aの外周側には、ア
ーマチュア4との係合力を高める非磁性体の摩擦材13
が嵌め込まれている。なお、底部11の電磁コイル6が
配される側が、断面円弧状に形成されているため、図4
に示すように、内周側の磁気遮断部12aの摩擦面10
a側の面積(a1 )は、電磁コイル6側の面積(b1 )
に比較して小さく設定され、外周側の磁気遮断部12b
の摩擦面10a側の面積(a2 )は、電磁コイル6側の
面積(b2 )に比較して小さく設定されている。つま
り、a1 <b1 、a2 <b2 の関係に設定されている。
The pulley 2 is joined to the periphery of the rotor 3 by welding, and a multi-stage V-belt (not shown) is wound around the pulley 2. The rotor 3 is rotatably supported via a bearing 7 on the inner circumference, and the inner circumference of the bearing 7 is
It is supported by the housing H of the refrigerant compressor. This rotor 3
Is formed by processing a magnetic metal material such as soft iron. The inner wall 8 is located on the inner peripheral side of the electromagnetic coil 6, the outer wall 9 is located on the outer peripheral side of the electromagnetic coil 6, and the armature 4 is provided.
A friction wall 10 that frictionally engages. The friction wall 10 has a bottom 11 of a magnetic material and magnetic shields 12a and 12b provided on the inner and outer circumferences of the bottom 11. Bottom 11
Has a circular arc-shaped cross section on the side on which the electromagnetic coil 6 is arranged. In addition, the magnetic shields 12a and 12b have the inner wall 8
And a bottom portion 11, and a non-magnetic metal material such as copper that joins the bottom portion 11 and the outer wall 9 to each other, and prevents a magnetic path from being formed between the inner wall 8 and the bottom portion 11 and between the bottom portion 11 and the outer wall 9. . Further, on the outer peripheral side of the friction surface 10 a of the friction wall 10, a non-magnetic friction material 13 that enhances the engaging force with the armature 4 is provided.
Is fitted. Since the side of the bottom portion 11 on which the electromagnetic coil 6 is arranged is formed in an arcuate cross section,
As shown in FIG.
The area (a1) on the a side is the area (b1) on the electromagnetic coil 6 side.
Is smaller than that of the magnetic shield part 12b on the outer peripheral side.
The area (a2) on the friction surface 10a side is set smaller than the area (b2) on the electromagnetic coil 6 side. That is, the relations of a1 <b1 and a2 <b2 are set.

【0010】アーマチュア4は、ロータ3の摩擦面10
aに間隙を隔てて対向配置されるもので、ロータ3に係
合する摩擦面4aを備える。このアーマチュア4は、鉄
などの磁性体よりなるリング状を呈し、中間部にスリッ
トによる磁気遮断溝14が形成されている。なお、この
磁気遮断溝14は、対向するロータ3の底部11のほぼ
中央に位置する。そして、アーマチュア4の磁気遮断溝
14を起点とするロータ3の底部11の断面積(Sn)
は、図4(a)、(b)に示すように、アーマチュア4
の磁気遮断溝14を起点とする摩擦面10aにおける底
部11の内周の面積(c1 )および磁気遮断溝14を起
点とする底部11の外周の面積(c2 )より大きく設け
られている。つまり、Sn>c1 、c2 の関係に設定さ
れている。これにより、底部11における磁気抵抗を小
さくできる。
The armature 4 has a friction surface 10 of the rotor 3.
The frictional surface 4a is arranged to face a with a gap and engages with the rotor 3. The armature 4 has a ring shape made of a magnetic material such as iron, and has a magnetic blocking groove 14 formed by a slit in an intermediate portion. The magnetic blocking groove 14 is located substantially at the center of the bottom portion 11 of the rotor 3 which faces the magnetic blocking groove 14. Then, the cross-sectional area (Sn) of the bottom portion 11 of the rotor 3 starting from the magnetic blocking groove 14 of the armature 4
Is the armature 4 as shown in FIGS.
Is larger than the area (c1) of the inner circumference of the bottom 11 of the friction surface 10a starting from the magnetic blocking groove 14 and the area (c2) of the outer circumference of the bottom 11 starting from the magnetic blocking groove 14. That is, the relationship of Sn> c1 and c2 is set. Thereby, the magnetic resistance in the bottom portion 11 can be reduced.

【0011】回転被動体5は、アーマチュア4の回転を
受けて一体に回転し、冷媒圧縮機の入力軸を駆動するも
ので、アーマチュア4にリベット15で固定されたアウ
ターリング16、アーマチュア4の回転軸方向の変位を
許容するクッションゴム17、入力軸に嵌め合わされる
インナーハブ18からなり、アウターリング16とイン
ナーハブ18はクッションゴム17を介して一体に結合
されている。
The rotary driven body 5 rotates integrally with the rotation of the armature 4 and drives the input shaft of the refrigerant compressor. The outer ring 16 fixed to the armature 4 with rivets 15 and the rotation of the armature 4 are rotated. It comprises a cushion rubber 17 that allows axial displacement and an inner hub 18 fitted to the input shaft. The outer ring 16 and the inner hub 18 are integrally connected via the cushion rubber 17.

【0012】次に、ロータ3の製造方法を図1および図
2の(a)〜(f)を用いて説明する。 (a)ロータ3の摩擦壁10とほぼ同じ板厚の磁性体金
属板(例えば、SPCC、SPHC等の低炭素鋼)を、
プレス打抜加工によって打抜き、円形の円板材19aを
形成する(打抜加工)。 (b)円板材19aの中心部を、プレス打抜加工によっ
て打抜き、リング状の板材を形成する(打抜加工)。次
に、塑性加工である冷間鍛造によって中間部を凹ませ、
略環状部材19bを形成する(曲折加工)。 (c)略環状部材19bの凹部の中間部に、全周に亘っ
て略環状部材の開放側に突出したリング状突出部20を
冷間鍛造によって形成する(曲折加工)。 (d)略環状部材19bの内周側および外周側を、冷間
鍛造によってそれぞれ筒状に曲げて内壁8および外壁9
を形成する(曲折加工)。 以上によって、内壁8、外壁9、および内壁8と外壁9
を繋ぎ、突出部20を備えた底部11からなる環状部材
19が形成される。なお、底部11の内側には突出部2
0の内外周に2本の溝21a、21bが形成され、この
2本の溝21a、21bが磁気遮断部12a、12bを
形成するためのものである。そして、この2本の溝21
a、21bの断面形状は、突出部20の端部が断面円弧
に設けられることにより、環状部材19の開放側へ向け
て広がった形状をしている。ここで、内周側の溝21a
の深さは、外周側の溝21bより深く設けられている。 (e)環状部材19の底部11の内に、環状部材19よ
りも融点の低い非磁性材(例えば銅)の線材をリング状
に形成した非磁性素材22を置き、この非磁性素材22
を環状部材19ごと加熱する。そして、環状部材19全
体を加熱することによって非磁性素材22を溶かし、底
部11の2本の溝21a、21b内に非磁性材12を流
し込む。その後、環状部材19を冷却(放熱)すること
によって溶けていた非磁性素材22が冷えて固化し、環
状部材19(例えば鉄)と非磁性材12(例えば銅)が
拡散接合して、環状部材19と非磁性材12が強固に接
合する(接合工程)。 なお、ここで非磁性素材22の一例として、銅に錫を5
%ほど含有させた青銅を用いた場合、非磁性素材22が
配された環状部材19を1080℃ほど加熱する必要が
ある。また、環状部材19と非磁性材12とを接合する
ための加熱および冷却時は、環状部材19および非磁性
材12の酸化を防止するために、真空中あるいは不活性
ガス(例えば窒素ガス)雰囲気中で行う。この実施例で
は、非磁性素材22に線材をリング状に形成して用いた
例を示したが、粒状や粉体状の材料を用いても良い。 (f)環状部材19の内周、外周の不要な部分を切削加
工によって削除するとともに、底部11の底面も切削加
工によって削除し、摩擦面10aを形成する。この摩擦
面10aを形成する際、深さの大きい内周側の溝21a
の底面が切断され、内周側の磁気遮断部12a(非磁性
材)が摩擦面10a側に露出する。また、摩擦材13が
嵌められる溝23を形成すると、これによって外周側の
溝21bの底面が切断され、外周側の磁気遮断部12b
(非磁性材)も摩擦面10a側に露出する(切削工
程)。 その後、摩擦面10aに設けられた溝23内に摩擦材1
3を接合して、図4に示すロータ3が完成する。
Next, a method of manufacturing the rotor 3 will be described with reference to FIGS. 1 and 2A to 2F. (A) A magnetic metal plate (for example, low carbon steel such as SPCC or SPHC) having a plate thickness substantially the same as that of the friction wall 10 of the rotor 3,
A circular disk material 19a is formed by punching by press punching (punching). (B) The center portion of the disc material 19a is punched by press punching to form a ring-shaped plate material (punching). Next, recess the middle part by cold forging, which is plastic working,
The substantially annular member 19b is formed (bending process). (C) A ring-shaped projecting portion 20 that projects to the open side of the substantially annular member is formed by cold forging over the entire circumference in the middle portion of the recess of the substantially annular member 19b (bending process). (D) The inner peripheral side and the outer peripheral side of the substantially annular member 19b are each bent into a cylindrical shape by cold forging to form the inner wall 8 and the outer wall 9 respectively.
To form (bend processing). By the above, the inner wall 8, the outer wall 9, and the inner wall 8 and the outer wall 9
To form a ring-shaped member 19 including a bottom portion 11 having a protrusion 20. In addition, the protrusion 2 is provided inside the bottom 11.
Two grooves 21a and 21b are formed on the inner and outer circumferences of 0, and these two grooves 21a and 21b are for forming the magnetic shields 12a and 12b. And these two grooves 21
The cross-sectional shape of a and 21b is a shape that widens toward the open side of the annular member 19 by providing the end of the protrusion 20 with a circular arc in cross section. Here, the groove 21a on the inner peripheral side
Is deeper than the groove 21b on the outer peripheral side. (E) In the bottom portion 11 of the annular member 19, a non-magnetic material 22 in which a wire material of a non-magnetic material (for example, copper) having a lower melting point than the annular member 19 is formed in a ring shape is placed.
Is heated together with the annular member 19. Then, the non-magnetic material 22 is melted by heating the entire annular member 19, and the non-magnetic material 12 is poured into the two grooves 21a and 21b of the bottom portion 11. Then, the non-magnetic material 22 that has been melted by cooling (radiating) the annular member 19 is cooled and solidified, and the annular member 19 (for example, iron) and the non-magnetic material 12 (for example, copper) are diffusion-bonded to each other to form the annular member. 19 and the nonmagnetic material 12 are firmly joined (joining step). Here, as an example of the non-magnetic material 22, 5 tin is added to copper.
When bronze containing about 10% is used, it is necessary to heat the annular member 19 provided with the non-magnetic material 22 by about 1080 ° C. Further, at the time of heating and cooling for joining the annular member 19 and the non-magnetic material 12, in order to prevent the annular member 19 and the non-magnetic material 12 from being oxidized, a vacuum or an inert gas (for example, nitrogen gas) atmosphere is used. Do in In this embodiment, an example in which the non-magnetic material 22 is formed by using a wire rod formed in a ring shape, but a granular or powdery material may be used. (F) Unnecessary portions on the inner and outer circumferences of the annular member 19 are removed by cutting, and the bottom surface of the bottom 11 is also removed by cutting to form the friction surface 10a. When forming the friction surface 10a, the groove 21a on the inner peripheral side having a large depth is formed.
Is cut off, and the magnetic shield 12a (nonmagnetic material) on the inner peripheral side is exposed on the friction surface 10a side. Further, when the groove 23 into which the friction material 13 is fitted is formed, the bottom surface of the groove 21b on the outer peripheral side is cut by this, and the magnetic shield portion 12b on the outer peripheral side is cut.
The (non-magnetic material) is also exposed on the friction surface 10a side (cutting step). Then, the friction material 1 is placed in the groove 23 provided in the friction surface 10a.
3 are joined together to complete the rotor 3 shown in FIG.

【0013】〔実施例の作動〕次に、上記電磁クラッチ
1の作動を簡単に説明する。電磁コイル6が通電される
と、電磁コイル6が磁力を発生してアーマチュア4をロ
ータ3に吸引させる。すると、図3の一点鎖線αに示す
磁路が形成され、アーマチュア4はロータ3の摩擦面1
0aに強固に吸着され、アーマチュア4がロータ3と一
体に回転する。この結果、Vベルトを介してプーリ2に
伝達されたエンジンの回転動力が、ロータ3、アーマチ
ュア4、回転被動体5を介して冷媒圧縮機の入力軸に伝
えられる。
[Operation of Embodiment] Next, the operation of the electromagnetic clutch 1 will be briefly described. When the electromagnetic coil 6 is energized, the electromagnetic coil 6 generates a magnetic force to attract the armature 4 to the rotor 3. Then, the magnetic path shown by the one-dot chain line α in FIG. 3 is formed, and the armature 4 is attached to the friction surface 1 of the rotor 3.
0a is strongly attracted, and the armature 4 rotates integrally with the rotor 3. As a result, the rotational power of the engine transmitted to the pulley 2 via the V-belt is transmitted to the input shaft of the refrigerant compressor via the rotor 3, the armature 4, and the rotary driven body 5.

【0014】〔実施例の効果〕本実施例に開示した電磁
クラッチ1のロータ3の製造方法は、内壁8、外壁9、
底部11が、1つのリング状板材を曲折加工して設けら
れる。このため、芯出しの必要なく、また従来必要であ
ったロータ3の内側の仕上げ切削も不要となり、さらに
部品点数が少なくて済む。この結果、ロータ3の組付性
が優れ、かつ製造コストを抑えることができる。底部1
1で溶かされた非磁性材12は、1つのリング状板材を
曲折加工した底部11内に配されるため、溶けた非磁性
材12が底部11の外部へ漏れることがない。このた
め、溶けた非磁性材12が底部11の外部へ漏れること
による不良品の発生を防ぐことができる。磁気遮断部1
2a、12bは、打抜き加工を用いることなく曲折加工
と非磁性材12で形成されるため、磁気遮断部を打抜き
によって加工した従来のロータ3に比較して、ロータ3
を小型化することができる。つまり、磁気遮断部をプレ
ス打抜き加工で形成する場合、磁気遮断部の間隔は底部
11板厚の0.6倍が最小限界であったが、本実施例に
よって0.3倍程度まで小さくすることが可能となり、
ロータ3を小型化することができる。内壁8と底部1
1、底部11と外壁9をそれぞれ結ぶ磁性体が無い。こ
のため、磁気漏れの少ない高性能のロータ3が形成され
る。底部11は、底部11の電磁コイル6側が断面円弧
形状に設けられるため、底部11の端が電磁コイル6の
ステータ6bの端と離れ(図3の矢印β参照)、ステー
タ6bから底部11に直接磁気が漏れることによる伝達
トルクの低下を抑えることができる。底部11の電磁コ
イル6側が断面円弧形状に設けられるため、内壁8と底
部11、底部11と外壁9の平均距離が離れ(図3の矢
印γ参照)、内壁8と底部11、底部11と外壁9にお
ける磁気漏れによる伝達トルクの低下を抑えることがで
きる。底部11の電磁コイル6側が断面円弧形状に設け
られるため、磁気遮断部12a,12bを形成するため
の溝の型の肉厚を厚くできる。このため、型の発生応力
が低減でき、型寿命を延ばし結果的にロータ3のコスト
を抑えることができる。底部11の電磁コイル6側が断
面円弧形状に設けられるため、非磁性材12と底部11
との接合面積が大きくなり、接合強度が高い。
[Effects of the Embodiment] In the method for manufacturing the rotor 3 of the electromagnetic clutch 1 disclosed in this embodiment, the inner wall 8, the outer wall 9,
The bottom portion 11 is provided by bending one ring-shaped plate material. Therefore, there is no need for centering, and no need for finish cutting inside the rotor 3, which is conventionally required, and the number of parts can be further reduced. As a result, the rotor 3 can be easily assembled and the manufacturing cost can be suppressed. Bottom 1
Since the non-magnetic material 12 melted in 1 is arranged in the bottom portion 11 formed by bending one ring-shaped plate material, the melted non-magnetic material 12 does not leak to the outside of the bottom portion 11. Therefore, it is possible to prevent defective products from being generated due to the melted non-magnetic material 12 leaking to the outside of the bottom portion 11. Magnetic block 1
Since 2a and 12b are formed by bending and non-magnetic material 12 without using punching, compared to the conventional rotor 3 in which the magnetic blocking portion is punched, the rotor 3
Can be miniaturized. That is, when the magnetic shields are formed by press punching, the minimum gap between the magnetic shields is 0.6 times the plate thickness of the bottom portion 11, but it should be reduced to about 0.3 times in this embodiment. Is possible,
The rotor 3 can be downsized. Inner wall 8 and bottom 1
1. There is no magnetic body connecting the bottom portion 11 and the outer wall 9 respectively. Therefore, the high-performance rotor 3 with less magnetic leakage is formed. Since the electromagnetic coil 6 side of the bottom portion 11 is provided with an arcuate cross section, the bottom portion 11 is separated from the end of the stator 6b of the electromagnetic coil 6 (see arrow β in FIG. 3), and the bottom portion 11 is directly connected to the bottom portion 11. It is possible to suppress a decrease in transmission torque due to leakage of magnetism. Since the electromagnetic coil 6 side of the bottom portion 11 is provided in an arcuate cross-section, the inner wall 8 and the bottom portion 11, the average distance between the bottom portion 11 and the outer wall 9 are separated (see arrow γ in FIG. 3), and the inner wall 8 and the bottom portion 11 and the bottom portion 11 and the outer wall It is possible to suppress the decrease in the transmission torque due to the magnetic leakage at 9. Since the electromagnetic coil 6 side of the bottom portion 11 is provided with an arcuate cross-section, the wall thickness of the groove mold for forming the magnetic blocking portions 12a and 12b can be increased. Therefore, the stress generated in the mold can be reduced, the life of the mold can be extended, and as a result, the cost of the rotor 3 can be suppressed. Since the electromagnetic coil 6 side of the bottom portion 11 is provided with an arcuate cross section, the non-magnetic material 12 and the bottom portion 11 are
The joint area with and becomes large, and the joint strength is high.

【0015】〔第2実施例〕図6は第2実施例を示すロ
ータ3の製造工程の要部説明図である。本実施例は、環
状部材19の形成時に、底部11における内周側磁気遮
断部12aを形成するための内周側の溝21aの深さを
外周側の溝21bと同等の深さまで浅くしたもので、切
削工程時、摩擦面10aの切削時に内周側の溝21aの
部分を深く削って内周側の磁気遮断部12aを摩擦面1
0a側に露出させるものである。
[Second Embodiment] FIG. 6 is an explanatory view of a main part of a manufacturing process of a rotor 3 showing a second embodiment. In the present embodiment, when the annular member 19 is formed, the depth of the inner peripheral side groove 21a for forming the inner peripheral side magnetic shield portion 12a in the bottom portion 11 is made shallow to the same depth as the outer peripheral side groove 21b. During the cutting process, when the friction surface 10a is cut, the groove 21a on the inner peripheral side is deeply cut to remove the magnetic shield portion 12a on the inner peripheral side from the friction surface 1.
It is exposed on the 0a side.

【0016】〔第3実施例〕図7は第3実施例を示すロ
ータの製造工程の要部説明図である。本実施例は、まず
(g)に示すように、冷間鍛造によって、断面コ字形の
環状部材19を形成し、次に、(h)に示すように、冷
間鍛造によって、底部11の中間部を全周に亘って環状
部材19の開放側に突出させてリング状突出部20を形
成したものである。
[Third Embodiment] FIG. 7 is an explanatory view of a main part of a manufacturing process of a rotor showing a third embodiment. In the present embodiment, first, as shown in (g), an annular member 19 having a U-shaped cross section is formed by cold forging, and then, as shown in (h), an intermediate portion of the bottom portion 11 is formed by cold forging. The ring-shaped protruding portion 20 is formed by projecting the portion over the entire circumference toward the open side of the annular member 19.

【0017】〔第4実施例〕図8は第4実施例を示すロ
ータの製造工程の要部説明図である。本実施例は、誘導
加熱による接合工程の一例を示す。環状部材19の底部
11の2本の溝21a、21b内に、環状部材19より
も融点の低い非磁性材(例えば銅)の粉体状の非磁性素
材22を置き、磁性材(例えば低炭素鋼)である環状部
材19の底部11を、誘導加熱装置24によって加熱す
る。この誘導加熱装置24は、環状部材19の底部11
を覆う断面コ字形のリング状に設けられ、環状部材19
に誘導電流を発生させて環状部材19を加熱する装置で
ある。そして、誘導加熱装置24による環状部材19の
発熱によって非磁性素材22を溶融させ、その後環状部
材19を冷却して溶けた非磁性素材22を固化する。こ
の固化時に、環状部材19に非磁性素材22が拡散接合
し、環状部材19と非磁性素材22が固化してなる非磁
性材12(第1実施例参照)が強固に接合する。
[Fourth Embodiment] FIG. 8 is an explanatory view of a main part of a manufacturing process of a rotor showing a fourth embodiment. This example shows an example of a joining process by induction heating. A powdery non-magnetic material 22 of a non-magnetic material (for example, copper) having a lower melting point than that of the annular member 19 is placed in the two grooves 21a and 21b of the bottom portion 11 of the annular member 19, and the magnetic material (for example, low carbon is used). The bottom 11 of the annular member 19, which is steel), is heated by the induction heating device 24. The induction heating device 24 includes the bottom portion 11 of the annular member 19.
Is provided in a ring shape having a U-shaped cross section for covering the annular member 19
Is a device for heating the annular member 19 by generating an induced current in the. Then, the non-magnetic material 22 is melted by the heat generation of the annular member 19 by the induction heating device 24, and then the annular member 19 is cooled to solidify the melted non-magnetic material 22. During this solidification, the non-magnetic material 22 is diffusion-bonded to the annular member 19, and the non-magnetic material 12 (see the first embodiment) formed by solidifying the annular member 19 and the non-magnetic material 22 is firmly bonded.

【0018】なお、環状部材19の底部11の加熱およ
び冷却が行われる際は、環状部材19がチャック25に
より保持されて回転駆動される。この環状部材19の回
転によって、粉体状非磁性素材22の溶融状態および固
化具合のバラツキが抑えられ、溶融不良等の発生が防が
れる。なお、本実施例では環状部材19の底部11全体
を誘導加熱装置24で加熱したが、底部11の一部を加
熱するように誘導加熱装置24などの局部加熱装置を配
し、チャック25で環状部材19を回転して底部11全
体を加熱するように設けても良い。また、粉体状非磁性
素材22に金属酸化を防ぐフラックスを混在したり、溝
21a、21b内にフラックスを塗布することによっ
て、接合部の酸化を防ぐことができる。これにより、接
合部の強度を高く保つために、接合工程を真空中あるい
は不活性ガス雰囲気中で行う必要がなく、製造コストを
低く抑えることができる。しかるに、環状部材19の酸
化は防止できないため、必要に応じて環状部材に不活性
ガスを吹きつけても良い。この実施例では、非磁性素材
22に粉体状の材料を用いたが、リング状の線材や粒状
の材料を用いても良い。
When the bottom 11 of the annular member 19 is heated and cooled, the annular member 19 is held by the chuck 25 and driven to rotate. The rotation of the annular member 19 suppresses the variation in the molten state and the solidification state of the powdery non-magnetic material 22 and prevents the occurrence of defective melting or the like. In this embodiment, the entire bottom 11 of the annular member 19 is heated by the induction heating device 24. However, a local heating device such as the induction heating device 24 is arranged so as to heat a part of the bottom 11, and the chuck 25 is used to form an annular shape. The member 19 may be rotated so as to heat the entire bottom portion 11. Further, by mixing the powdery non-magnetic material 22 with a flux that prevents metal oxidation, or by applying the flux in the grooves 21a and 21b, it is possible to prevent oxidation of the joint portion. As a result, it is not necessary to perform the bonding step in a vacuum or in an inert gas atmosphere in order to keep the strength of the bonded portion high, and the manufacturing cost can be kept low. However, since oxidation of the annular member 19 cannot be prevented, an inert gas may be blown onto the annular member as necessary. In this embodiment, a powdery material is used for the non-magnetic material 22, but a ring-shaped wire or granular material may be used.

【0019】〔第5実施例〕図9は第5実施例を示すロ
ータの製造工程の要部説明図である。本実施例は、非磁
性素材22を溶かして環状部材19の底部11の2本の
溝21a、21b内に流し込み接合する接合工程の一例
を示す。本実施例では、非磁性素材22を溶かして2本
の溝21a、21b内に流し込む技術としてTIG溶接
(イナートガスタングステンアーク溶接)を用いた例を
示す(図中は外側の溝21bの加工例を示す)。このT
IG溶接は、ノズル26から溶接部である溝21a、2
1bに不活性ガス(アルゴンガス、ヘリウムガス等)を
吹きつけるとともに、タングステン電極27と環状部材
19に高電圧を印加してタングステン電極27と環状部
材19の間にアークを発生させ、線状に設けられた非磁
性素材22をアークの熱で溶かす。そして、溶けた非磁
性素材22を溝21aまたは溝21b内に充填し、溝2
1aおよび溝21b内に非磁性素材22(つまり非磁性
材12)を接合する。
[Fifth Embodiment] FIG. 9 is an explanatory view of a main part of a manufacturing process of a rotor showing a fifth embodiment. This embodiment shows an example of a joining process in which the non-magnetic material 22 is melted and poured into the two grooves 21a and 21b of the bottom portion 11 of the annular member 19 to be joined. In this embodiment, an example using TIG welding (inert gas tungsten arc welding) as a technique of melting the non-magnetic material 22 and pouring it into the two grooves 21a and 21b is shown (a processing example of the outer groove 21b in the drawing). Shown). This T
In the IG welding, the nozzles 26 are welded to the grooves 21a, 2
1b is blown with an inert gas (argon gas, helium gas, etc.), and a high voltage is applied to the tungsten electrode 27 and the annular member 19 to generate an arc between the tungsten electrode 27 and the annular member 19 to form a linear shape. The non-magnetic material 22 provided is melted by the heat of the arc. Then, the melted non-magnetic material 22 is filled in the groove 21a or the groove 21b, and the groove 2
The non-magnetic material 22 (that is, the non-magnetic material 12) is joined in the 1a and the groove 21b.

【0020】〔第6実施例〕図10は第6実施例を示す
ロータの製造工程の要部説明図である。本実施例では、
MIG溶接(イナートガスメタルアーク溶接)を用いて
非磁性素材22を溶かし、溶けた非磁性素材22を2本
の溝21a、21b内に流し込み接合する接合工程の一
例を示す(図中は外側の溝21bの加工例を示す)。こ
のMIG溶接は、ノズル26から溶接部である溝21
a、21bに不活性ガスを吹きつける。この時、電極で
ある非磁性素材22と環状部材19に高電圧を印加し
て、非磁性素材22と環状部材19の間にアークを発生
させ、アークの熱で非磁性素材22を溶かす。そして、
溶けた非磁性素材22を溝21aまたは溝21b内に充
填し、溝21aおよび溝21b内に非磁性素材22(つ
まり非磁性材12)を接合する。なお、電極である非磁
性素材22は、このMIG溶接時、連続的に供給されな
がら実施される。
[Sixth Embodiment] FIG. 10 is an explanatory view of a main part of a manufacturing process of a rotor showing a sixth embodiment. In this embodiment,
An example of a joining process in which the non-magnetic material 22 is melted by using MIG welding (inert gas metal arc welding) and the melted non-magnetic material 22 is poured into the two grooves 21a and 21b to be joined (the outer groove is shown in the figure). 21b shows a processing example). In this MIG welding, the nozzle 26 is welded to the groove 21
Inert gas is blown to a and 21b. At this time, a high voltage is applied to the non-magnetic material 22 which is an electrode and the annular member 19 to generate an arc between the non-magnetic material 22 and the annular member 19, and the heat of the arc melts the non-magnetic material 22. And
The melted non-magnetic material 22 is filled in the groove 21a or the groove 21b, and the non-magnetic material 22 (that is, the non-magnetic material 12) is joined in the groove 21a and the groove 21b. The non-magnetic material 22 which is an electrode is continuously supplied during this MIG welding.

【0021】〔変形例〕上記の実施例では、曲折工程時
に、塑性加工の一例として冷間鍛造を例に示したが、プ
レス加工など他の加工手段を用いても良い。非磁性材の
一例として銅を示したが、アルミニウムなど他の非磁性
体金属や、用途に応じては非磁性体樹脂を用いても良
い。また、環状部材を加熱して底部内の非磁性材を溶か
したり、溶けた非磁性材を底部に流し込んた例を示した
が、ステンレスなどの非磁性体金属を摩擦圧接法によっ
て底部に接合しても良い。底部の開放側を断面円弧形状
に設けたが、開放側に向かって窄まるテーパ形状とした
り、断面矩形に設けても良い。実施例に開示した寸法の
関係は、一例であって、本発明は実施例に開示された寸
法の関係に限定されるものではない。また、冷媒圧縮機
の電磁クラッチを例に示したが、スーパーチャージャや
自動変速機など、動力の伝達および遮断を行う全ての電
磁クラッチに適用可能なものである。
[Modification] In the above embodiment, cold forging is shown as an example of plastic working during the bending step, but other working means such as press working may be used. Although copper is shown as an example of the non-magnetic material, other non-magnetic metal such as aluminum, or non-magnetic resin may be used depending on the application. Also, an example was shown in which the annular member was heated to melt the non-magnetic material in the bottom, or the melted non-magnetic material was poured into the bottom, but non-magnetic metal such as stainless steel was joined to the bottom by friction welding. May be. Although the open side of the bottom portion is provided with an arcuate cross section, it may be provided with a taper shape that narrows toward the open side or a rectangular cross section. The dimensional relationship disclosed in the embodiments is an example, and the present invention is not limited to the dimensional relationship disclosed in the embodiments. Further, the electromagnetic clutch of the refrigerant compressor has been shown as an example, but it can be applied to all electromagnetic clutches that transmit and cut off power, such as a supercharger and an automatic transmission.

【図面の簡単な説明】[Brief description of drawings]

【図1】ロータの製造工程の説明図である(第1実施
例)。
FIG. 1 is an explanatory diagram of a rotor manufacturing process (first embodiment).

【図2】ロータの製造工程の説明図である(第1実施
例)。
FIG. 2 is an explanatory diagram of a rotor manufacturing process (first embodiment).

【図3】電磁クラッチの断面図である(第1実施例)。FIG. 3 is a sectional view of an electromagnetic clutch (first embodiment).

【図4】ロータの断面図である(第1実施例)。FIG. 4 is a sectional view of a rotor (first embodiment).

【図5】摩擦材が装着される前のロータの正面図である
(第1実施例)。
FIG. 5 is a front view of the rotor before the friction material is mounted (first embodiment).

【図6】ロータの製造工程の要部説明図である(第2実
施例)。
FIG. 6 is an explanatory view of a main part of a rotor manufacturing process (second embodiment).

【図7】ロータの製造工程の要部説明図である(第3実
施例)。
FIG. 7 is an explanatory view of a main part of a rotor manufacturing process (third embodiment).

【図8】ロータの製造工程の要部説明図である(第4実
施例)。
FIG. 8 is an explanatory view of a main part of a rotor manufacturing process (fourth embodiment).

【図9】ロータの製造工程の要部説明図である(第5実
施例)。
FIG. 9 is an explanatory view of a main part of a manufacturing process of a rotor (fifth embodiment).

【図10】ロータの製造工程の要部説明図である(第6
実施例)。
FIG. 10 is an explanatory view of a main part of a rotor manufacturing process (sixth embodiment)
Example).

【図11】電磁クラッチの断面図である(従来技術)。FIG. 11 is a sectional view of an electromagnetic clutch (prior art).

【図12】ロータの断面図である(従来技術)。FIG. 12 is a sectional view of a rotor (prior art).

【符号の説明】[Explanation of symbols]

1 電磁クラッチ 3 ロータ 8 内壁 9 外壁 10a 摩擦面 11 底部 12 非磁性材 19 環状部材 20 突出部 1 Electromagnetic Clutch 3 Rotor 8 Inner Wall 9 Outer Wall 10a Friction Surface 11 Bottom 12 Non-Magnetic Material 19 Annular Member 20 Projection

フロントページの続き (72)発明者 鳥羽山 昌史 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 鈴木 康裕 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front page continuation (72) Inventor Masafumi Tobayama 1-1, Showa-cho, Kariya city, Aichi prefecture Nihon Denso Co., Ltd. (72) Inventor Yasuhiro Suzuki 1-1-cho, Showa-cho, Kariya city, Aichi prefecture Nidec corporation Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 磁性体のリング状板材を、塑性加工によ
って内壁、外壁、およびこの内壁、外壁を繋ぐ底部から
なる環状部材に形成するとともに、前記底部の中間部を
全周に亘って前記環状部材の開放側に突出させてリング
状突出部を形成する曲折工程と、 前記底部内に非磁性材を接合する接合工程と、 前記底部の底面を切削して摩擦面を形成するとともに、
前記非磁性材を前記底面に露出させる切削工程とからな
る電磁クラッチ用ロータの製造方法。
1. An annular member made of a magnetic material is formed into an annular member having an inner wall, an outer wall, and a bottom portion connecting the inner wall and the outer wall by plastic working, and the middle portion of the bottom portion is formed into an annular shape over the entire circumference. A bending step of projecting to the open side of the member to form a ring-shaped projecting portion, a joining step of joining a non-magnetic material in the bottom portion, and a friction surface is formed by cutting the bottom surface of the bottom portion,
A method of manufacturing an electromagnetic clutch rotor, comprising a cutting step of exposing the non-magnetic material to the bottom surface.
JP5058734A 1992-06-26 1993-03-18 Manufacture of rotor for electromagnetic clutch Pending JPH0674257A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5058734A JPH0674257A (en) 1992-06-26 1993-03-18 Manufacture of rotor for electromagnetic clutch
US08/694,804 US5791039A (en) 1993-03-18 1996-08-09 Method for manufacturing a rotor of a magnetic clutch

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-169303 1992-06-26
JP16930392 1992-06-26
JP5058734A JPH0674257A (en) 1992-06-26 1993-03-18 Manufacture of rotor for electromagnetic clutch

Publications (1)

Publication Number Publication Date
JPH0674257A true JPH0674257A (en) 1994-03-15

Family

ID=26399756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5058734A Pending JPH0674257A (en) 1992-06-26 1993-03-18 Manufacture of rotor for electromagnetic clutch

Country Status (1)

Country Link
JP (1) JPH0674257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1470887A2 (en) * 2003-04-23 2004-10-27 Kubota Iron Works Co., Ltd. Method of joining together magnetic and nonmagnetic materials
CN112105831A (en) * 2018-05-11 2020-12-18 株式会社电装 Electromagnetic clutch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1470887A2 (en) * 2003-04-23 2004-10-27 Kubota Iron Works Co., Ltd. Method of joining together magnetic and nonmagnetic materials
EP1470887A3 (en) * 2003-04-23 2005-10-26 Kubota Iron Works Co., Ltd. Method of joining together magnetic and nonmagnetic materials
US7015434B2 (en) 2003-04-23 2006-03-21 Kubota Iron Works Co., Ltd. Method of joining together magnetic and nonmagnetic materials
CN112105831A (en) * 2018-05-11 2020-12-18 株式会社电装 Electromagnetic clutch

Similar Documents

Publication Publication Date Title
JP3633654B2 (en) Manufacturing method of rotor for electromagnetic clutch and electromagnetic clutch provided with rotor manufactured by the manufacturing method
US6998752B2 (en) Dynamo-electric machine
US5791039A (en) Method for manufacturing a rotor of a magnetic clutch
JPH0880015A (en) Electric rotary machine
JP3252572B2 (en) Method for manufacturing rotor for electromagnetic clutch
JPH10243627A (en) Eddy-current speed reducer
JPH0674257A (en) Manufacture of rotor for electromagnetic clutch
WO2014208001A1 (en) Electromagnetic clutch
JPH07224860A (en) Manufacture of rotor for electromagnetic clutch
JPH09117119A (en) Squirrel-cage rotor and its manufacture
JP3148584B2 (en) Spindle motor
US3444970A (en) Magnetic friction coupling with partly laminated flux circuit
JPH0650357A (en) Electromagentic clutch
JPH08182231A (en) Laminated core for stator
JPH0266324A (en) Electromagnetic clutch
JP3216160U (en) Electromagnetic clutch rotor
JP2865440B2 (en) Torque limiter
JP2007170623A (en) Joint structure of magnetic flux leakage prevention member, joining method for magnetic flux leakage prevention members, and electromagnetic clutch device using them
JP3330033B2 (en) Electromagnetic coupling device
JP2562574Y2 (en) Electromagnetic clutch
JPS6316901Y2 (en)
JPH11108253A (en) Positioning method of ring on outer circumference of insert port of pipe and positioning roller therefor
JPH0126895Y2 (en)
US20190131857A1 (en) Motor
JP2021151118A (en) Rotor for rotating electric machine