JP3252572B2 - Method for manufacturing rotor for electromagnetic clutch - Google Patents

Method for manufacturing rotor for electromagnetic clutch

Info

Publication number
JP3252572B2
JP3252572B2 JP29199293A JP29199293A JP3252572B2 JP 3252572 B2 JP3252572 B2 JP 3252572B2 JP 29199293 A JP29199293 A JP 29199293A JP 29199293 A JP29199293 A JP 29199293A JP 3252572 B2 JP3252572 B2 JP 3252572B2
Authority
JP
Japan
Prior art keywords
ring
shaped
peripheral wall
coupling member
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29199293A
Other languages
Japanese (ja)
Other versions
JPH07145832A (en
Inventor
泰生 田渕
宏昭 伊藤
純一 大口
昌史 鳥羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP29199293A priority Critical patent/JP3252572B2/en
Publication of JPH07145832A publication Critical patent/JPH07145832A/en
Priority to US08/694,804 priority patent/US5791039A/en
Application granted granted Critical
Publication of JP3252572B2 publication Critical patent/JP3252572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁力によってアーマチ
ャを吸着する電磁クラッチ用ロータの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rotor for an electromagnetic clutch which attracts an armature by a magnetic force.

【0002】[0002]

【従来の技術】電磁クラッチの従来技術としては、例え
ば特開昭56−55721号公報に記載されたものがあ
る。ここで、このものを図17に示す。アーマチャ10
2は、磁性材よりなるリング状のデイスクプレート10
3と磁性材よりなるリング状のデイスクプレート104
と、そして磁気遮断部をなす例えば銅のような非磁性材
よりなるリング状の結合部材105とを有している。そ
して、アーマチャ102は、デイスクプレート103の
内周面109とデイスクプレート104の外周面110
との間隙に結合部材105を挿入し、デイスクプレート
103、104および結合部材105をそれぞれ機械的
に結合するという方法で製造されている。
2. Description of the Related Art As a prior art of an electromagnetic clutch, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 56-55721. Here, this is shown in FIG. Armature 10
2 is a ring-shaped disk plate 10 made of a magnetic material.
3 and a ring-shaped disk plate 104 made of a magnetic material
And a ring-shaped coupling member 105 made of a non-magnetic material such as copper, which forms a magnetic cutoff. The armature 102 has an inner peripheral surface 109 of the disk plate 103 and an outer peripheral surface 110 of the disk plate 104.
Is manufactured by a method in which a coupling member 105 is inserted into a gap between the disk plates 103 and 104 and the coupling members 105 are mechanically coupled to each other.

【0003】また、デイスクプレート103および10
4の厚さ(図17中符号aで示す)より結合部材102
の厚さ(図17中符号bで示す)は薄くなっており、こ
れにより結合部材105の摩擦側端面113,デイスク
プレート103の内周面109,およびデイスクプレー
ト104の外周面110に囲まれてできる凹み108が
形成されている。そして、この凹み108を形成するこ
とによって摩擦面111,112がロータ(図示しな
い)と吸着する際に瞬間的にエアダンパの役割を果た
し、吸着時に異音が発生するのを防止している。
[0003] Also, disk plates 103 and 10
4 (indicated by the symbol a in FIG. 17).
The thickness (indicated by reference numeral b in FIG. 17) of the connecting member 105 is reduced, and is thereby surrounded by the friction side end surface 113 of the coupling member 105, the inner peripheral surface 109 of the disk plate 103, and the outer peripheral surface 110 of the disk plate 104. A possible recess 108 is formed. By forming the recess 108, the friction surfaces 111 and 112 instantaneously function as an air damper when adsorbing to a rotor (not shown), thereby preventing generation of abnormal noise during adsorption.

【0004】また、特開昭56−55721号公報の第
3頁左上欄第16行ないし同欄第18行には、上記の製
造方法でロータを製造する旨が記載されている。つま
り、図18に示すような磁性材よりなる外周壁114、
磁性材よりなる内周壁115、およびこれらを繋ぐ磁性
材よりなる底部116を有する断面コの字形のロータ1
13においても、上記と同様に外周壁114と底部11
6との間隙に非磁性材よりなるリング状の結合部材11
7を、そして、内周壁115と底部116との間隙との
にも非磁性材よりなるリング状の結合部材118をそれ
ぞれ挿入し、共に機械的に結合する旨が記載されてい
る。また、結合部材117および118をアーマチャ1
02と吸着する摩擦面120に対し凹ませ、凹み12
1、122を形成する旨が記載されている。
[0004] Japanese Patent Application Laid-Open No. 56-55721, page 3, upper left column, line 16 to column 18, describes that a rotor is manufactured by the above manufacturing method. That is, the outer peripheral wall 114 made of a magnetic material as shown in FIG.
A rotor 1 having a U-shaped cross section having an inner peripheral wall 115 made of a magnetic material and a bottom part 116 made of a magnetic material connecting them.
13, the outer peripheral wall 114 and the bottom 11
Ring-shaped coupling member 11 made of a non-magnetic material
7, and a ring-shaped coupling member 118 made of a non-magnetic material is also inserted into the gap between the inner peripheral wall 115 and the bottom portion 116, and is mechanically coupled together. Also, the coupling members 117 and 118 are connected to the armature 1
02 to the friction surface 120 to be sucked,
1 and 122 are described.

【0005】ぞして、特開昭56−55721号公報の
第1頁右下欄第14行ないし第2頁左上欄第1行には、
他の従来技術が記載されている。図19にこのロータの
ディスクプレートを示す。つまり、ロータのディスクプ
レート126は一枚の鋼板からプレスで打ち抜かれたも
のであり、ディスクプレート123、ディスクプレート
124、ディスクプレート125、ディスクプレート1
23と124とを連結する連結部127、ディスクプレ
ート124と125とを連結する連結部128、溝12
9、および溝130から構成するものが記載されてい
る。
In Japanese Patent Application Laid-Open No. 56-55721, page 14, lower right column, line 14 to page 2, upper left column, line 1,
Other prior art has been described. FIG. 19 shows a disk plate of this rotor. That is, the disk plate 126 of the rotor is punched out of a single steel plate by a press, and the disk plate 123, the disk plate 124, the disk plate 125, the disk plate 1
A connecting portion 127 for connecting 23 and 124; a connecting portion 128 for connecting the disk plates 124 and 125;
9 and the groove 130 are described.

【0006】[0006]

【発明が解決しようとする課題】ところで、図18に示
すロータ113の場合、外周壁114と底部116との
間隙、および内周壁115と底部116との間隙にそれ
ぞれ結合部材117、118を接合する際に、上記と同
様に外周壁114と内周壁115と底部116とのの位
置決めが必要となるため、組付け加工性が悪く、かつ部
品点数も多いため、製造コストが高くなってしまう。
By the way, in the case of the rotor 113 shown in FIG. 18, the connecting members 117 and 118 are joined to the gap between the outer peripheral wall 114 and the bottom 116 and the gap between the inner peripheral wall 115 and the bottom 116, respectively. In this case, the positioning of the outer peripheral wall 114, the inner peripheral wall 115, and the bottom portion 116 is required in the same manner as described above, so that the assembling workability is poor and the number of parts is large, so that the manufacturing cost increases.

【0007】また、図19に示すロータ123の場合、
上記のような位置決めする煩わしさはないが連結部12
7、連結部128から磁束が漏れるために、アーマチャ
(図示しない)との吸着力が弱くなる。本発明は、上記
の課題に鑑みてなされたもので、位置決めが必要なく、
磁束が漏れない電磁クラッチ用ロータの製造方法を提供
することを目的とする。
In the case of the rotor 123 shown in FIG.
There is no hassle of positioning as described above, but the connecting portion 12
7. Since the magnetic flux leaks from the connecting portion 128, the attraction force with the armature (not shown) is weakened. The present invention has been made in view of the above problems, and does not require positioning,
An object of the present invention is to provide a method of manufacturing a rotor for an electromagnetic clutch that does not leak magnetic flux.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の本発明の電磁クラッチ用ロータの製
造方法は、磁性体のリング状板材を、塑性加工すること
によって内周壁、外周壁、およびこの内周壁と外周壁と
を繋ぐ底部からなる断面コの字形のリング状部材に形成
するリング状部材形成工程と、この工程を行った後に、
前記リング状部材の開放側に、全周に亘って前記底部に
複数のリング状の溝を形成する溝形成工程と、前記複数
のリング状の溝のそれぞれに全周に亘って非磁性材より
なる結合部材を接合する接合工程と、前記結合部材が露
出しない範囲の量だけ前記底部の底面を切削して摩擦面
を形成する摩擦面形成工程と、前記結合部材が接合され
た前記溝に対向する前記摩擦面の一部を凹まして凹面を
形成し、前記結合部材を前記摩擦面側に露出させる凹面
形成工程とを技術的手段として採用した。
According to a first aspect of the present invention, there is provided a method of manufacturing a rotor for an electromagnetic clutch, comprising: forming an inner peripheral wall by plastically processing a ring-shaped plate of a magnetic material; Outer peripheral wall, and a ring-shaped member forming step of forming a ring-shaped member having a U-shaped cross section composed of a bottom connecting the inner peripheral wall and the outer peripheral wall, and after performing this step,
A groove forming step of forming a plurality of ring-shaped grooves at the bottom on the open side of the ring-shaped member over the entire circumference; and a non-magnetic material formed over the entire circumference of each of the plurality of ring-shaped grooves. A joining step of joining the joining members, a friction surface forming step of cutting a bottom surface of the bottom portion by an amount in a range where the joining members are not exposed, and a friction surface forming step of facing the groove to which the joining members are joined. Forming a concave surface by recessing a part of the friction surface, and exposing the coupling member to the friction surface side as a technical means.

【0009】また、請求項2記載の本発明の電磁クラッ
チ用ロータの製造方法は、磁性体のリング状板材を、塑
性加工することによって内周壁、外周壁、およびこの内
周壁と外周壁とを繋ぐ底部からなる断面コの字形のリン
グ状部材に形成するリング状部材形成工程と、この工程
を行った後に、前記リング状部材の開放側に、全周に亘
って前記底部に複数のリング状の溝を形成する溝形成工
程と、前記複数の溝のそれぞれに全周に亘って非磁性材
よりなる結合部材を接合する接合工程と、前記底部の底
面を前記結合部材が露出するまで切削して摩擦面を形成
する摩擦面形成工程と、前記摩擦面に露出した前記結合
部材を、この露出した部分の径方向の幅と略同等な径方
向の幅で凹ませて凹面を形成する凹面形成工程とを技術
的手段として採用した。
According to a second aspect of the present invention, there is provided a method of manufacturing a rotor for an electromagnetic clutch, wherein an inner peripheral wall, an outer peripheral wall, and the inner peripheral wall and the outer peripheral wall are formed by plastically processing a magnetic ring-shaped plate. A ring-shaped member forming step for forming a ring-shaped member having a U-shaped cross-section comprising a bottom portion to be connected, and after performing this step, a plurality of ring-shaped members are formed on the bottom portion over the entire circumference on the open side of the ring-shaped member. A groove forming step of forming a groove, a bonding step of bonding a coupling member made of a non-magnetic material to each of the plurality of grooves, and cutting the bottom surface of the bottom until the coupling member is exposed. Forming a friction surface, and forming a concave surface by denting the coupling member exposed on the friction surface with a radial width substantially equal to a radial width of the exposed portion. Process and technical means It was.

【0010】[0010]

【発明の作用】請求項1記載の本発明の構成によると、
まず、リング状部材形成工程において、磁性体のリング
状板材を、冷間鋳造、プレス加工等の塑性加工をするこ
とによって内周壁、外周壁、およびこの外周壁と内周壁
とを繋ぐ底部からなる断面コの字形のリング状部材を形
成する。この加工を行った後、溝形成工程において、前
記リング状部材の開放側に、全周に亘って前記底部に複
数のリング状の溝を形成する。また、接合工程では、全
周に亘って前記複数のリング状の溝のそれぞれに、全周
に亘って非磁性材よりなる結合部材を接合する。また、
摩擦面形成工程では、前記結合部材が露出しない範囲の
量だけリング状部材の底部の底面を切削してロータの前
記摩擦面を形成する。そして、次の凹面形成工程では、
結合部材が接合された前記溝に対向する摩擦面の一部を
凹まして凹面を形成し、前記結合部材を摩擦面側に露出
させる。
According to the first aspect of the present invention,
First, in the ring-shaped member forming step, the ring-shaped plate of the magnetic material is formed by cold working, plastic working such as press working, and the inner peripheral wall, the outer peripheral wall, and the bottom connecting the outer peripheral wall and the inner peripheral wall. A ring-shaped member having a U-shaped cross section is formed. After performing this processing, in the groove forming step, a plurality of ring-shaped grooves are formed in the bottom portion over the entire circumference on the open side of the ring-shaped member. In the joining step, a joining member made of a non-magnetic material is joined to each of the plurality of ring-shaped grooves over the entire circumference. Also,
In the friction surface forming step, the bottom surface of the bottom of the ring-shaped member is cut by an amount that does not expose the coupling member to form the friction surface of the rotor. Then, in the next concave surface forming step,
A part of the friction surface facing the groove to which the coupling member is joined is recessed to form a concave surface, and the coupling member is exposed to the friction surface side.

【0011】請求項2記載の本発明の構成によると、ま
ず、リング状部材形成工程において、磁性体のリング状
板材を、冷間鋳造、プレス加工等の塑性加工をすること
によって内周壁、外周壁、およびこの内周壁と外周壁と
を繋ぐ底部からなる断面コの字形のリング状部材を形成
する。この加工を行った後、溝形成工程において、前記
リング状部材の開放側に、全周に亘って前記底部に複数
のリング状の溝を形成する。また、接合工程では、全周
に亘って前記複数のリング状の溝のそれぞれに、全周に
亘って非磁性材よりなる結合部材を結合する。また、摩
擦面切削工程では、前記リング状部材の底部の底面を前
記結合部材が露出するまで切削して摩擦面を形成する。
そして、次の凹面形成工程において、前記摩擦面に露出
した結合部材を、この露出した部分の径方向の幅と略同
等な径方向の幅で凹ませて凹面を形成する。
According to the second aspect of the present invention, first, in the ring-shaped member forming step, the inner peripheral wall and the outer peripheral wall are formed by subjecting the magnetic ring-shaped plate to plastic working such as cold casting or press working. A ring-shaped member having a U-shaped cross section comprising a wall and a bottom connecting the inner peripheral wall and the outer peripheral wall is formed. After performing this processing, in the groove forming step, a plurality of ring-shaped grooves are formed in the bottom portion over the entire circumference on the open side of the ring-shaped member. In the joining step, a coupling member made of a non-magnetic material is coupled to each of the plurality of ring-shaped grooves over the entire circumference. In the friction surface cutting step, a friction surface is formed by cutting the bottom surface of the bottom of the ring-shaped member until the coupling member is exposed.
Then, in the next concave surface forming step, the coupling member exposed on the friction surface is dented with a radial width substantially equal to the radial width of the exposed portion to form a concave surface.

【0012】[0012]

【発明の効果】本発明の電磁クラッチ用ロータの製造方
法は、内周壁、外周壁、底部が、1つのリング状板材を
加工して設けられるため、位置決めをする必要がない。
このため、組付性に優れ、製造コストを抑えることがで
きる。また、磁束漏れがなくロータとアーマチャとの吸
着力を強くすることができた。
According to the method of manufacturing a rotor for an electromagnetic clutch of the present invention, since the inner peripheral wall, the outer peripheral wall, and the bottom are provided by processing one ring-shaped plate, there is no need for positioning.
For this reason, the assembling property is excellent, and the manufacturing cost can be suppressed. Also, there was no magnetic flux leakage, and the attraction force between the rotor and the armature could be increased.

【0013】[0013]

【実施例】次に、本発明の電磁クラッチ用ロータの製造
方法を、図に示す第1実施例に基づき説明する。 〔実施例の構成〕図1ないし図9は本発明の第1実施例
を示す。
Next, a method of manufacturing a rotor for an electromagnetic clutch according to the present invention will be described based on a first embodiment shown in the drawings. FIG. 1 to FIG. 9 show a first embodiment of the present invention.

【0014】図1に示す電磁クラッチ1は、エンジン
(図示しない)から冷媒圧縮機(図示しない)へ回転動
力の伝達の断続を行うものである。この電磁クラッチ1
は、大別して、エンジンによって回転駆動されるプーリ
2を備えるロータ3と、このロータ3と摩擦係合するア
ーマチャ4を備えた回転被動体5と、通電されると磁力
を発生してアーマチャ4をロータ3に摩擦係合させる電
磁コイル6とからなる。電磁コイル6は、樹脂製の巻枠
6aを介して磁性材(例えば、SPCC、SPHC等の
低炭素鋼)よりなるステータ6bに固定されており、さ
らにステータ6bは円板状のステー6cを介して圧縮機
のハウジングHに固定されている。
The electromagnetic clutch 1 shown in FIG. 1 is for interrupting transmission of rotational power from an engine (not shown) to a refrigerant compressor (not shown). This electromagnetic clutch 1
Are roughly divided into a rotor 3 having a pulley 2 which is rotationally driven by an engine, a rotating driven body 5 having an armature 4 which frictionally engages with the rotor 3, and a magnetic force generated when energized to generate the armature 4. And an electromagnetic coil 6 frictionally engaged with the rotor 3. The electromagnetic coil 6 is fixed to a stator 6b made of a magnetic material (for example, low-carbon steel such as SPCC or SPHC) via a resin winding frame 6a, and the stator 6b is further fixed via a disk-shaped stay 6c. And is fixed to the housing H of the compressor.

【0015】プーリ2は、ロータ3の周囲に溶接によっ
て接合されたもので、多段Vベルト(図示しない)が掛
け渡される。ロータ3は、内周のベアリング7を介して
回転自在に支持されるもので、ベアリング7の内周は、
冷媒圧縮機のハウジングHに支持される。このロータ3
は、軟鉄などの磁性材を加工して設けたもので、電磁コ
イル6の内周側に位置する内周壁8、電磁コイル6の外
周側に位置する外周壁9、およびアーマチュア4に摩擦
係合する摩擦壁10からなる断面コの字型のリング状部
材を形成している。ここで摩擦壁10は、上記軟鉄など
の磁性材よりなる底部11と、この底部11の内周側と
外周側に設けられた結合部材22とを有する。底部11
は、上記リング状部材の開放側、つまり電磁コイル6が
配置される側が、断面円弧状に形成されている。また、
結合部材22は、内周壁8と底部11、底部11と外周
壁9を接合する銅などの非磁性材よりなり、内周壁8と
底部11、底部11と外周壁9の間で磁路が形成される
のを阻止するものである。また、摩擦壁10の摩擦面1
0aの外周側には、アーマチュア4との係合力を高める
非磁性材よりなる摩擦材13が嵌め込まれている。
The pulley 2 is joined to the periphery of the rotor 3 by welding, and a multi-stage V-belt (not shown) is stretched over it. The rotor 3 is rotatably supported via an inner bearing 7.
It is supported by the housing H of the refrigerant compressor. This rotor 3
Is formed by processing a magnetic material such as soft iron, and is frictionally engaged with the inner peripheral wall 8 located on the inner peripheral side of the electromagnetic coil 6, the outer peripheral wall 9 located on the outer peripheral side of the electromagnetic coil 6, and the armature 4. A ring-shaped member having a U-shaped cross section is formed by the friction walls 10 that are formed. Here, the friction wall 10 has a bottom part 11 made of a magnetic material such as the above-mentioned soft iron, and a coupling member 22 provided on the inner peripheral side and the outer peripheral side of the bottom part 11. Bottom 11
The open side of the ring-shaped member, that is, the side on which the electromagnetic coil 6 is disposed is formed in an arc-shaped cross section. Also,
The coupling member 22 is made of a non-magnetic material such as copper that joins the inner peripheral wall 8 and the bottom 11 and the bottom 11 and the outer peripheral wall 9, and forms a magnetic path between the inner peripheral wall 8 and the bottom 11 and between the bottom 11 and the outer peripheral wall 9. It is to prevent being done. Also, the friction surface 1 of the friction wall 10
A friction material 13 made of a non-magnetic material for increasing the engaging force with the armature 4 is fitted on the outer peripheral side of the armature 4a.

【0016】また、結合部材22は摩擦面10aに対し
凹んでおり、凹面24を形成している。そして、摩擦面
10aにおいて、凹面24の図中上下方向の幅は摩擦材
13の図中上下方向の幅に比べ充分に小さい。なお、電
磁コイル6が配置される側における底部11が、断面円
弧状に形成されているため、図8(a)に示すように、
内周側の結合部材22のうち、摩擦面10aに露出した
部分の面積(a1 )は、上記リング状部材の開放側の面
積(b1 )に比較して小さく設定され、外周側の結合部
材22のうち、摩擦面10aに露出した部分の面積(a
2 )は、上記リング状部材の開放側の面積(b2 )に比
較して小さく設定されている。つまり、a1 <b1 、a
2 <b2 の関係に設定されている。ここで図8(a)は
図1におけるロータ3のみを示す図である。
The coupling member 22 is concave with respect to the friction surface 10a, and forms a concave surface 24. In the friction surface 10a, the width of the concave surface 24 in the vertical direction in the figure is sufficiently smaller than the width of the friction material 13 in the vertical direction in the figure. Since the bottom 11 on the side where the electromagnetic coil 6 is arranged is formed in an arc-shaped cross section, as shown in FIG.
The area (a1) of the portion of the inner connecting member 22 exposed to the friction surface 10a is set smaller than the open area (b1) of the ring-shaped member. Area (a) of the portion exposed to the friction surface 10a
2) is set smaller than the area (b2) on the open side of the ring-shaped member. That is, a1 <b1, a
2 <b2. Here, FIG. 8A is a diagram showing only the rotor 3 in FIG.

【0017】図1において、アーマチュア4は、ロータ
3の摩擦面10aに間隙を隔てて対向配置されるもの
で、ロータ3に係合する摩擦面4aを備える。このアー
マチュア4は、鉄などの磁性体よりなるリング状をして
おり、中間部にスリットによるリング状の磁気遮断溝1
4が形成されている。なお、この磁気遮断溝14は、対
向するロータ3の底部11のほぼ中央に位置する。そし
て、アーマチュア4の磁気遮断溝14を起点とするロー
タ3の底部11の断面積(Sn)は、図8(a)、
(b)に示すように、アーマチュア4の磁気遮断溝14
を起点とする摩擦面10aにおける底部11の内周側の
面積(c1)および磁気遮断溝14を起点とする底部1
1の外周側の面積(c2 )より大きく設けられている。
つまり、Sn>c1 、c2 の関係に設定されている。こ
れにより、底部11における磁気抵抗を小さくできる。
ここで図8(b)は、図8(a)の一部拡大図である。
In FIG. 1, the armature 4 is opposed to a friction surface 10a of the rotor 3 with a gap therebetween, and has a friction surface 4a engaged with the rotor 3. The armature 4 has a ring shape made of a magnetic material such as iron, and has a ring-shaped magnetic blocking groove 1 formed by a slit at an intermediate portion.
4 are formed. In addition, the magnetic cutoff groove 14 is located substantially at the center of the bottom 11 of the rotor 3 opposed to the groove. The sectional area (Sn) of the bottom portion 11 of the rotor 3 starting from the magnetic blocking groove 14 of the armature 4 is shown in FIG.
As shown in FIG. 2B, the magnetic shielding groove 14 of the armature 4 is used.
The area (c1) on the inner peripheral side of the bottom 11 in the friction surface 10a starting from the bottom and the bottom 1 starting from the magnetic shielding groove 14
1 is larger than the area (c2) on the outer peripheral side.
That is, Sn> c1 and c2 are set. Thereby, the magnetic resistance at the bottom 11 can be reduced.
Here, FIG. 8B is a partially enlarged view of FIG.

【0018】図1における回転被動体5は、アーマチュ
ア4の回転を受けて一体に回転し、冷媒圧縮機の入力軸
を駆動するもので、アーマチュア4にリベット15で固
定されたアウターリング16、アーマチュア4の回転軸
方向の変位を許容するクッションゴム17、入力軸に嵌
め合わされるインナーハブ18からなり、アウターリン
グ16とインナーハブ18はクッションゴム17を介し
て一体に結合されている。
The rotary driven member 5 in FIG. 1 rotates integrally with the rotation of the armature 4 to drive the input shaft of the refrigerant compressor, and includes an outer ring 16 fixed to the armature 4 with rivets 15; 4 includes a cushion rubber 17 that allows displacement in the rotation axis direction, and an inner hub 18 that is fitted to the input shaft. The outer ring 16 and the inner hub 18 are integrally connected via the cushion rubber 17.

【0019】次に、第1実施例におけるロータ3の製造
方法を図1および図6の(a)〜(j)を用いて説明す
る。なお、本実施例の製造方法は請求項1記載の製造方
法に基づくものである。ロータ3の摩擦壁10とほぼ同
じ板厚の磁性体金属板(例えば、SPCC、SPHC等
の低炭素鋼)を、プレス打抜加工によって打抜き、円形
の円板材を形成する。そして、円板材の中心部を、プレ
ス打抜加工によって打抜き孔部19cを形成し、図2
(a)に示すようなリング状板材19aを形成する。
Next, a method of manufacturing the rotor 3 in the first embodiment will be described with reference to FIGS. 1 and 6A to 6J. The manufacturing method according to the present embodiment is based on the manufacturing method described in claim 1. A magnetic metal plate (for example, low carbon steel such as SPCC or SPHC) having substantially the same thickness as the friction wall 10 of the rotor 3 is punched by press punching to form a circular disk material. Then, a punched hole 19c is formed in the center of the disk material by press punching, and FIG.
A ring-shaped plate member 19a as shown in FIG.

【0020】次に、塑性加工である冷間鍛造によってリ
ング状板材19aの中間部191aを全周に亘って凹ま
せ、図2(b)に示すような内周壁8、外周壁9、およ
び内周壁8と外周壁9とを繋ぐ底部11からなる断面コ
の字形のリング状部材19bを形成する(リング状部材
形成工程)。次に、底部11の底面11aの中間部を全
周に亘って押さえつけ、図2(c)に示す2つのリング
状突出部21c,21dが設けられたリング状金型30
を内周壁8と外周壁9と底部11とに囲まれてできる空
間12に挿入し、これをリング状部材19bの開放側
(図示しない電磁コイルが配置される側)からプレスす
る。これにより、図3に示すように底部11の底面11
aの内周側と外周側とに、全周に亘って2つのリング状
突出部20a,20bが形成され、底部11の開放側に
は全周に亘って溝21a,21bが形成される(溝形成
工程)。
Next, the intermediate portion 191a of the ring-shaped plate 19a is depressed over the entire circumference by cold forging as plastic working, and the inner peripheral wall 8, the outer peripheral wall 9, and the inner peripheral wall 9 as shown in FIG. A ring-shaped member 19b having a U-shaped cross section and including a bottom 11 connecting the peripheral wall 8 and the outer peripheral wall 9 is formed (ring-shaped member forming step). Next, an intermediate portion of the bottom surface 11a of the bottom portion 11 is pressed down over the entire circumference, and a ring-shaped mold 30 provided with two ring-shaped protrusions 21c and 21d shown in FIG.
Is inserted into the space 12 formed by the inner peripheral wall 8, the outer peripheral wall 9, and the bottom portion 11, and this is pressed from the open side of the ring-shaped member 19b (the side on which an electromagnetic coil (not shown) is arranged). Thereby, as shown in FIG.
Two ring-shaped protrusions 20a and 20b are formed over the entire circumference on the inner and outer circumferences of a, and grooves 21a and 21b are formed over the entire circumference on the open side of the bottom 11 ( Groove forming step).

【0021】以上によって、内周壁8、外周壁9、およ
びこの内周壁8と外周壁9とを繋ぎ、リング状突出部2
0a,20b、そして溝21a,溝21bを備えた底部
11からなるリング状部材19が形成される。なお、こ
の2本の溝21a、21bの断面形状は、リング状金型
30に設けられたリング状突出部21c,21dがリン
グ状部材19の開放側に広がっているために、リング状
部材19の開放側へ向けて広がった形状をしている。こ
の結果、上記リング状部材19の開放側における底部1
1の形状は断面円弧状となる。また、リング状金型30
に設けられたリング状突出部のうち、外周側のそれ21
cに対して内周側のそれ21dの方が高く突出してお
り、これにより内周側の溝21bの深さは、外周側の溝
21aより深く設けられている。
As described above, the inner peripheral wall 8, the outer peripheral wall 9, and the inner peripheral wall 8 and the outer peripheral wall 9 are connected to form the ring-shaped projection 2.
A ring-shaped member 19 comprising the bottom portion 11 having the grooves 0a and 20b and the grooves 21a and 21b is formed. Note that the cross-sectional shape of the two grooves 21a and 21b is such that the ring-shaped protrusions 21c and 21d provided on the ring-shaped mold 30 are widened to the open side of the ring-shaped member 19, so that the ring-shaped member 19 It has a shape that spreads out toward the open side. As a result, the bottom 1 on the open side of the ring-shaped member 19 is formed.
1 has an arc-shaped cross section. In addition, the ring-shaped mold 30
Of the ring-shaped protrusions provided on the outer peripheral side 21
The inner peripheral groove 21d protrudes higher than the inner peripheral groove 21c, so that the inner peripheral groove 21b is provided deeper than the outer peripheral groove 21a.

【0022】次に、リング状部材19の全面に、金属製
の球やガラスビーズなどを吹き付け、リング状部材19
に付いた不純物を除去する(ショットブラスト)。次
に、図4(a)に示すように、溝21a,21bの図3
上方に、リング状部材19よりも融点の低い非磁性材
(例えば銅)の線材をリング状に形成した結合部材2
2、22を置き、この結合部材22、22をリング状部
材19ごと加熱する。そして、リング状部材19全体を
加熱することによって結合部材22、22を溶かし、溝
21a、21b内に結合部材22、22を全周に亘って
流し込む(図4(b))。その後、リング状部材19を
冷却(放熱)することによって溶けていた結合部材22
を冷却固化し、リング状部材19(例えば鉄)と結合部
材22(例えば銅)を拡散させて分子間で結合させるこ
とで、リング状部材19と結合部材22とが強固に接合
する(接合工程)。
Next, metal balls, glass beads, or the like are sprayed on the entire surface of the ring-shaped member 19 so that the ring-shaped member 19 is formed.
The impurities attached to are removed (shot blast). Next, as shown in FIG. 4 (a), the grooves 21a and 21b shown in FIG.
A connecting member 2 having a ring-shaped wire made of a nonmagnetic material (for example, copper) having a lower melting point than the ring-shaped member 19.
2 and 22 are placed, and the joint members 22 and 22 are heated together with the ring-shaped member 19. Then, by heating the entire ring-shaped member 19, the coupling members 22, 22 are melted, and the coupling members 22, 22 are poured into the grooves 21a, 21b over the entire circumference (FIG. 4B). Thereafter, the coupling member 22 melted by cooling (radiating heat) the ring-shaped member 19.
Is cooled and solidified, and the ring-shaped member 19 (for example, iron) and the bonding member 22 (for example, copper) are diffused and bonded between molecules, so that the ring-shaped member 19 and the bonding member 22 are strongly bonded (the bonding step). ).

【0023】なお、ここで結合部材22の一例として、
銅にスズを5%ほど含有させた青銅を用いた場合、結合
部材22が配されたリング状部材19を1080℃ほど
で加熱する必要がある。また、リング状部材19と結合
部材22とを接合するための加熱および冷却時は、リン
グ状部材19および結合部材22の酸化を防止するため
に、真空中あるいは不活性ガス(例えば窒素ガス)雰囲
気中で行う。
Here, as an example of the coupling member 22,
When bronze containing about 5% of tin in copper is used, it is necessary to heat the ring-shaped member 19 provided with the coupling member 22 at about 1080 ° C. In addition, during heating and cooling for joining the ring-shaped member 19 and the coupling member 22, in order to prevent oxidation of the ring-shaped member 19 and the coupling member 22, a vacuum or an inert gas (for example, nitrogen gas) atmosphere is used. Do inside.

【0024】次に、図5のニ点鎖線にて示すように、リ
ング状部材19の内周壁8の内周側、外周壁9の図中上
端部および底部11の開放側端面31をそれぞれ全周に
亘って切削するとともに、結合部材22が露出しない範
囲の量だけ底部11の底面11aを全周に亘って切削
し、摩擦面10aを形成する。(摩擦面形成工程)次
に、図6(a)に示すように、溝21aに対向する摩擦
面10aを全周に亘って切削することによって凹ませ、
摩擦材13を嵌めるための凹み23を形成し、結合部材
22を摩擦面10a側に露出させる。溝21bに対向す
る摩擦面10aを全周に亘って切削することによって凹
ませ、凹面24を形成し、結合部材22を摩擦面10a
側に露出させる(凹面形成工程)。ここで、図6(a)
のA部拡大図を図9に示す。
Next, as shown by the two-dot chain line in FIG. 5, the inner peripheral side of the inner peripheral wall 8 of the ring-shaped member 19, the upper end of the outer peripheral wall 9 in the drawing, and the open side end face 31 of the bottom 11 are entirely The cutting is performed over the entire circumference, and the bottom surface 11a of the bottom 11 is cut over the entire circumference by an amount that does not expose the coupling member 22, thereby forming the friction surface 10a. (Friction Surface Forming Step) Next, as shown in FIG. 6A, the friction surface 10a facing the groove 21a is recessed by cutting over the entire circumference.
A recess 23 for fitting the friction material 13 is formed, and the coupling member 22 is exposed on the friction surface 10a side. The friction surface 10a facing the groove 21b is recessed by cutting over the entire circumference to form a concave surface 24, and the coupling member 22 is moved to the friction surface 10a.
(Step of forming concave surface). Here, FIG.
FIG. 9 shows an enlarged view of a portion A of FIG.

【0025】次に、図6(b)に示すように図示しない
多段Vベルトが掛けられるプーリ2をリング状部材19
の外周から圧入し溶接して固着する。そして、Vベルト
が固着したリング状部材19の全面に塗料を吹き付け塗
装する。その後、図6(c)に示すように、摩擦面10
aに設けられた凹み23に摩擦材13を嵌め込む。
Next, as shown in FIG. 6B, the pulley 2 on which a multi-stage V-belt (not shown) is hung is connected to the ring-shaped member 19.
And press-fit from the outer periphery of it to fix it. Then, paint is sprayed on the entire surface of the ring-shaped member 19 to which the V-belt is fixed. Thereafter, as shown in FIG.
The friction material 13 is fitted into the recess 23 provided in the “a”.

【0026】さらに、摩擦面10aを図6(c)に示す
状態から切削し(図7の二点鎖線に示す)、摩擦面10
aを仕上げることによってロータ3が完成する。 〔実施例の作動〕次に、上記電磁クラッチ1の作動を簡
単に説明する。電磁コイル6が通電されると、電磁コイ
ル6が磁力を発生してアーマチュア4をロータ3に吸引
させる。すると、図1の一点鎖線αに示す磁路が形成さ
れる。ここで、内周壁8と底部11との間には非磁性材
よりなる結合部材22が接合され、底部11と外周壁9
おの間には非磁性材よりなる結合部材22および摩擦材
13が接合されているので、ロータ3中において、内周
壁8と底部11との間、および底部11との間、および
底部11と外周壁9との間で磁束は漏れない。従って、
アーマチュア4はロータ3の摩擦面10aに強固に吸着
される。この結果、Vベルトを介してプーリ2に伝達さ
れたエンジンの回転動力が、ロータ3、アーマチュア
4、回転被動体5を介して冷媒圧縮機の入力軸に確実に
伝えられる。
Further, the friction surface 10a is cut from the state shown in FIG. 6C (shown by a two-dot chain line in FIG. 7).
By finishing a, the rotor 3 is completed. Next, the operation of the electromagnetic clutch 1 will be briefly described. When the electromagnetic coil 6 is energized, the electromagnetic coil 6 generates a magnetic force and causes the rotor 3 to attract the armature 4. Then, a magnetic path indicated by a dashed line α in FIG. 1 is formed. Here, a coupling member 22 made of a non-magnetic material is joined between the inner peripheral wall 8 and the bottom 11, and the bottom 11 and the outer peripheral wall 9 are joined.
Since the coupling member 22 and the friction material 13 made of a non-magnetic material are joined to each other, the space between the inner peripheral wall 8 and the bottom 11, between the bottom 11, and the bottom 11 in the rotor 3. Magnetic flux does not leak between the outer peripheral wall 9. Therefore,
The armature 4 is firmly attracted to the friction surface 10a of the rotor 3. As a result, the rotational power of the engine transmitted to the pulley 2 via the V-belt is reliably transmitted to the input shaft of the refrigerant compressor via the rotor 3, the armature 4, and the rotating driven member 5.

【0027】〔実施例の効果〕本実施例に記載した電磁
クラッチ1のロータ3は、内周壁8、外周壁9および底
部11が、1つのリング状板材19aを塑性加工するこ
とによって形成される。このため、部品点数が少なくて
済み、ロータ3の組付性が優れ、かつ製造コストを抑え
ることができる。
[Effects of the Embodiment] In the rotor 3 of the electromagnetic clutch 1 described in the present embodiment, the inner peripheral wall 8, the outer peripheral wall 9 and the bottom 11 are formed by plastically processing one ring-shaped plate member 19a. . Therefore, the number of parts can be reduced, the assemblability of the rotor 3 is excellent, and the manufacturing cost can be reduced.

【0028】また、非磁性材よりなる結合部材22は、
1つのリング状板材19aを塑性加工して形成された溝
21a,21bに全周に亘って接合されるため、溶けた
結合部材22が底部11の外部へ漏れることがない。こ
のため、溶けた結合部材22が底部11の外部へ漏れる
ことによる不良品の発生を防ぐことができる。また、図
17,18に示した従来技術で行っている機械的結合で
は、例えばディスクプレート104と結合部材105と
を機械的結合したとしても、結合前のディスクプレート
104と結合部材105の各面には面粗さが存在し、デ
ィスクプレート104と結合部材105とを機械的結合
をしたとしても微細ではあるが結合面には隙間がある。
これによってディスクプレート104と結合部材105
とは完全には密着しておらず結合強度が弱い。この結
果、本実施例では結合部材22とリング状部材19とが
拡散接合されるため、機械的結合に比べ結合強度が強
い。
The coupling member 22 made of a non-magnetic material is
Since one ring-shaped plate member 19a is joined to grooves 21a and 21b formed by plastic working over the entire circumference, the melted coupling member 22 does not leak to the outside of the bottom portion 11. For this reason, it is possible to prevent occurrence of defective products due to leakage of the melted coupling member 22 to the outside of the bottom 11. Also, in the mechanical coupling performed by the conventional technique shown in FIGS. 17 and 18, even if the disk plate 104 and the coupling member 105 are mechanically coupled, for example, the respective surfaces of the disk plate 104 and the coupling member 105 before coupling are formed. Has a surface roughness, and even if the disk plate 104 and the coupling member 105 are mechanically coupled to each other, there is a gap in the coupling surface, though it is fine.
Thereby, the disk plate 104 and the coupling member 105
Are not completely adhered to each other and the bonding strength is weak. As a result, in the present embodiment, since the coupling member 22 and the ring-shaped member 19 are diffusion-bonded, the coupling strength is higher than the mechanical coupling.

【0029】底部11は、リング状部材19の開放側に
おける形状がが断面円弧状に設けられる。このため、底
部11の厚さを本実施例と同じとして底部11の上記開
放側における形状を断面四角形状にしたものに比べて、
底部11とステータ6bとの距離が長くなり(図1の矢
印β参照)、ステータ6bから底部11に直接磁気が漏
れることによる伝達トルクの低下を抑えることができ
る。
The bottom 11 has an arc-shaped cross section on the open side of the ring-shaped member 19. For this reason, as compared with a case where the thickness of the bottom 11 is the same as that of the present embodiment and the shape of the bottom 11 on the open side is a square cross section,
The distance between the bottom portion 11 and the stator 6b is increased (see the arrow β in FIG. 1), and it is possible to suppress a decrease in transmission torque due to direct leakage of magnetism from the stator 6b to the bottom portion 11.

【0030】また、リング状部材19の開放側における
底部11の形状が断面円弧状に設けられるため、溝21
bの深さ方向にわたる内周壁8と底部11との平均距
離、および溝21aの深さ方向にわたる底部11と外周
壁9の平均距離がそれぞれ長くなり(図1の矢印γ参
照)、内周壁8と底部11との間、および底部11と外
周壁9との間における磁気漏れによる伝達トルクの低下
を抑えることができる。
Further, since the shape of the bottom 11 on the open side of the ring-shaped member 19 is provided in an arc-shaped cross section, the groove 21
b, the average distance between the inner peripheral wall 8 and the bottom 11 over the depth direction and the average distance between the bottom 11 and the outer peripheral wall 9 over the depth direction of the groove 21a are longer (see arrow γ in FIG. 1). Of the transmission torque due to magnetic leakage between the bottom 11 and the bottom 11 and between the bottom 11 and the outer peripheral wall 9 can be suppressed.

【0031】底部11のリング状部材19の開放側が断
面円弧状に設けられるため、溝21a,21bを形成す
るためのリング状金型30のリング状突出部21c,2
1dの肉厚を厚くできる。このため、リング状金型30
の発生応力が低減でき、型寿命を延ばし結果的にロータ
3を製造する上でのコストを抑えることができる。ま
た、本実施例では、結合部材22が露出しない範囲の量
だけ底部11の底面11aを切削して摩擦面10aを形
成し、さらに溝21bに対向する摩擦面10aを切削す
ることで結合物体22を露出させたので、リング状金型
30に設けられるリング状突起部21c,21dの高さ
を低くすることが可能となり、さらにリング状金型30
の発生応力が低減でき、金型寿命を延ばし結果的にロー
タ3を製造する上でのコストを抑えることができる。
Since the open side of the ring-shaped member 19 of the bottom 11 is provided in an arc-shaped cross section, the ring-shaped protrusions 21c, 2 of the ring-shaped mold 30 for forming the grooves 21a, 21b are formed.
The thickness of 1d can be increased. For this reason, the ring-shaped mold 30
Can be reduced, the life of the mold can be extended, and as a result, the cost for manufacturing the rotor 3 can be suppressed. Further, in the present embodiment, the frictional surface 10a is formed by cutting the bottom surface 11a of the bottom portion 11 by an amount not to expose the coupling member 22, and the frictional surface 10a facing the groove 21b is further cut to form the coupling object 22. Is exposed, the height of the ring-shaped protrusions 21c and 21d provided on the ring-shaped mold 30 can be reduced, and furthermore, the ring-shaped mold 30 is formed.
Can be reduced, the life of the mold can be extended, and as a result, the cost for manufacturing the rotor 3 can be suppressed.

【0032】また、摩擦面10aにおいて、凹面24の
図8中上下方向の幅は、凹み23の図中上下方向の幅に
比べ充分小さい。これにより、図1に示すアーマチャ4
との吸着面の面積の減少を抑えられ、強い吸着力を得る
ことができる。またロータ1とアーマチャ4とが断続的
に摩擦係合した際、ロータ1とアーマチャ4との間のす
べりにより摩擦熱が発生するが、凹面24が形成されて
いるので、結合部材22はアーマチャ4と摩擦係合しな
い。これにより、摩擦熱によって結合部材22が溶融状
態あるいは軟化状態となることはない。
In the friction surface 10a, the width of the concave surface 24 in the vertical direction in FIG. 8 is sufficiently smaller than the width of the recess 23 in the vertical direction in FIG. Thereby, the armature 4 shown in FIG.
, The reduction of the area of the suction surface can be suppressed, and a strong suction force can be obtained. When the rotor 1 and the armature 4 are intermittently frictionally engaged with each other, frictional heat is generated due to slip between the rotor 1 and the armature 4. However, since the concave surface 24 is formed, the coupling member 22 is connected to the armature 4. Does not frictionally engage with Thereby, the coupling member 22 is not brought into a molten state or a softened state due to frictional heat.

【0033】〔第2実施例〕次に、上記第1実施例と異
なる製造方法にてロータ3を製造する第2実施例につい
て説明する。ここで、第2実施例の製造方法は請求項2
記載の製造方法に基づくものであり、具体的には第1実
施例における摩擦面形成工程と凹面形成工程以外は、第
1実施例と同じである。従って、以下に第2実施例にお
ける摩擦面形成工程と凹面形成工程について説明する。
[Second Embodiment] Next, a second embodiment in which the rotor 3 is manufactured by a manufacturing method different from that of the first embodiment will be described. Here, the manufacturing method of the second embodiment is described in claim 2
This is based on the manufacturing method described, and is specifically the same as the first embodiment except for the friction surface forming step and the concave surface forming step in the first embodiment. Therefore, the friction surface forming step and the concave surface forming step in the second embodiment will be described below.

【0034】図10の二点鎖線にて示すように、リング
状部材19の内周壁8の内周側、外周壁9の図中上端
部、および底部11の開放側端面31をそれぞれ全周に
亘って切削するとともに、底部11の底面11aを全周
に亘って、非磁性材よりなる結合部材22が露出するま
で切削して摩擦面10aを形成する。ここで、溝21b
は溝21aより深いために溝21bに接合された結合部
材22だけが摩擦面10aに露出する(摩擦面形成工
程)。
As shown by a two-dot chain line in FIG. 10, the inner peripheral side of the inner peripheral wall 8 of the ring-shaped member 19, the upper end of the outer peripheral wall 9 in the drawing, and the open side end face 31 of the bottom 11 are respectively formed over the entire circumference. In addition to cutting, the friction surface 10a is formed by cutting the bottom surface 11a of the bottom portion 11 over the entire circumference until the coupling member 22 made of a non-magnetic material is exposed. Here, the groove 21b
Is deeper than the groove 21a, only the coupling member 22 joined to the groove 21b is exposed on the friction surface 10a (a friction surface forming step).

【0035】次に、図11に示すように、溝21aに対
向する摩擦面10aを全周に亘って切削することによっ
て凹ませて結合部材22を露出させ、摩擦材13を嵌め
るための凹み23を形成する。また、溝21aに接合さ
れた結合部材22を全周に亘って切削することによって
凹ませ、凹面24を形成する(凹面形成工程)。ここ
で、摩擦面10aにおける凹面24の幅は、凹面形成工
程を行う前での、摩擦面10aに露出した部分の結合部
材22の径方向の幅と同等である。ここで、図11のB
の拡大図を図12に示す。
Next, as shown in FIG. 11, the friction surface 10a facing the groove 21a is cut by cutting the entire circumference to make the coupling member 22 exposed, and the recess 23 for fitting the friction material 13 is formed. To form In addition, the coupling member 22 joined to the groove 21a is formed by cutting over the entire circumference to form a concave surface 24 (a concave surface forming step). Here, the width of the concave surface 24 on the friction surface 10a is equal to the radial width of the portion of the coupling member 22 exposed on the friction surface 10a before performing the concave surface forming step. Here, B in FIG.
12 is shown in FIG.

【0036】以上に述べたように第2実施例では、摩擦
面10aにおいて、この凹面24と露出した結合部材2
2の径方向の幅は同等とするが、これによって、結合部
材22とリング状部材19との接合面積の減少が最小限
に抑えられる。この結果、マグネットクラッチが通電さ
れ、ロータ3が回転することによって生じる応力に対し
強い耐久性が得られる。
As described above, in the second embodiment, the concave surface 24 and the exposed connecting member 2 are formed on the friction surface 10a.
2 have the same radial width, but this minimizes the reduction in the joint area between the coupling member 22 and the ring-shaped member 19. As a result, the magnet clutch is energized, and strong durability against stress generated by rotation of the rotor 3 is obtained.

【0037】〔第3実施例〕図13は第3実施例を示す
ロータ3の製造工程のうちリング状部材形成工程と溝形
成工程についての要部説明図である。第1実施例では、
冷間鍛造によってリング状部材19へ加工し、プレス加
工により溝21a,溝21bを形成したが、以下に述べ
る工程でリング状部材19を製造することもできる。
[Third Embodiment] FIG. 13 is an explanatory view of a main part of a ring-shaped member forming step and a groove forming step in a manufacturing process of a rotor 3 according to a third embodiment. In the first embodiment,
Although the ring-shaped member 19 was formed by cold forging and the grooves 21a and 21b were formed by press working, the ring-shaped member 19 can be manufactured by the steps described below.

【0038】まず、ロータ3の摩擦壁10とほぼ同じ板
厚の磁性体金属板(例えば、SPCC,SPHC等の底
炭素鋼)を、プレス打ち抜き加工によって打ち抜き、図
10(a)に示すような円形の円板材19dを形成す
る。(打ち抜き加工)次に、図13(b)に示すよう
に、円板材19dの中心部に、プレス打ち抜き加工によ
って孔部19eを形成し、リング状板材19fを形成す
る。(打ち抜き加工)。次に塑性加工である冷間鍛造に
よってリング状板材19fの内周と外周との中間部19
1fを凹ませ、リング状部材19fを形成する(リング
状部材形成工程)。
First, a magnetic metal plate (for example, bottom carbon steel such as SPCC and SPHC) having substantially the same thickness as the friction wall 10 of the rotor 3 is punched by press punching, as shown in FIG. A circular disk material 19d is formed. (Punching) Next, as shown in FIG. 13B, a hole 19e is formed in the center of the disk 19d by press punching to form a ring-shaped plate 19f. (Punching). Next, an intermediate portion 19 between the inner periphery and the outer periphery of the ring-shaped plate member 19f is formed by cold forging as plastic working.
1f is recessed to form a ring-shaped member 19f (ring-shaped member forming step).

【0039】次に、図13(c)に示すように、上記中
間部191fの全周に亘って、図中上方側に突出したリ
ング状突出部20を冷間鍛造によって形成する(溝形成
工程)。次に、リング状部材19fの内周側部分および
外周側部分を、図13(d)に示すように冷間鍛造によ
ってそれぞれ筒状に曲げて内周壁8および外周壁9を形
成する。
Next, as shown in FIG. 13C, a ring-shaped projecting portion 20 projecting upward in the figure is formed by cold forging over the entire circumference of the intermediate portion 191f (groove forming step). ). Next, the inner peripheral portion and the outer peripheral portion of the ring-shaped member 19f are formed into a cylindrical shape by cold forging as shown in FIG.

【0040】以上によって、内周壁8、外周壁9、およ
び内周壁8と外周壁8を繋ぐ底部11からなる断面コの
字形のリング状部材19が形成される。なお、リング状
部材19の開放側、つまり図上の上方側における底部1
1には、突出部20の内外周に2本の溝21a,21b
が形成されるが、この2本の溝21a,21bの断面形
状は、突出部20の端部が断面円弧に設けられているこ
とにより、リング状部材19の開放側へ向けて広がった
形状をしている。また、内周側の溝21bの深さは、外
周側の溝21aより深く設けられている。
As described above, a ring-shaped member 19 having a U-shaped cross section including the inner peripheral wall 8, the outer peripheral wall 9, and the bottom 11 connecting the inner peripheral wall 8 and the outer peripheral wall 8 is formed. The bottom 1 on the open side of the ring-shaped member 19, that is, on the upper side in the figure.
1, two grooves 21a and 21b are provided on the inner and outer circumferences of the protrusion 20.
However, the cross-sectional shape of the two grooves 21 a and 21 b is such that the end of the protruding portion 20 is provided in an arc of a cross-section, so that the shape widens toward the open side of the ring-shaped member 19. are doing. The depth of the groove 21b on the inner peripheral side is provided deeper than the groove 21a on the outer peripheral side.

【0041】また、本実施例では、塑性加工である冷間
鋳造によって溝21a,21bを形成しているため、こ
れらの溝21a,21bを打ち抜きによって加工したも
のに比べロータ3を小型化することができる。つまり、
図19に示す溝129,130は、溝129,130に
それぞれ対向する位置に円弧状の突出部を設けた金型
(図示しない)をロータ126にプレスし、打ち抜くこ
とで形成される。また、ロータ126を小型化しようと
するには、溝129,130の径方向の幅を狭くするこ
とが必要である。
In this embodiment, since the grooves 21a and 21b are formed by cold casting, which is a plastic working, the rotor 3 can be downsized as compared with the case where these grooves 21a and 21b are formed by punching. Can be. That is,
The grooves 129 and 130 shown in FIG. 19 are formed by pressing a die (not shown) having arc-shaped projections at positions facing the grooves 129 and 130, against the rotor 126, and punching. In order to reduce the size of the rotor 126, it is necessary to reduce the radial width of the grooves 129 and 130.

【0042】しかし、溝129,130の径方向の幅を
狭くすると、上記金型に設けられる突出部の径方向の幅
が小さくなる。これにより、上記金型の突出部は、打ち
抜き加工時の衝撃および応力に耐えることができず、金
型が破損する可能性がある。しかし、本実施例では塑性
加工である冷間鋳造によって溝21a,21bを形成す
る。これによって、溝129,130をプレス打抜き加
工で形成する場合、溝129,130の間隔は底部11
板厚の0.6倍が最小限界であったが、本実施例によっ
て0.3倍程度まで小さくすることが可能となり、ロー
タ3を小型化することができる。
However, when the radial width of the grooves 129 and 130 is reduced, the radial width of the protrusion provided on the mold is reduced. As a result, the projecting portion of the mold cannot withstand the impact and stress at the time of punching, and the mold may be damaged. However, in this embodiment, the grooves 21a and 21b are formed by cold casting as plastic working. Accordingly, when the grooves 129 and 130 are formed by press punching, the interval between the grooves 129 and 130 is set to the bottom 11.
Although the minimum limit is 0.6 times the plate thickness, the present embodiment allows the thickness to be reduced to about 0.3 times, and the rotor 3 can be downsized.

【0043】〔第4実施例〕本実施例では、摩擦面形成
工程と凹面形成工程の一例を示す。第1実施例では溝2
1aより溝21bの方を深くしたが、溝21aと溝21
bを同等の深さにしても良い。この場合、底部11の底
面11aを非磁性材よりなる結合部材22が露出しない
範囲の量だけ削除し、摩擦面10aを形成する(摩擦面
形成工程)。
[Fourth Embodiment] In this embodiment, an example of a friction surface forming step and a concave surface forming step will be described. In the first embodiment, the groove 2
1a, the groove 21b is deeper than the groove 21a.
b may have the same depth. In this case, the bottom surface 11a of the bottom 11 is removed by an amount that does not expose the coupling member 22 made of a non-magnetic material, and the friction surface 10a is formed (a friction surface forming step).

【0044】次に外周側の溝21aに対向する部分の摩
擦面10aを切削することによって凹ませ、摩擦材13
を嵌めるための凹み23を形成し、結合部材22を摩擦
面10a側に露出させる。そして、内周側の溝21bに
対向する部分の摩擦面10aを切削することによって凹
ませ、凹面24を形成し、結合部材を露出させる(凹面
切削工程)。
Next, a portion of the friction surface 10a facing the groove 21a on the outer peripheral side is cut by cutting, so that the friction material 13 is formed.
Is formed, and the coupling member 22 is exposed on the friction surface 10a side. Then, a portion of the friction surface 10a facing the groove 21b on the inner peripheral side is cut to be dented, thereby forming a concave surface 24 and exposing the coupling member (concave surface cutting step).

【0045】または、底面11aを非磁性材よりなる結
合部材22が露出するまで切削して摩擦面10aを形成
し、溝21a,21bに接合された結合部材22を共に
摩擦面10aに露出させる(摩擦面形成工程)。次に、
溝21aに接合され結合部材22を摩擦面10a側から
切削することによって凹ませて結合部材22を露出さ
せ、摩擦材13を嵌めるための凹み23を形成する。ま
た、溝21aに接合された結合部材22を摩擦面10a
側から切削することによって凹ませ、凹面24を形成す
る。ここで、摩擦面10aにおける凹面24の幅は、凹
面24を形成する前での摩擦面10aに露出した部分の
結合部材22の径方向の幅と同等である(凹面形成工
程)。
Alternatively, the friction surface 10a is formed by cutting the bottom surface 11a until the coupling member 22 made of a non-magnetic material is exposed, and the coupling member 22 joined to the grooves 21a and 21b is both exposed on the friction surface 10a ( Friction surface forming step). next,
By cutting the coupling member 22 joined to the groove 21a from the friction surface 10a side, the coupling member 22 is dented to expose the coupling member 22 and form a concave 23 for fitting the friction material 13. Further, the coupling member 22 joined to the groove 21a is connected to the friction surface 10a.
A concave surface 24 is formed by cutting from the side. Here, the width of the concave surface 24 on the friction surface 10a is equal to the radial width of the portion of the coupling member 22 exposed on the friction surface 10a before the concave surface 24 is formed (concave surface forming step).

【0046】〔第5実施例〕図14は第5実施例を示す
ロータの製造工程のうちの接合工程についての要部説明
図である。本実施例は、誘導加熱による接合工程の一例
を示す。リング状部材19の底部11に設けられた2本
の溝21a、21b内に、リング状部材19よりも融点
の低い非磁性材(例えば銅)の粉体状の結合部材22を
置き、磁性材(例えば低炭素鋼)であるリング状部材1
9の底部11を、誘導加熱装置24によって加熱する。
この誘導加熱装置24は、リング状部材19の底部11
を覆う断面コ字形のリング状に設けられ、リング状部材
19に誘導電流を発生させてリング状部材19を加熱す
る装置である。そして、誘導加熱装置40によるリング
状部材19の発熱によって結合部材22を溶融させ、そ
の後リング状部材19を冷却して溶けた結合部材22を
固化する。この固化時に、リング状部材19に結合部材
22が拡散し、分子間でリング状部材19と結合部材2
2が固化して強固に接合する。
Fifth Embodiment FIG. 14 is an explanatory view of a main part of a joining step in a rotor manufacturing process according to a fifth embodiment. This embodiment shows an example of a bonding step by induction heating. A powdery coupling member 22 made of a nonmagnetic material (for example, copper) having a lower melting point than that of the ring-shaped member 19 is placed in the two grooves 21 a and 21 b provided on the bottom 11 of the ring-shaped member 19. (For example, low-carbon steel) ring-shaped member 1
The bottom 11 of 9 is heated by an induction heating device 24.
The induction heating device 24 is provided at the bottom 11 of the ring-shaped member 19.
This is a device that is provided in a ring shape having a U-shaped cross section and that generates an induced current in the ring member 19 to heat the ring member 19. Then, the coupling member 22 is melted by the heat generated by the ring-shaped member 19 by the induction heating device 40, and then the ring-shaped member 19 is cooled to solidify the melted coupling member 22. At the time of this solidification, the bonding member 22 diffuses into the ring-shaped member 19, and the ring-shaped member 19 and the bonding member 2
2 solidifies and joins firmly.

【0047】なお、リング状部材19の底部11の加熱
および冷却が行われる際は、リング状部材19がチャッ
ク25により保持されて回転駆動される。このリング状
部材19の回転によって、粉体状結合物体22の溶融状
態および固化具合のバラツキが抑えられ、溶融不良等の
発生が防がれる。なお、本実施例ではリング状部材19
の底部11全体を誘導加熱装置24で加熱したが、底部
11の一部を加熱するように誘導加熱装置24などの局
部加熱装置を配し、チャック25でリング状部材19を
回転して底部11全体を加熱するように設けても良い。
When the bottom 11 of the ring-shaped member 19 is heated and cooled, the ring-shaped member 19 is held by the chuck 25 and driven to rotate. Due to the rotation of the ring-shaped member 19, the variation in the melting state and the solidification of the powder-like bonded object 22 is suppressed, and the occurrence of defective melting or the like is prevented. In this embodiment, the ring-shaped member 19 is used.
Is heated by the induction heating device 24, but a local heating device such as the induction heating device 24 is disposed so as to heat a part of the bottom portion 11, and the ring-shaped member 19 is rotated by the chuck 25 to rotate the bottom portion 11. You may provide so that the whole may be heated.

【0048】また、粉体状結合物体22に金属酸化を防
ぐフラックスを混在したり、溝21a、21b内にフラ
ックスを塗布することによって、接合部の酸化を防ぐこ
とができる。これにより、接合部の強度を高く保つため
に、接合工程を真空中あるいは不活性ガス雰囲気中で行
う必要がなく、製造コストを低く抑えることができる。
また、リング状部材19の酸化は防止できないため、必
要に応じてリング状部材19に不活性ガスを吹きつけて
も良い。
Further, by mixing a flux for preventing metal oxidation into the powdered joint body 22 or applying a flux in the grooves 21a and 21b, oxidation of the joint can be prevented. Accordingly, it is not necessary to perform the bonding step in a vacuum or in an inert gas atmosphere in order to keep the strength of the bonding portion high, and the manufacturing cost can be reduced.
Further, since oxidation of the ring-shaped member 19 cannot be prevented, an inert gas may be blown to the ring-shaped member 19 as necessary.

【0049】この実施例では、結合部材22に粉体状の
材料を用いたが、リング状の線材や粒状の材料を用いて
も良い。 〔第6実施例〕図15は第6実施例を示すロータの製造
工程のうちの接合工程ついての要部説明図である。
In this embodiment, a powdery material is used for the coupling member 22, but a ring-shaped wire or a granular material may be used. Sixth Embodiment FIG. 15 is an explanatory view of a main part of a joining process in a rotor manufacturing process according to a sixth embodiment.

【0050】本実施例は、非磁性材よりなる結合部材2
2を溶かしてリング状部材19の底部11の2本の溝2
1a、21b内に流し込み接合する接合工程の一例を示
す。本実施例では、非磁性材よりなる結合部材22を溶
かして2本の溝21a、21b内に流し込む技術として
TIG溶接(イナートガスタングステンアーク溶接)を
用いた例を示す(図中は外側の溝21bの加工例を示
す)。
In this embodiment, the coupling member 2 made of a non-magnetic material is used.
2 and two grooves 2 in the bottom 11 of the ring-shaped member 19.
An example of a joining step of pouring and joining into 1a and 21b will be described. In the present embodiment, an example is shown in which TIG welding (inert gas tungsten arc welding) is used as a technique for melting the coupling member 22 made of a non-magnetic material and pouring it into the two grooves 21a and 21b (the outer groove 21b in the figure). Shows an example of processing).

【0051】このTIG溶接は、ノズル26から溶接部
である溝21a、21bに不活性ガス(アルゴンガス、
ヘリウムガス等)を吹きつけるとともに、タングステン
電極27とリング状部材19に高電圧を印加してタング
ステン電極27とリング状部材19の間にアークを発生
させ、線状に設けられた非磁性材よりなる結合部材22
をアークの熱で溶かす。そして、溶けた結合部材22を
溝21aまたは溝21b内に充填し、溝21aおよび溝
21b内に結合部材22を接合する。
In this TIG welding, an inert gas (argon gas,
(Helium gas or the like) is sprayed, and a high voltage is applied to the tungsten electrode 27 and the ring-shaped member 19 to generate an arc between the tungsten electrode 27 and the ring-shaped member 19. Connecting member 22
Is melted by the heat of the arc. Then, the melted coupling member 22 is filled in the groove 21a or the groove 21b, and the coupling member 22 is joined in the groove 21a and the groove 21b.

【0052】〔第7実施例〕図16は第7実施例を示す
ロータの製造工程のうち接合工程についてのの要部説明
図である。本実施例では、MIG溶接(イナートガスメ
タルアーク溶接)を用いて非磁性材よりなる結合部材2
2を溶かし、溶けた結合部材22を2本の溝21a、2
1b内に流し込み接合する接合工程の一例を示す(図1
3は外側の溝21bの加工例を示す)。
Seventh Embodiment FIG. 16 is an explanatory view of a main part of a joining process in a rotor manufacturing process according to a seventh embodiment. In this embodiment, the joining member 2 made of a non-magnetic material is formed using MIG welding (inert gas metal arc welding).
2 is melted, and the melted connecting member 22 is inserted into the two grooves 21a, 2
1b shows an example of a joining step of pouring and joining in FIG.
3 shows a processing example of the outer groove 21b).

【0053】このMIG溶接は、ノズル26から溶接部
である溝21a、21bに不活性ガスを吹きつける。こ
の時、電極である結合部材22とリング状部材19に高
電圧を印加して、結合部材22とリング状部材19の間
にアークを発生させ、アークの熱で結合部材22を溶か
す。そして、溶けた結合部材22を溝21aまたは溝2
1b内に充填し、溝21aおよび溝21b内に結合部材
22を接合する。
In the MIG welding, an inert gas is blown from the nozzle 26 to the grooves 21a and 21b, which are welding portions. At this time, a high voltage is applied to the coupling member 22 and the ring-shaped member 19, which are electrodes, to generate an arc between the coupling member 22 and the ring-shaped member 19, and the coupling member 22 is melted by the heat of the arc. Then, the melted connecting member 22 is inserted into the groove 21a or the groove 2a.
1b, and the joining member 22 is joined in the grooves 21a and 21b.

【0054】なお、電極である結合部材22は、このM
IG溶接時、連続的に供給されながら実施される。 〔変形例〕上記各実施例では、リング状部材形成工程時
に、塑性加工の一例として冷間鍛造を例に示したが、プ
レス加工など他の加工手段を用いても良い。
The coupling member 22 as an electrode is
During IG welding, it is performed while being continuously supplied. [Modification] In the above embodiments, cold forging is described as an example of plastic working in the step of forming a ring-shaped member. However, other working means such as press working may be used.

【0055】上記各実施例では、非磁性材よりなる結合
部材22の一例として銅を示したが、アルミニウムなど
他の非磁性体金属や、用途に応じては非磁性体樹脂を用
いても良い。また、リング状部材19を加熱して底部1
1内の非磁性材よりなる結合部材22を溶かしたり、溶
けた結合部材22を底部11に流し込んた例を示した
が、ステンレスなどの非磁性体金属を摩擦圧接法によっ
て底部11に接合しても良い。
In each of the above embodiments, copper is shown as an example of the coupling member 22 made of a non-magnetic material. However, other non-magnetic metals such as aluminum, or a non-magnetic resin may be used depending on the application. . Further, the ring-shaped member 19 is heated to
1 shows an example in which the joining member 22 made of the nonmagnetic material in 1 is melted, or the melted joining member 22 is poured into the bottom portion 11. However, a nonmagnetic metal such as stainless steel is joined to the bottom portion 11 by a friction welding method. Is also good.

【0056】また、リング状部材19の開放側における
底部11の形状を断面円弧形状に設けたが、前記開放側
に向かって窄まるテーパ形状としたり、断面矩形に設け
ても良く、いずれにしても底部11の形状を断面四角形
状にした場合に比べて、底部11とステータ6bとの距
離が長くなる。また、第1実施例においては摩擦面形成
工程後に凹面形成工程を行ったが、以下に述べるように
順を逆にしてもよい。
Although the shape of the bottom 11 on the open side of the ring-shaped member 19 is provided in an arcuate cross section, the bottom 11 may be provided in a tapered shape narrowing toward the open side or in a rectangular cross section. Also, the distance between the bottom 11 and the stator 6b is longer than when the shape of the bottom 11 is rectangular in cross section. Further, in the first embodiment, the concave surface forming step is performed after the friction surface forming step, but the order may be reversed as described below.

【0057】まず、溝21aに対向する底部11の底面
11aを全周に亘って切削することによって凹ませ、摩
擦材13を嵌めるための凹み23を形成し、結合部材2
2を底面11a側に露出させる。そして、溝21bに対
向する底部11の底面11aを全周に亘って切削するこ
とによって凹ませ、凹面24を形成し、結合部材22を
底部11の底面11a側に露出させる。
First, the bottom surface 11a of the bottom portion 11 facing the groove 21a is cut by cutting the entire circumference to form a recess 23 for fitting the friction material 13 therein.
2 is exposed on the bottom surface 11a side. Then, the bottom surface 11a of the bottom portion 11 facing the groove 21b is cut by being cut over the entire circumference to form a concave surface 24, and the coupling member 22 is exposed on the bottom surface 11a side of the bottom portion 11.

【0058】次に、リング状部材19の内周壁8の内周
側、外周壁9の図5における2点鎖線で示す部分に相当
する端部および底部11の開放側端面31をそれぞれ全
周に亘って切削するとともに、底面11aを全周に亘っ
て切削し、摩擦面10aを形成する。ここで、摩擦面1
0aに対し凹面24は凹んでいる。
Next, the inner peripheral side of the inner peripheral wall 8 of the ring-shaped member 19, the end of the outer peripheral wall 9 corresponding to the portion shown by the two-dot chain line in FIG. While cutting over, the bottom surface 11a is cut over the entire circumference to form the friction surface 10a. Here, friction surface 1
The concave surface 24 is concave with respect to 0a.

【0059】また、第2実施例において、摩擦面形成工
程後に凹面形成工程を行ったが、以下に述べるように順
を逆にしてもよい。まず、溝21aに対向する底部11
の底面11aを全周に亘って切削することによって凹ま
せて結合部材22を露出させ、摩擦材13を嵌めるため
の凹み23を形成する。また、溝21aに対向する底部
11の底面11aを全周に亘って切削することによって
凹ませ、凹面24を形成する。
In the second embodiment, the concave surface forming step is performed after the friction surface forming step. However, the order may be reversed as described below. First, the bottom 11 facing the groove 21a
By cutting the bottom surface 11a over the entire circumference, the coupling member 22 is exposed to form a recess 23 for fitting the friction material 13. In addition, the bottom surface 11a of the bottom portion 11 facing the groove 21a is formed by cutting over the entire circumference to form a concave surface 24.

【0060】次に、リング状部材19の内周壁8の内周
側、外周壁9の上端部、および底部11の開放側端面3
1をそれぞれ全周に亘って切削するとともに、底部11
の底面11aを全周に亘って、切削して摩擦面10aを
形成する。ここで、摩擦面10aに対し凹面24は凹ん
でいる。また、第2実施例および第2実施例では、切削
工程によって凹面24を形成したが、リング状突出部が
設けられたリング状金型で底面11aを摩擦面10a側
から押しつけることで凹面24を形成してもよい。
Next, the inner peripheral side of the inner peripheral wall 8 of the ring-shaped member 19, the upper end of the outer peripheral wall 9, and the open end face 3 of the bottom 11.
1 along the entire circumference, and the bottom 11
Is cut over the entire circumference to form a friction surface 10a. Here, the concave surface 24 is concave with respect to the friction surface 10a. In the second embodiment and the second embodiment, the concave surface 24 is formed by a cutting process. However, the concave surface 24 is formed by pressing the bottom surface 11a from the friction surface 10a side with a ring-shaped mold provided with a ring-shaped protrusion. It may be formed.

【0061】また、上記各実施例では、複数の溝として
2つの溝を形成する例を挙げたが、3つ以上形成しても
良い。また、上記各実施例では、冷媒圧縮機の電磁クラ
ッチを例に示したが、スーパーチャージャや自動速機な
ど、動力の伝達および遮断を行う全ての電磁クラッチに
適用可能なものである。
In each of the above embodiments, two grooves are formed as a plurality of grooves. However, three or more grooves may be formed. Further, in each of the above embodiments, the electromagnetic clutch of the refrigerant compressor is described as an example, but the present invention can be applied to all electromagnetic clutches that transmit and cut off power, such as a supercharger and an automatic speed machine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ロータの断面図である(第1実施例)。FIG. 1 is a sectional view of a rotor (first embodiment).

【図2】ロータの製造工程の説明図である(第1実施
例)。
FIG. 2 is an explanatory diagram of a rotor manufacturing process (first embodiment).

【図3】ロータの製造工程の説明図である(第1実施
例)。
FIG. 3 is an explanatory diagram of a rotor manufacturing process (first embodiment).

【図4】ロータの製造工程の説明図である(第1実施
例)。
FIG. 4 is an explanatory diagram of a rotor manufacturing process (first embodiment).

【図5】ロータの製造工程の説明図である(第1実施
例)。
FIG. 5 is an explanatory diagram of a rotor manufacturing process (first embodiment).

【図6】ロータの製造工程の説明図である。(第1実施
例)。
FIG. 6 is an explanatory diagram of a manufacturing process of the rotor. (First embodiment).

【図7】ロータの製造工程の説明図である。(第1実施
例)。
FIG. 7 is an explanatory diagram of a manufacturing process of the rotor. (First embodiment).

【図8】ロータの断面図である(第1実施例)。FIG. 8 is a sectional view of a rotor (first embodiment).

【図9】図6(a)のA部における拡大図である(第1
実施例)。
FIG. 9 is an enlarged view of a portion A of FIG.
Example).

【図10】ロータの製造工程の要部説明図である(第2
実施例)。
FIG. 10 is an explanatory view of a main part of a rotor manufacturing process (second example).
Example).

【図11】ロータの製造工程の要部説明図である(第2
実施例)。
FIG. 11 is an explanatory diagram of a main part of a rotor manufacturing process (second example).
Example).

【図12】図11のB部における拡大図である(第2実
施例)。
FIG. 12 is an enlarged view of a portion B in FIG. 11 (second embodiment).

【図13】ロータの製造工程の要部説明図である(第3
実施例)。
FIG. 13 is an explanatory diagram of a main part of a rotor manufacturing process (third embodiment).
Example).

【図14】ロータの製造工程の要部説明図である(第4
実施例)。
FIG. 14 is an explanatory view of a main part of a rotor manufacturing process (fourth step).
Example).

【図15】ロータの製造工程の要部説明図である(第5
実施例)。
FIG. 15 is an explanatory diagram of a main part of a manufacturing process of a rotor (fifth embodiment);
Example).

【図16】ロータの製造工程の要部説明図である(第6
実施例)。
FIG. 16 is an explanatory diagram of a main part of a rotor manufacturing process (sixth step).
Example).

【図17】アーマチャの断面図である(従来技術)。FIG. 17 is a sectional view of an armature (prior art).

【図18】電磁クラッチの断面図である(従来技術)。FIG. 18 is a sectional view of an electromagnetic clutch (prior art).

【図19】ロータを示す図である(従来技術)。FIG. 19 is a view showing a rotor (prior art).

【符号の説明】[Explanation of symbols]

1 電磁クラッチ 3 ロータ 8 内周壁 9 外周壁 10a 摩擦面 11 底部 19 リング状部材 22 結合部材 21a 溝 21b 溝 24 凹面 DESCRIPTION OF SYMBOLS 1 Electromagnetic clutch 3 Rotor 8 Inner peripheral wall 9 Outer peripheral wall 10a Friction surface 11 Bottom part 19 Ring-shaped member 22 Coupling member 21a Groove 21b Groove 24 Concave surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥羽山 昌史 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 昭63−172025(JP,A) 特開 昭56−55721(JP,A) 実開 昭63−45428(JP,U) 米国特許3712439(US,A) (58)調査した分野(Int.Cl.7,DB名) F16D 27/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masafumi Toba 1-1-1, Showa-cho, Kariya-shi, Aichi Japan Inside Denso Co., Ltd. (56) References JP-A-63-172025 (JP, A) JP-A-56 -55721 (JP, A) U.S.A. 63-45428 (JP, U) U.S. Pat. No. 3,712,439 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) F16D 27/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁性体のリング状板材を、塑性加工する
ことによって内周壁、外周壁、およびこの内周壁と外周
壁とを繋ぐ底部からなる断面コの字形のリング状部材を
形成するリング状部材形成工程と、 この工程を行った後に、前記リング状部材の開放側に、
全周に亘って前記底部に複数のリング状の溝を形成する
溝形成工程と、 前記複数のリング状の溝のそれぞれに、全周に亘って非
磁性材よりなる結合部材を接合する接合工程と、 前記結合部材が露出しない範囲の量だけ前記底部の底面
を切削して摩擦面を形成する摩擦面形成工程と、 前記結合部材が接合された前記溝に対向する前記摩擦面
の一部を凹まして凹面を形成し、前記結合部材を前記摩
擦面側に露出させる凹面形成工程と、を有する電磁クラ
ッチ用ロータの製造方法。
1. A ring-shaped member having a U-shaped cross section composed of an inner peripheral wall, an outer peripheral wall, and a bottom connecting the inner peripheral wall and the outer peripheral wall by plastically processing a ring-shaped plate material of a magnetic material. A member forming step, and after performing this step, on the open side of the ring-shaped member,
A groove forming step of forming a plurality of ring-shaped grooves in the bottom portion over the entire circumference; and a joining step of bonding a coupling member made of a non-magnetic material to each of the plurality of ring-shaped grooves over the entire circumference. A friction surface forming step of forming a friction surface by cutting a bottom surface of the bottom portion by an amount that does not expose the coupling member; and a part of the friction surface facing the groove to which the coupling member is joined. A concave surface forming step of forming a concave surface by exposing the coupling member to the friction surface side.
JP29199293A 1993-03-18 1993-11-22 Method for manufacturing rotor for electromagnetic clutch Expired - Lifetime JP3252572B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29199293A JP3252572B2 (en) 1993-11-22 1993-11-22 Method for manufacturing rotor for electromagnetic clutch
US08/694,804 US5791039A (en) 1993-03-18 1996-08-09 Method for manufacturing a rotor of a magnetic clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29199293A JP3252572B2 (en) 1993-11-22 1993-11-22 Method for manufacturing rotor for electromagnetic clutch

Publications (2)

Publication Number Publication Date
JPH07145832A JPH07145832A (en) 1995-06-06
JP3252572B2 true JP3252572B2 (en) 2002-02-04

Family

ID=17776121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29199293A Expired - Lifetime JP3252572B2 (en) 1993-03-18 1993-11-22 Method for manufacturing rotor for electromagnetic clutch

Country Status (1)

Country Link
JP (1) JP3252572B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864507B2 (en) * 1997-08-04 2007-01-10 株式会社デンソー Manufacturing method of pulley integrated rotor
JP3855383B2 (en) * 1997-08-07 2006-12-06 株式会社デンソー Manufacturing method of pulley integrated rotor
KR100676745B1 (en) * 2000-05-31 2007-01-31 한라공조주식회사 Pully for electro magnetic clutch of compressor
JP4993098B2 (en) * 2007-06-27 2012-08-08 シンフォニアテクノロジー株式会社 Electromagnetic coupling device and manufacturing method thereof
JP6548941B2 (en) * 2014-08-08 2019-07-24 株式会社ヴァレオジャパン Electromagnetic clutch

Also Published As

Publication number Publication date
JPH07145832A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JP3633654B2 (en) Manufacturing method of rotor for electromagnetic clutch and electromagnetic clutch provided with rotor manufactured by the manufacturing method
US6998752B2 (en) Dynamo-electric machine
US6717310B2 (en) Spindle motor and method for assembling the same
JP3661582B2 (en) Rotor for magnet motor
JP2001136690A (en) Rotor of rotating machine
US5791039A (en) Method for manufacturing a rotor of a magnetic clutch
JP3252572B2 (en) Method for manufacturing rotor for electromagnetic clutch
JPH0880015A (en) Electric rotary machine
JPH1023719A (en) Disk drive motor, rotor thereof and rotor manufacture
JPH11234975A (en) Assembly for rotor of generator
WO2014208001A1 (en) Electromagnetic clutch
US5392889A (en) Electromagnetic clutch with an improved electromagnetic housing
JP5354793B2 (en) Axial gap type motor
JPH0674257A (en) Manufacture of rotor for electromagnetic clutch
JPH1151087A (en) Manufacture of pulley integrated type rotor
JP3148584B2 (en) Spindle motor
JPH07224860A (en) Manufacture of rotor for electromagnetic clutch
JP2017227268A (en) Electromagnetic clutch and manufacturing method of electromagnetic clutch
JPH11196545A (en) Rotor in dc machine and manufacturing method
JPH04325846A (en) Securing method of armature core
JPH0650357A (en) Electromagentic clutch
US3672042A (en) Method of making pole members
JPH0266324A (en) Electromagnetic clutch
JPH0432503Y2 (en)
JP2002044914A (en) Disc-drive motor, motor rotor and manufacturing method for the motor rotor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

EXPY Cancellation because of completion of term