JPH0673732B2 - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JPH0673732B2
JPH0673732B2 JP63090123A JP9012388A JPH0673732B2 JP H0673732 B2 JPH0673732 B2 JP H0673732B2 JP 63090123 A JP63090123 A JP 63090123A JP 9012388 A JP9012388 A JP 9012388A JP H0673732 B2 JPH0673732 B2 JP H0673732B2
Authority
JP
Japan
Prior art keywords
mold
heat flux
temperature difference
thermocouples
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63090123A
Other languages
Japanese (ja)
Other versions
JPH01262050A (en
Inventor
芳和 黒瀬
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63090123A priority Critical patent/JPH0673732B2/en
Publication of JPH01262050A publication Critical patent/JPH01262050A/en
Publication of JPH0673732B2 publication Critical patent/JPH0673732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼の連続鋳造方法に係り、詳しくは、鋳型銅板
内に配置される浸漬ノズルを中心として対称位置に設け
た熱電対や、鋳型銅板の深さ方向に埋設された熱電対に
より検出される温度差、更に後者の熱電対の温度差によ
り求められる熱流束差をもとにして鋳型内の溶鋼偏流を
検出し、この偏流を、鋳型銅板のうちの短辺移動により
おさえて、湯面変動を制御しつつ、鋳片品質を安定化さ
せる鋼の連続鋳造方法に係る。
Description: TECHNICAL FIELD The present invention relates to a continuous casting method for steel, and more specifically, to thermocouples provided at symmetrical positions with respect to a dipping nozzle arranged in a mold copper plate and a mold copper plate. The molten steel drift in the mold is detected based on the temperature difference detected by the thermocouple buried in the depth direction and the heat flux difference obtained by the temperature difference of the latter thermocouple, and this drift is detected by the copper plate of the mold. The present invention relates to a continuous casting method for steel in which the quality of a slab is stabilized by controlling the fluctuation of the molten metal surface by controlling the movement of the short side of the steel.

従来の技術 鋼の連続鋳造方法は、従来の圧延鋼材の製造工程である
溶解、造塊、灼熱、分解、加熱および圧延の各工程から
均熱および分解の各工程が省略でき、しかも、製品の歩
止りを高めることができるので、従来の圧延鋼材の製造
法に代って広く採用されている。
2. Description of the Related Art The continuous casting method for steel is capable of omitting the steps of soaking and decomposing from the steps of melting, ingot, cauterizing, decomposing, heating and rolling, which are conventional manufacturing processes of rolled steel, It has been widely adopted as an alternative to the conventional rolling steel manufacturing method because it can increase the yield.

鋼の連続鋳造において、溶鋼中には非金属介在物が含ま
れており、この非金属介在物は溶鋼流の注入流によって
鋳片の内部まで持込まれ、その大部分は湯面上に浮上す
るが、残る一部は鋳片内にそのまま捕捉される。
In continuous casting of steel, non-metallic inclusions are contained in molten steel, and these non-metallic inclusions are brought into the inside of the slab by the injection flow of the molten steel flow, and most of them float above the molten metal surface. However, the remaining part is captured as it is in the slab.

この捕捉される非金属介在物の量は鋳込み時の鋳片内の
溶鋼流によって大きく変化することが知られており、浸
漬ノズルから吐出される溶鋼流が広い範囲にわたって大
きく、かつ深くなればなる程増加する傾向がある。
It is known that the amount of non-metallic inclusions trapped varies greatly depending on the molten steel flow in the cast during casting, and the molten steel flow discharged from the immersion nozzle should be large and deep over a wide range. Tends to increase.

そこで、スラブ連鋳機においては浸漬ノズルを鋳型銅板
の中央に配置され、その吐出孔は鋳型銅板の短辺側に向
けられ、吐出孔から吐出される溶鋼流は貯留溶鋼中を流
れる間にその速度を減少し、鋳型銅板の短辺側壁面への
衝突によって反転流となり、この反転流は一方は湯面側
に向う上昇流、他方は下方へ向う下降流となり、この間
に大きく減速される結果、上昇流は湯面上のフラックス
を巻込むことなく、また、下降流は鋳片中に深く到達し
ないようにして、鋳片品質を高める鋳造が行なわれてい
る。
Therefore, in the slab continuous casting machine, the dipping nozzle is arranged in the center of the mold copper plate, its discharge hole is directed to the short side of the mold copper plate, and the molten steel flow discharged from the discharge hole flows while flowing through the stored molten steel. The velocity is reduced and it becomes a reversal flow due to the collision with the short side wall surface of the mold copper plate, one reversal flow is an upward flow toward the molten metal surface side, and the other is a downward flow direction toward the downside. The ascending flow does not involve the flux on the surface of the molten metal, and the descending flow does not reach deeply into the slab, so that casting quality is improved.

しかしながら、浸漬ノズルのスライディングノズルの絞
り開度、鋳込速度等により浸漬ノズルを下降する溶鋼流
動にゆらぎを生じた場合あるいは浸漬ノズル内壁にアル
ミナ等の非金属介在物の付着を生じた場合には、何れか
一方の吐出孔からの溶鋼流動が強くなり、所謂偏流が生
じることになる。この偏流を生じると、鋳型内溶鋼流の
内、強い流動を生じた側は上昇流あるいは下降流が強く
なる結果、フラックス巻込みあるいは鋳片内部深くまで
下降流が達することによる内部品質の悪化を生じる。
However, when fluctuations occur in the molten steel flow that descends the immersion nozzle due to the throttle opening of the sliding nozzle of the immersion nozzle, the casting speed, or when non-metallic inclusions such as alumina adhere to the inner wall of the immersion nozzle. The flow of molten steel from any one of the discharge holes becomes strong, and so-called non-uniform flow occurs. When this uneven flow occurs, as a result of the molten steel flow in the mold, the side that has generated a strong flow has a stronger upflow or downflow, resulting in flux entrainment or deterioration of internal quality due to the downflow reaching deep inside the cast piece. Occurs.

また、鋳造時偏流を発生した原因が浸漬ノズル吐出孔の
詰まりであるときは、その対策がなく、その程度がほと
んど閉塞状態にある場合は浸漬ノズルの交換を実施する
かあるいは鋳造を停止するしかなく、歩止り低下および
生産性の低下となる等の問題があった。
Also, if the cause of drift in casting is clogging of the discharge nozzle discharge hole, there is no countermeasure, and if the degree is almost blocked, replace the immersion nozzle or stop casting. However, there are problems such as a decrease in yield and a decrease in productivity.

従来、前記鋳型内溶鋼偏流の発生を測定する方法とし
て、(1)特開昭59−104512号公報に示される“連続鋳
造時の鋳込流測定方法”(2)特開昭55−149017号公報
に示される“鋳型内溶鋼表面の挙動を測定する方法”、
(3)特開昭62−197255号公報に示される“連続鋳造時
の鋳型内溶鋼偏流の検出方法”が提案されているのみで
ある。
Conventionally, as a method for measuring the occurrence of molten steel drift in the mold, (1) "Method for measuring casting flow during continuous casting" disclosed in JP-A-59-104512 (2) JP-A-55-149017. "Method of measuring behavior of molten steel surface in mold" disclosed in the publication,
(3) Only the "method of detecting molten steel drift in a mold during continuous casting" disclosed in JP-A-62-197255 is proposed.

(1)は鋳型内の溶融金属中に受圧体を挿入して、この
受圧体により溶融金属流体の圧力を検出し、鋳込流の状
態を把握する方法であり、 (2)では、湯面検出センサーを湯面と湯面検出センサ
ー間の距離を一定に保って追従駆動される追従駆動部に
支持し、湯面振動を検出し、フラックス等の巻込みを察
知する方法であり、 (3)は浸漬ノズルからの流動に伴う短辺への衝突によ
り誘起される溶鋼の盛り上り量を検出することにより偏
流を検出する方法である。
(1) is a method of inserting a pressure receiving body into the molten metal in the mold, detecting the pressure of the molten metal fluid by this pressure receiving body, and grasping the state of the pouring flow. The detection sensor is supported by a follow-up drive unit that is driven to follow while maintaining a constant distance between the molten metal surface and the molten metal surface detection sensor, detects vibration of the molten metal surface, and detects entrainment of flux and the like. ) Is a method of detecting a drift by detecting the amount of rising of the molten steel induced by the collision with the short side accompanying the flow from the immersion nozzle.

しかしながら、この(1)の技術では、使用する受圧体
が鋳込中を通じて溶融金属中に浸漬使用できる耐久性を
持つ必要があり、溶鋼は高温度であることから極めて実
施は困難であり、また、浸漬した受圧体には浮上してく
る介在物の付着を生じ、該介在物の剥離等による鋳片内
部の汚染をも生じる問題がある。
However, in the technique (1), it is necessary that the pressure receiving body to be used has durability such that it can be immersed in the molten metal during casting, and it is extremely difficult to carry out because the molten steel has a high temperature. However, there is a problem that floating inclusions are attached to the immersed pressure receiving body, and the inside of the slab is also contaminated due to separation of the inclusions.

また、(2)の技術は、単に鋳型内溶鋼表面の振動を検
出するものであるから、浸漬ノズル内壁へのアルミナ付
着防止として吹込まれる不活性ガスによる影響等の問題
の外、湯面検出センサーの駆動方式が実施上問題とな
り、高温環境下での信頼性の高い手段が必要とされる問
題がある。
Further, since the technique of (2) simply detects the vibration of the molten steel surface in the mold, it detects outside of problems such as the influence of the inert gas blown to prevent the adhesion of alumina to the inner wall of the immersion nozzle and the level of the molten metal. The driving method of the sensor becomes a problem in implementation, and there is a problem that a highly reliable means in a high temperature environment is required.

また、(3)の技術では鋳型の鋳込幅の相異により溶鋼
の盛り上り量が異なるため、その偏流の検知精度が低い
という問題がある。
Further, in the technique (3), since the amount of rising of the molten steel differs depending on the difference in the casting width of the mold, there is a problem in that the accuracy of detecting the drift is low.

以上要するに、上記の如く、従来例では連続鋳造時の鋳
型内の偏流を検出する方法が提案されているが、これら
は何れも実施が困難であるか、または偏流の検出精度の
低いものである。また、従来例の連続鋳造法で得られた
鋳片の表面割れが多く発生し、製品品質が劣り、また、
歩止りおよび生産性が低いものである。このため、連続
鋳造時の鋳型内の偏流を精度良く検出する方法および鋼
の連続鋳造方法にいたっては全く提案されていない。
In short, as described above, in the conventional example, a method of detecting a drift in the mold during continuous casting has been proposed, but all of these are difficult to carry out, or the drift detection accuracy is low. . Further, many surface cracks of the slab obtained by the conventional continuous casting method occur, the product quality is inferior, and
It has low yield and low productivity. For this reason, there has been no proposal at all for a method for accurately detecting a drift in the mold during continuous casting and a method for continuous casting of steel.

発明が解決しようとする課題 本発明はこれらの問題を解決することを目的とする鋼の
連続鋳造法を提案する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention proposes a continuous casting method for steel, which aims to solve these problems.

すなわち、鋳造中溶鋼偏流が生じると、浸漬ノズルを境
とする鋳型銅板両短辺面への溶鋼吐出量が異なる。この
ため、溶鋼吐出量が少ない側の短辺近傍はメニスカス部
の熱供給が不足し、ディッケル(不沈塊)を発生しやす
く、ノロカミや鋳片内パウダー捕捉が起こる場合があ
る。一方、溶鋼吐出量が多い側はメニスカス湯面変動が
大きくなり、鋳片内パウダーの流入が不均一になりやす
く縦割れ、コーナー割れ等の鋳片表面割れおよびオシレ
ーションマークの乱れ湯じわ等の鋳片表面肌荒れを起こ
しやすくなる。また、偏流が大きくなると、溶鋼吐出量
の多い側は短辺凝固遅れあるいは凝固シェルの再溶解を
起こし、ブレークアウトに結びつく。
That is, when the molten steel drifts during casting, the molten steel discharge amount to both short side surfaces of the mold copper plate with the immersion nozzle as a boundary is different. For this reason, heat supply to the meniscus portion is insufficient near the short side on the side where the amount of molten steel discharged is small, and deckles (non-sedimentation lumps) are likely to occur, which may lead to trapping or trapping powder in the slab. On the other hand, on the side where the amount of molten steel discharged is large, the fluctuation of the meniscus surface becomes large, and the inflow of powder in the slab tends to become uneven. The surface of the slab tends to become rough. Also, when the drift becomes large, the side with a large amount of molten steel discharged causes solidification delay on the short side or remelting of the solidified shell, leading to breakout.

これら問題を解決した鋼の連続鋳造方法を提供すること
を目的とする。
It is an object of the present invention to provide a continuous casting method for steel that solves these problems.

課題を解決するための手段ならびにその作用 すなわち、本発明方法は、溶鋼の吐出孔が鋳型の短辺側
に向ってそれぞれ形成された浸漬ノズルを鋳型の中央に
配置すると共に、この浸漬ノズルを境として鋳型を左右
に分け、この左右各部の鋳型銅板の長辺および短辺内に
溶鋼メニスカスの下で対称をなすよう少なくとも2本の
熱電対を設けて左右各部で対称をなす熱電対の間で温度
差を検出する一方、長辺および短辺の深さ方向に少なく
とも2本の熱電対を埋設してこれら熱電対の間で検出さ
れる温度差から求められる熱流束差を求め、温度差ある
いは熱流束差がある一定値以上に大きくなったときに
は、この大きい方に相当する部の方向に向け両短辺を移
動させ、左右各部の温度差あるいは熱流束差を低減させ
ることを特徴とする。
Means for Solving the Problem and Its Action That is, the method of the present invention, the molten steel discharge holes are arranged in the center of the mold with the immersion nozzles respectively formed toward the short side of the mold, and the immersion nozzle is the boundary. The mold is divided into left and right parts, and at least two thermocouples are installed in the long and short sides of the mold copper plate on each of the left and right parts so that they are symmetrical under the molten steel meniscus. While detecting the temperature difference, at least two thermocouples are embedded in the depth direction of the long side and the short side, and the heat flux difference obtained from the temperature difference detected between these thermocouples is obtained to obtain the temperature difference or When the heat flux difference becomes larger than a certain value, both short sides are moved toward the part corresponding to the larger one to reduce the temperature difference or heat flux difference between the left and right parts.

そこで、これらの手段たる構成ならびにその作用につい
て更に具体的に説明すると、次の通りである。
Therefore, the structure and operation of these means will be described more specifically as follows.

まず、中央の浸漬ノズルの先端の吐出孔から鋳型短辺側
に溶鋼を吐出して、連鋳鋳型内溶鋼を注入する際に、偏
流が発生する場合には、溶鋼に片沸現象を生じ、浸漬ノ
ズルを境とする左右各部の鋳型銅板に温度差や銅板の熱
流束差が生じる。
First, by discharging molten steel from the discharge hole at the tip of the central immersion nozzle to the short side of the mold, when pouring the molten steel in the continuous casting mold, if drift occurs, a single boiling phenomenon occurs in the molten steel, A difference in temperature and a difference in heat flux between the copper plates occur in the copper mold plates on the left and right sides of the immersion nozzle.

このような温度差あるいは熱流束差を精度よく測定し、
偏流が生じたときには、鋳型のモールド幅を変動させて
調整すると、偏流ならびに湯面変動を抑制でき、この偏
流が浸漬ノズル吐出孔の詰まりで発生する場合、浸漬ノ
ズルを交換せずに鋳造でき、湯面変動の抑制も簡単な装
置あるいは操作により達成できる。
Accurately measure such temperature difference or heat flux difference,
When uneven flow occurs, by adjusting the mold width of the mold to adjust, it is possible to suppress uneven flow and fluctuation of the molten metal surface.If this uneven flow occurs due to clogging of the discharge nozzle of the immersion nozzle, casting can be performed without replacing the immersion nozzle, Suppression of fluctuations in the molten metal surface can also be achieved with a simple device or operation.

更に、図面によつて本発明について詳しく説明すると、
次の通りである。
Further, the present invention will be described in detail with reference to the drawings.
It is as follows.

なお、第1図は鋳型銅板内の熱電対埋設状況を示す斜視
図であり、第2図は第1図の銅板の展開図であり、第3
図は第2図の矢視A−A線の断面図であり、第4図は本
発明方法を実施する際に用いる装置の一つの実施例の配
置図であり、第5図はこの装置において偏流が発生した
時に本発明方法によって短辺を移動させる際の説明図で
あり、第6図は本発明方法で鋳造した鋳片の表面割れ発
生状況を従来方法と比較して示すグラフである。
1 is a perspective view showing a thermocouple embedded state in the copper plate of the mold, FIG. 2 is a developed view of the copper plate of FIG. 1, and FIG.
The drawing is a cross-sectional view taken along the line AA of FIG. 2, FIG. 4 is a layout drawing of one embodiment of an apparatus used for carrying out the method of the present invention, and FIG. FIG. 6 is an explanatory diagram when the short side is moved by the method of the present invention when uneven flow occurs, and FIG. 6 is a graph showing the occurrence of surface cracks in a cast piece cast by the method of the present invention in comparison with the conventional method.

符号1は鋳型銅板の長辺面、2は鋳型銅板の短辺面、3
は熱電対、4は浸漬ノズル、5はメニスカス(湯面)、
6は吐出流、7は温度変換器、8は熱流束演算器、9は
熱流束差監視装置、10は温度差監視装置、11は警報器
(ボイスアナウンス)、12はモールド幅変更装置、13は
ノズル付着物、×は熱電対埋設位置、aおよびbは鋳型
銅板表面からの距離を示す。
Reference numeral 1 is the long side surface of the mold copper plate, 2 is the short side surface of the mold copper plate, 3
Is a thermocouple, 4 is a dipping nozzle, 5 is a meniscus, and
6 is a discharge flow, 7 is a temperature converter, 8 is a heat flux calculator, 9 is a heat flux difference monitoring device, 10 is a temperature difference monitoring device, 11 is an alarm device (voice announcement), 12 is a mold width changing device, 13 Indicates a nozzle deposit, x indicates a thermocouple embedding position, and a and b indicate the distance from the surface of the copper mold plate.

まず、第1図、第2図および第3図に示すように、鋳型
の中央に浸漬ノズル4が配置され、この浸漬ノズル4の
先端には鋳型短辺2、2側に向いて、溶鋼の吐出孔が形
成されている。鋳型銅板の長辺1と短辺2の銅板から構
成される直方体鋳型において、その中央の浸漬ノズル4
を境として左右に分けて、左右各部において、複数個の
熱電対3を長辺1ならびに短辺2に埋設する。
First, as shown in FIG. 1, FIG. 2 and FIG. 3, an immersion nozzle 4 is arranged in the center of the mold, and the tip of this immersion nozzle 4 faces the mold short sides 2 and 2 and Discharge holes are formed. In a rectangular parallelepiped mold composed of copper plates having long sides 1 and short sides 2 of a copper plate for a mold, a dipping nozzle 4 at the center thereof
A plurality of thermocouples 3 are embedded in the long side 1 and the short side 2 in each of the left and right portions with the boundary as a boundary.

すなわち、長辺1、1ならびに短辺2、2内で、その内
面から深さ5mm〜20mmのところで、しかも、長辺1なら
びに短辺2の上下の縦方向および左右方向にわたって、
浸漬ノズル4をはさんで左右対称に、例えば、第1図な
らびに第2図で×印で示された位置に複数個の熱電対3
を埋設する。
That is, within the long sides 1 and 1 and the short sides 2 and 2, at a depth of 5 mm to 20 mm from the inner surface thereof, and moreover, in the vertical and horizontal directions of the long sides 1 and the short sides 2,
A plurality of thermocouples 3 are arranged symmetrically with respect to the immersion nozzle 4, for example, at the positions indicated by crosses in FIGS. 1 and 2.
To bury.

次に、鋳造中これら熱電対3の温度を連続的にモニタリ
ングすると同時に銅板1、2の表面から深さ方向の2
点、例えば第3図で銅板1、2の表面からammおよびbmm
の位置の熱電対の温度の温度差(ΔT)よって熱流束Q
を求めてモニタリングする。
Then, the temperature of these thermocouples 3 is continuously monitored during casting, and at the same time, the temperature of the copper plates 1 and 2 is reduced by 2
Points, eg amm and bmm from the surface of copper plates 1 and 2 in Fig. 3
Heat flux Q due to the temperature difference (ΔT) of the temperature of the thermocouple at the position
For monitoring.

なお、熱流束Qは次式によって求められる。The heat flux Q is calculated by the following equation.

Q=λΔT/d 但しλは熱伝導度 そこで、このように連続的にモニタリングされる各熱電
対3の温度および熱流束について、浸漬ノズル4を境と
して分けられる左右の各部、つまり、両短辺1、1方向
に分けられる左右の各部で比較し、浸漬ノズル4から左
側と右側との溶鋼吐出量の大小を把握する。この時、銅
板温度が高く熱流束の大きい側が溶鋼吐出量が多いと判
断する。
Q = λΔT / d where λ is the thermal conductivity Therefore, regarding the temperature and heat flux of each thermocouple 3 that is continuously monitored in this way, the left and right parts separated by the immersion nozzle 4 as a boundary, that is, both short sides The left and right parts divided into one and one direction are compared to grasp the magnitude of the molten steel discharge amount from the immersion nozzle 4 on the left side and the right side. At this time, it is judged that the molten steel discharge amount is large on the side where the copper plate temperature is high and the heat flux is large.

なお、温度および熱流束の比較は浸漬ノズル4を境に左
右の各部に対称の位置に配置した熱電対3との間で行な
う。例えば、長辺面1の熱電対3では、例えば第1図で
cとdの熱電対3の間での比較し、対向する左側と右側
の短辺面2の間では各熱電対3温度を合計して比較を行
なう。
It should be noted that the comparison of the temperature and the heat flux is performed with the thermocouple 3 which is symmetrically arranged at each of the left and right parts with the immersion nozzle 4 as a boundary. For example, in the thermocouple 3 of the long side face 1, for example, comparison is made between the thermocouples 3 of c and d in FIG. 1, and the temperature of each thermocouple 3 is measured between the opposing short side faces 2 of the left side and the right side. Total and compare.

この結果、この熱電対3の温度差あるいは熱流束差があ
る限界値(鋼種、鋳造速度によって異なる値)を超えた
時点で鋳型で浸漬ノズル4を境として分けられる左右の
各部において例えばノズル付着物13(第5図参照)の発
生により片側への偏流14(第5図参照)が発生している
事がわかる。
As a result, when the temperature difference or the heat flux difference of the thermocouple 3 exceeds a certain limit value (a value that differs depending on the steel type and the casting speed), for example, the nozzle deposits are separated in the left and right parts separated by the immersion nozzle 4 in the mold. It can be seen that the uneven flow 14 (see FIG. 5) to one side is generated by the generation of 13 (see FIG. 5).

また、第5図に示すように、鋳型の両短辺2、2は例え
ばシリンダ21、21によって長辺1、1の流さ方向に沿っ
て移動自在に構成されている。したがって、第5図に示
すように、偏流14が発生しているときには、両短辺2、
2を矢印の方向に同速度で同方向(偏流14している方
向)に移動させる。このように移動させると、温度差あ
るいは熱流束差が限界値以下になる。
Further, as shown in FIG. 5, both short sides 2 and 2 of the mold are configured to be movable along the flow direction of the long sides 1 and 1 by, for example, cylinders 21 and 21. Therefore, as shown in FIG. 5, when the drift 14 is generated, both short sides 2,
2 is moved in the same direction in the direction of the arrow at the same speed (the direction of drift 14). When moved in this way, the temperature difference or heat flux difference becomes less than or equal to the limit value.

このように短辺2、2を移動させて制御すると、鋳型内
において浸漬ノズル4を境にして左右の両部の溶鋼単位
体積当りの吐出量をほぼ均等になり、短辺の凝固遅れが
防止されるとともに、偏流14によるメニスカス湯面変動
15、不沈塊の発生等が防止することができる。
When the short sides 2 and 2 are moved and controlled in this manner, the discharge amount per unit volume of molten steel on both the left and right sides of the immersion nozzle 4 in the mold becomes substantially equal, and the solidification delay on the short side is prevented. And the meniscus surface fluctuation due to drift 14
15. It is possible to prevent the generation of unprecipitated lumps.

以上のように、本発明方法によって鋳造する場合、第4
図に示す装置によると、自動的にモニタリングしつつ連
続鋳造できる。
As described above, when casting by the method of the present invention,
According to the device shown in the figure, continuous casting can be performed while automatically monitoring.

すなわち、鋳型の各銅板で長辺1ならびに短辺2内に上
記したように熱電対3が配置され、これら熱電対3から
の熱起電力は温度変換器7により温度に変換される。こ
れら温度の対称熱電対間の温度差から熱流束演算器8に
よって熱流束熱流束に変換される。熱流束は熱流束差監
視装置9で所定限界値と対比され監視される。
That is, as described above, the thermocouples 3 are arranged in the long sides 1 and the short sides 2 of each copper plate of the mold, and the thermoelectromotive force from these thermocouples 3 is converted into temperature by the temperature converter 7. The temperature difference between the symmetrical thermocouples of these temperatures is converted into a heat flux heat flux by the heat flux calculator 8. The heat flux is monitored by the heat flux difference monitoring device 9 in comparison with a predetermined limit value.

一方、前記温度変換器7からの温度は対称熱電対間の温
度差として温度差監視装置10に入り、所定の限界値と比
較されて監視される。
On the other hand, the temperature from the temperature converter 7 enters a temperature difference monitoring device 10 as a temperature difference between symmetrical thermocouples, and is compared with a predetermined limit value to be monitored.

この結果、両者のいずれかがそれぞれの限界値をこえて
異常を示すとき警報器11により警報が発せられ、直ちに
モールド幅変更装置12に信号が送られ、モールド幅を調
整する。
As a result, when either of them exceeds the respective limit value and indicates an abnormality, an alarm is issued by the alarm device 11, and a signal is immediately sent to the mold width changing device 12 to adjust the mold width.

従って、このような装置を用いると、鋳造中各々の熱電
対の温度及び熱流束を常時モニタリングすることがで
き、また、この場合、浸漬ノズル4を境にし対称の位置
にある熱電対の温度差および熱流束差を常時監視するこ
とができる。上記の温度差あるいは熱流束差がある限界
値(一定値)以上となった場合は、警報器11から警報に
発すると共に、モールド幅変更装置12にモールド幅変更
の指令が発せられ、偏流が生じている方向へ左右両側の
短辺2、2を同時に同速度で移動させ、前記温度差ある
いは熱流束差があるしきい値以下となった時点でモール
ド幅変更を終了する。
Therefore, by using such a device, the temperature and heat flux of each thermocouple can be constantly monitored during casting, and in this case, the temperature difference between the thermocouples located symmetrically with respect to the immersion nozzle 4 is used. And the heat flux difference can be constantly monitored. When the temperature difference or heat flux difference exceeds a certain limit value (constant value), the alarm device 11 issues an alarm and the mold width changing device 12 is instructed to change the mold width, resulting in a drift. The short sides 2 and 2 on both the left and right sides are simultaneously moved in the same direction at the same speed, and when the temperature difference or the heat flux difference becomes less than a certain threshold value, the mold width change is finished.

以上のような操作を必要に応じて行なうと、常に安定し
た品質の鋳片が得られる。
If the above operations are performed as necessary, a slab of stable quality can always be obtained.

実施例 第4図に示す装置を用い、スラブ連鋳機にて実験を行な
った。鋳型銅板内の熱電対は第1図に示すように長辺面
幅方向200mmピッチ、高さ方向モールド上端より200mmお
よび300mm、深さ方向モールド表面から5mmおよび15mm、
モールド短辺面は中央高さ方向モールド上端より200mm
および300mm、深さ方向5mmおよび15mmの位置に埋設し
た。鋳造中、両短辺面の熱電対の温度差を監視し、モー
ルド内の湯面片沸き(偏流によるもの)が生じた時点で
温度差が約50℃であった。この時点で両短辺を湯面片沸
きしている方向(偏流している方向)へ10mm同時に同速
度で移動させた。その結果、短辺の温度差は約30℃に減
少し、また、目視による湯面片沸きも沈静化した。
Example An experiment was conducted with a slab continuous casting machine using the apparatus shown in FIG. As shown in Fig. 1, the thermocouple in the copper plate of the mold is 200 mm pitch in the width direction of the long side, 200 mm and 300 mm from the top of the mold in the height direction, 5 mm and 15 mm from the mold surface in the depth direction,
The short side of the mold is 200mm from the top of the mold in the center height direction.
And 300 mm, and 5 mm and 15 mm in the depth direction. During casting, the temperature difference between the thermocouples on both short side surfaces was monitored, and the temperature difference was about 50 ° C at the time when boiling on the molten metal surface in the mold (due to uneven flow) occurred. At this point, both short sides were simultaneously moved at the same speed for 10 mm in the direction in which the surface of the molten metal was boiling (the direction in which it drifted). As a result, the temperature difference on the short side was reduced to about 30 ° C, and the visible boiling on the surface of the molten metal was also calmed down.

以上のようにして鋼を連続鋳造し、得られた鋳片を目視
により表面割れ発生状況を調査したところ、第6図に示
すように従来品に対し本発明品は著しく縦割れ、かぎ割
れおよびコーナー割れ等の表面割れ発生が減少している
ことがわかる。
Steel was continuously cast as described above, and the obtained slab was visually inspected for surface cracking. As a result, as shown in FIG. It can be seen that the occurrence of surface cracks such as corner cracks is decreasing.

なお、第6図は従来品の表面割れを1とした場合の本発
明品の表面割れ指数を示した。
Incidentally, FIG. 6 shows the surface crack index of the product of the present invention when the surface crack of the conventional product is 1.

<発明の効果> 以上説明したように、本発明方法は、鋳型内を浸漬ノズ
ルを境として左右に分け、この左右各部で対称的に配置
される熱電対の間で温度差を求めると共に、長辺や短辺
の表面から深さ方向に設けられた熱電対間の温度差から
熱流束差を求め、これら温度差あるいは熱流束差が一定
の限界値をこえたときに対向する両短辺を限界値をこえ
た方向に移動させ、浸漬ノズルを境として分かれる左右
各部の偏流をやわらげ、温度差あるいは熱流束差をある
一定値以下と低減する。
<Effects of the Invention> As described above, according to the method of the present invention, the mold is divided into the left and right with the immersion nozzle as a boundary, and the temperature difference is obtained between the thermocouples symmetrically arranged at each of the left and right parts, and The heat flux difference is calculated from the temperature difference between the thermocouples provided in the depth direction from the surface of the side or the short side, and when the temperature difference or the heat flux difference exceeds a certain limit value, the opposite short sides are By moving in a direction that exceeds the limit value, the uneven flow in each of the left and right parts separated by the immersion nozzle is softened, and the temperature difference or heat flux difference is reduced to a certain value or less.

従って、従来の連続鋳造では精度よく検出できなかった
偏心は速やかに検出でき、この偏流に対する処置が迅速
にとることができる。
Therefore, the eccentricity, which could not be detected with high precision in the conventional continuous casting, can be detected promptly, and the countermeasure against this eccentric flow can be taken promptly.

このため、偏流に起因する湯面変動が抑制でき、鋳片の
縦割れ、コーナーかぎ割れ、コーナー割れ等の鋳片表面
割れが著しく減少でき、高品質のものが効率よく得られ
る。
Therefore, fluctuations in the molten metal surface due to uneven flow can be suppressed, and slab surface cracks such as vertical cracks, corner cracks, and corner cracks in the slab can be significantly reduced, and high quality products can be efficiently obtained.

更に、偏流による短辺凝固遅れあるいは凝固シェルの再
溶解によるブレークアウトも抑制でき、安定した高速鋳
造の実施が可能である。
Further, delay of solidification on the short side due to uneven flow or breakout due to remelting of the solidified shell can be suppressed, and stable high-speed casting can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は鋳型銅板内の熱電対埋設状況を示す斜視図、第
2図は第1図の銅板の展開図、第3図は第2図の矢視A
−A線の断面図、第4図は本発明法を実施する際に用い
る装置の一つの実施例の配置図、第5図は第1図に示す
装置において偏流が発生した時に本発明方法によって短
辺を移動させる際の説明図、第6図は本発明方法で鋳造
した鋳片表面割れ発生状況を従来方法と比較して示すグ
ラフである。 符号1……鋳型銅板の長辺面 2……鋳型銅板の短辺面 3……熱電対 4……浸漬ノズル 5……メニスカス(湯面) 6……吐出流 7……温度変換器 8……熱流束演算器 9……熱流束差監視装置 10……温度差監視装置 11……警報器(ボイスアナウンス) 12……モールド幅変更装置 13……ノズル付着物 ×……熱電対埋設位置 a、b……鋳型銅板表面からの距離
FIG. 1 is a perspective view showing a thermocouple embedded state in a mold copper plate, FIG. 2 is a developed view of the copper plate of FIG. 1, and FIG. 3 is an arrow A of FIG.
FIG. 4 is a cross-sectional view taken along the line A, FIG. 4 is a layout view of one embodiment of an apparatus used for carrying out the method of the present invention, and FIG. 5 is a method of the present invention when a drift occurs in the apparatus shown in FIG. FIG. 6 is an explanatory view when the short side is moved, and FIG. 6 is a graph showing a situation of occurrence of surface cracking of a slab cast by the method of the present invention in comparison with the conventional method. Reference numeral 1 ... Long side of mold copper plate 2 ... Short side of mold copper plate 3 ... Thermocouple 4 ... Immersion nozzle 5 ... Meniscus (metal surface) 6 ... Discharge flow 7 ... Temperature converter 8 ... … Heat flux calculator 9 …… Heat flux difference monitor 10 …… Temperature difference monitor 11 …… Alarm (voice announcement) 12 …… Mold width changer 13 …… Nozzle deposit × …… Thermocouple embedding position a , B …… Distance from the surface of the copper mold plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶鋼の吐出孔が鋳型の短辺側に向ってそれ
ぞれ形成された浸漬ノズルを鋳型の中央に配置すると共
に、この浸漬ノズルを境として鋳型を左右に分け、 この左右各部の鋳型銅板の長辺および短辺内に溶鋼メニ
スカスの下で対称をなすよう少なくとも2本の熱電対を
設けて前記左右各部で対称をなす熱電対の間で温度差を
検出する一方、長辺および短辺の深さ方向に少なくとも
2本の熱電対を埋設してこれら熱電対の間で検出される
温度差から求められる熱流束差を求め、 前記温度差あるいは前記熱流束差がある一定値以上に大
きくなったときには、この大きい方に相当する部の方向
に向け両短辺を移動させ、前記左右各部の温度差あるい
は熱流束差を低減させることを特徴とする鋼の連続鋳造
方法。
1. Immersion nozzles each having a molten steel discharge hole formed toward the short side of the mold are arranged at the center of the mold, and the mold is divided into left and right parts with the immersion nozzle as a boundary. At least two thermocouples are provided in the long side and the short side of the copper plate so as to be symmetrical under the molten steel meniscus, and a temperature difference is detected between the thermocouples that are symmetrical at the left and right parts, while the long side and the short side are detected. By embedding at least two thermocouples in the depth direction of the side, the heat flux difference obtained from the temperature difference detected between these thermocouples is obtained, and the temperature difference or the heat flux difference exceeds a certain value. When it becomes large, both short sides are moved in the direction of the part corresponding to the larger one to reduce the temperature difference or heat flux difference between the left and right parts, and the continuous casting method for steel.
JP63090123A 1988-04-12 1988-04-12 Continuous casting method for steel Expired - Lifetime JPH0673732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63090123A JPH0673732B2 (en) 1988-04-12 1988-04-12 Continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090123A JPH0673732B2 (en) 1988-04-12 1988-04-12 Continuous casting method for steel

Publications (2)

Publication Number Publication Date
JPH01262050A JPH01262050A (en) 1989-10-18
JPH0673732B2 true JPH0673732B2 (en) 1994-09-21

Family

ID=13989733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090123A Expired - Lifetime JPH0673732B2 (en) 1988-04-12 1988-04-12 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPH0673732B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051762A1 (en) * 1999-03-02 2000-09-08 Nkk Corporation Method and device for predication and control of molten steel flow pattern in continuous casting
JP4790284B2 (en) * 2005-02-25 2011-10-12 Jfeスチール株式会社 Steel continuous casting method
WO2007049824A1 (en) * 2005-10-27 2007-05-03 Nippon Steel Corporation Method for manufacture of ultra-low carbon steel slab
CN107000046B (en) * 2014-11-19 2019-09-24 株式会社Posco Meniscus flow control apparatus and the meniscus flow control method for using the device
JP6428418B2 (en) * 2015-03-20 2018-11-28 新日鐵住金株式会社 Drift detection method and drift control method in continuous casting mold, molten metal level fluctuation detection method and molten metal level fluctuation control method, drift current detection device, molten metal level fluctuation detection device, and program
CN110315046B (en) * 2018-03-30 2020-12-18 宝山钢铁股份有限公司 Technological method for preventing narrow edge of continuous casting billet from bulging
CN110315043B (en) * 2018-03-30 2021-04-13 宝山钢铁股份有限公司 Method for avoiding bleed-out caused by extrusion of hot width-adjusting blank shell of continuous casting crystallizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853361A (en) * 1981-09-24 1983-03-29 Nippon Kokan Kk <Nkk> Continuous casting method

Also Published As

Publication number Publication date
JPH01262050A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
KR101047826B1 (en) Control systems, computer program products, apparatus and methods
JPH0673732B2 (en) Continuous casting method for steel
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
KR20180014367A (en) Apparatus for predicting abnormality of continuous casting
KR101981459B1 (en) Flow measuring Apparatus and Method
KR101224961B1 (en) Crack diagnosis device of solidified shell in mold and method thereof
US7398817B2 (en) Apparatus for confining the impurities of a molten metal contained into a continuous casting mould
JPS5929353B2 (en) Breakout prediction method
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH03193250A (en) Method for detecting clogging of tundish submerged nozzle
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
JPS63104758A (en) Control method for molten surface for continuous casting
JPH01143748A (en) Continuous casting method
US20080179036A1 (en) Continuous steel slab caster and methods using same
JPH1177263A (en) Method for controlling fluid of molten steel in mold for continuous casting
JPH0459160A (en) Method for controlling molten metal surface level in mold in continuous casting
JPH0761529B2 (en) Continuous casting method of curved continuous casting machine for slabs
JPS61176456A (en) Predict method of breakout caused by entrainment of inclusion
JPS62252650A (en) Divagating flow control method in mold for molten steel continuous casting
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting
JPH0217263B2 (en)
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
KR100491000B1 (en) Method For Measuring Velocity Of Molten Steel In Continuous Casting Mold