JPS63104758A - Control method for molten surface for continuous casting - Google Patents

Control method for molten surface for continuous casting

Info

Publication number
JPS63104758A
JPS63104758A JP25125686A JP25125686A JPS63104758A JP S63104758 A JPS63104758 A JP S63104758A JP 25125686 A JP25125686 A JP 25125686A JP 25125686 A JP25125686 A JP 25125686A JP S63104758 A JPS63104758 A JP S63104758A
Authority
JP
Japan
Prior art keywords
magnetic field
mold
molten
molten steel
molten surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25125686A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹雄 鈴木
Toru Kitagawa
北川 融
Toshio Tejima
手嶋 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25125686A priority Critical patent/JPS63104758A/en
Publication of JPS63104758A publication Critical patent/JPS63104758A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To maintain the waving height on molten steel surface in a suitable range and to reduce the surface defect in a cast slab by controlling the waving height on the molten steel surface in a mold by making a signal of the waving height from a molten surface level meter the magnetic field control input for a static magnetic field generator. CONSTITUTION:Plural sets of the magnetic field generators 2 are arranged as facing near the molten surface level at both side faces of longitudinal direction of the mold 1, and plural eddy current type molten surface level meters 3 are arranged at the constant interval on the molten surface along the center line of longitudinal direction of the mold 1. The variation of waving height is detected by the molten surface level meter 3 and this signal is inputted to a magnetic field output controller. In accordance with this, to the magnetic field generating by the static magnetic field generator 2, the variation containing the variation caused by factor except the static magnetic field is compensated and it is controlled, so that the waving height generating near the molten surface in the mold is always maintained to constant.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスラブの連続鋳造において鋳盤内湯面の波動を
制御して表面疵を低減する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of reducing surface flaws by controlling wave motion of the molten metal surface in a caster in continuous slab casting.

[従来の技術] 鋳型内湯面の波動は浸漬ノズルからの溶鋼吐出量、吐出
溶鋼の流れ、溶鋼温度および浸漬ノズルへの非金属介在
物の堆積防止のためこのノズルから吹込むアルプンの量
などくよって変動し、一定しない。
[Prior art] Waves on the surface of the mold are affected by factors such as the amount of molten steel discharged from the immersion nozzle, the flow of the molten steel discharged, the temperature of the molten steel, and the amount of Alpn blown into the immersion nozzle to prevent nonmetallic inclusions from accumulating on the nozzle. Therefore, it fluctuates and is not constant.

湯面の波動が過大になると、溶鋼と溶解/ダウ〆−との
界面で溶解ノ4ウダーが溶鋼中へ巻込む、メニスカス(
溶鋼表面がモールドと接する部分)に近い位置でモール
ドパウダーの巻込みが起こると。
When the wave motion of the molten metal surface becomes excessive, a meniscus (melt powder) is formed at the interface between the molten steel and the molten steel and the molten powder is drawn into the molten steel.
When mold powder gets caught in a position close to the part where the molten steel surface contacts the mold.

巻込まれたモールドパウダーは溶鋼中を浮上途中で凝固
シェルに捕捉され1表面疵の原因となる。
The entrapped mold powder is captured by the solidified shell while floating in the molten steel, causing surface flaws.

さらに、浸漬ノズルからの吐出流量が増すと、浸漬ノズ
ル近傍に渦流が発生し、ツヤウダーの吸い込みが起こる
。この結果、吸い込まれた/4ウダーは吐出流とともに
ストランド内深く浸入し凝固シェルにキャッチされ、パ
ウダー性介在物となシ、鋼板の欠陥となる。
Furthermore, when the discharge flow rate from the submerged nozzle increases, a vortex is generated near the submerged nozzle, causing suction of glossy powder. As a result, the sucked /4 powder penetrates deeply into the strand together with the discharge flow and is caught by the solidified shell, becoming powdery inclusions and defects in the steel sheet.

前述の通シ湯爾波動が過大になることは好ましくない。It is undesirable for the above-mentioned toshi tang er wave to become excessive.

しかしながら湯面波動が極端に小さい場合には陽画付近
の溶鋼が更新されないと、湯面溶鋼温度の低下が起こシ
、モールドパウダーの溶融が遅れたシ、湯面で凝固が始
まったシする@この結果、モールドパウダーによる非金
属介在物の溶解能が劣化し、介在物性欠陥の増大につな
がる。
However, if the surface wave motion is extremely small and the molten steel near the positive image is not renewed, the temperature of the molten steel at the surface will drop, the melting of the mold powder will be delayed, and solidification will begin at the surface. As a result, the ability of the mold powder to dissolve nonmetallic inclusions deteriorates, leading to an increase in inclusion defects.

また、湯面で凝固が始まると、すでに引抜かれている凝
固シェルと別個の凝固シェルが形成するためブレークア
ウトの危険性が増大する。
Furthermore, when solidification begins at the surface of the hot water, a solidified shell separate from the already drawn solidified shell is formed, increasing the risk of breakout.

従って、湯面波動は大き過ぎても小さ過ぎても種々の問
題が発生する。
Therefore, various problems occur whether the surface waves are too large or too small.

このように湯面の表面波動は製品の品質に大きく影響す
る。そのためこれを制御する方法として溶鋼流を静磁場
で抑制し、移動磁場で湯面の流れを生起する方法が提案
されている。(例えば特開昭6l−14035) [発明が解決しようとする問題点] しかし、このように湯面波動を制御しても、湯面波動は
前述の通シ鋳造中に変化する溶鋼の吐出量、溶鋼温度な
どの要因に支配され、一定ではない。
In this way, the surface waves of the hot water have a great effect on the quality of the product. Therefore, as a method of controlling this, a method has been proposed in which the flow of molten steel is suppressed by a static magnetic field and the flow of the molten steel is caused by a moving magnetic field. (For example, JP-A No. 61-14035) [Problems to be solved by the invention] However, even if the surface waves are controlled in this way, the surface waves will be affected by the amount of molten steel discharged that changes during through casting as described above. , is controlled by factors such as molten steel temperature and is not constant.

したがってこれら要因の変動を考慮しないかぎシ安定し
て一定高さの湯面波動を実現することは困難である。
Therefore, it is difficult to achieve stable hot water level waves of a constant height without considering fluctuations in these factors.

本発明は過大な表面波動を抑制し、さらに鋳片の表面疵
低減に不可欠な最小限の表面波動を維持する制御方法を
提供するものである。
The present invention provides a control method that suppresses excessive surface waves and further maintains the minimum surface waves that are essential for reducing surface defects in slabs.

[問題を解決するための手段・作用] この発明は前述の問題点を解決するため、鋳凰内溶鋼の
湯面波動を静磁場方式で抑制し、一方で湯面波動の大き
さを定量化できる検出器を湯面上に配設して、前記検出
器からの出力を静磁場発生装置の磁場制御入力として前
記湯面波動の抑制状態を制御することによって、鋳片の
表面疵低減に必要な安定して一定の湯面波動を得るもの
である。
[Means and effects for solving the problem] In order to solve the above-mentioned problems, this invention suppresses the surface waves of the molten steel in the caster using a static magnetic field method, and at the same time quantifies the magnitude of the surface waves. By disposing a detector above the hot metal surface and using the output from the detector as a magnetic field control input of a static magnetic field generator to control the suppression state of the hot water surface wave, it is necessary to reduce surface defects on slabs. This is to obtain a stable and constant surface wave.

第1図はスラブの連続鋳造における鋳型附近の要部の平
面断面図、第2図は前記要部の垂直断面図で、それぞれ
概略説明図として示したものである。鋳型1の中心に垂
直に設置された溶鋼注入用ノズル4が湯面5の下まで浸
漬され、そのノズルから鋳型の長手方向に2方向に分流
した溶鋼R7が吐出される。鋳型内に注入された溶鋼は
鋳型内面で冷却されメニスカスから下に向って凝固シェ
ルdが形成される。
FIG. 1 is a plan sectional view of a main part near a mold in continuous slab casting, and FIG. 2 is a vertical sectional view of the main part, each of which is shown as a schematic explanatory diagram. A molten steel injection nozzle 4 installed vertically at the center of the mold 1 is immersed to below the molten metal surface 5, and molten steel R7 is discharged from the nozzle in two directions in the longitudinal direction of the mold. The molten steel injected into the mold is cooled on the inner surface of the mold, and a solidified shell d is formed downward from the meniscus.

本発明においては鋳型1の長手方向の両側面に湯面レベ
ルの近くに複数組の磁場発生装置2が対向して配置され
、さらに鋳型1の長手方向の中心11に沿りて湯面上に
一定の距離を隔てて複数個(例えば6個)の渦流式湯面
計3が配設されている。
In the present invention, a plurality of sets of magnetic field generators 2 are disposed facing each other on both longitudinal sides of the mold 1 near the hot water surface level, and are further placed above the hot water surface along the longitudinal center 11 of the mold 1. A plurality of (for example, six) vortex level gauges 3 are arranged at a constant distance.

第3図は本発明の制御システムのブロックダイヤグラム
であシ、これによって制御作用を説明する。湯面波動高
さ8は前述の通〕鋳造中の変動要因9によりて影響され
、この中には必ずしも十分制御できない各種要因が含ま
れているので、静磁場だけを変動しないように一定値に
制御しても鋳造中に前記波動高さを一定に維持すること
は困難である。
FIG. 3 is a block diagram of the control system of the present invention, which explains the control operation. The surface wave height 8 is influenced by the fluctuation factors 9 during casting as described above, and these include various factors that cannot be fully controlled. Even if controlled, it is difficult to maintain the wave height constant during casting.

本発明では湯面計ノコイノによって波動高さの変動を検
矧し、この信号を磁場出力制御装置1111C入れ、こ
れに応じて静磁場発生装置2暢生する磁界をして静磁場
以外の要因による変動を含めて補償して、鋳型内湯面附
近に生じる波動高さが常に一定に維持されるように制御
する。これ管具体的に数値を挙げて説明する。
In the present invention, fluctuations in wave height are measured using a hot water level gauge, and this signal is input to the magnetic field output control device 1111C, and the magnetic field generated in the static magnetic field generator 2 is adjusted accordingly to cause fluctuations due to factors other than the static magnetic field. The height of the wave generated near the surface of the mold is controlled so that it is always maintained constant. This will be explained using specific numerical values.

スラブ巾1250■、スラブ巾250閣、引抜速度2.
5ffi/11m、浸漬ノズル角度、下向き15°。
Slab width 1250cm, slab width 250cm, drawing speed 2.
5ffi/11m, immersion nozzle angle, downward 15°.

ノズルからのアルデン流量10 )11/m1mの条件
、およびスラブ巾1100Os+、スラブ巾200m、
引抜速度2 rn/aim 、その他は前記と同じ条件
で実施した。
Alden flow rate from the nozzle is 10)11/m1m, slab width 1100Os+, slab width 200m,
The drawing speed was 2 rn/aim, and the other conditions were the same as above.

短辺側から1005mmの中央部における磁束密度と湯
面波動高さとの関係を第4図に示す。700〜1100
 Gaugeで湯面波動高さが7〜8−になりでいる。
FIG. 4 shows the relationship between the magnetic flux density and the height of the molten metal surface wave at the center 1005 mm from the short side. 700-1100
Gauge surface wave height is 7-8-.

一万、湯面変動量と表面欠陥(へr、ノロカミ)発生率
との関係について調査した結果、第5図に示す通シの結
果が得られた。これKよると湯面波動高さは5〜8mの
範囲が適当である・溶鋼ノズルからの吐出量、ノズルへ
の非金属介在物の堆積、鋳型肉量性状などKよp、湯面
波動高さは湯面上の位置によって変化し、また1時間的
にも変化しているがこれを渦流式湯面計でとらえ、湯面
計からの出力に応じて静磁場発生装置の電流を変化させ
るいわゆるフィードバック制御を行って湯面波動高さを
平均値で7〜8嘱に抑えることによりて表面欠陥発生量
を本発明の制御方法を実施しないときに比べて173以
下に減少させることができる。
As a result of investigating the relationship between the amount of fluctuation in the melt level and the occurrence rate of surface defects, the results shown in Figure 5 were obtained. According to this K, the appropriate surface wave height is in the range of 5 to 8 m.・The amount of discharge from the molten steel nozzle, the accumulation of non-metallic inclusions in the nozzle, the mold thickness properties, etc., and the surface wave height The temperature changes depending on the position on the hot water surface, and also changes over the course of an hour. This is captured by an eddy current water level gauge, and the current of the static magnetic field generator is changed according to the output from the hot water level gauge. By performing so-called feedback control and suppressing the height of the surface wave to an average value of 7 to 8 degrees, the amount of surface defects can be reduced to 173 or less compared to when the control method of the present invention is not implemented.

[発明の効果コ 以上のようK、この発明によれば鋳型内の静磁場が、湯
面計からの波動高さの信号によって所定値になるように
制御されるので、湯面波動高さは種々の要因にも拘らず
安定して適正な範囲に維持され、鋳片の表面疵低減に顕
著な効果がみられる。
[Effects of the Invention] As described above, according to this invention, the static magnetic field in the mold is controlled to a predetermined value by the wave height signal from the hot water level gauge, so the hot water level wave height is Despite various factors, it is stably maintained within an appropriate range, and a remarkable effect is seen in reducing surface defects on slabs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関わるl実施例で静磁場発生装置と溶
鋼湯面計の配置を示した鋳型附近の要部の水平断面の概
略図、第2図は前記要部の水平断面に対応する垂直所属
の概略図、第3図は本発明の制御のブロックダイヤグラ
ム、第4図は前記実施例による磁束密度と湯面波動高さ
との関係を示すグラフ、舘5図は同じく前記実施例によ
る湯面波動高さと表面欠陥発生率を示すグラフである。 1・・・スラブ連続鋳造用鋳型、2・・・静磁場発生装
置、3・・・渦流式湯面計、4・・・溶鋼注入用浸漬ノ
ルズ、5・・・湯面、6・・・凝固シェル、7・・・吐
出溶鋼流。 WAl 図 厖岨珠洟’: (mm)
Figure 1 is a schematic horizontal cross-sectional view of the main part near the mold showing the arrangement of the static magnetic field generator and molten steel level gauge in an embodiment related to the present invention, and Figure 2 corresponds to the horizontal cross-section of the main part. FIG. 3 is a block diagram of the control according to the present invention, FIG. 4 is a graph showing the relationship between magnetic flux density and surface wave height according to the embodiment described above, and FIG. 2 is a graph showing the height of undulating water surface and the incidence of surface defects. DESCRIPTION OF SYMBOLS 1... Mold for continuous slab casting, 2... Static magnetic field generator, 3... Eddy current level gauge, 4... Immersion nozzle for pouring molten steel, 5... Molten metal surface, 6... Solidified shell, 7...Discharged molten steel flow. WAl Zukan': (mm)

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造用鋳型の長辺側面に対向して配設され、鋳型内
溶鋼表面の湯面波動を抑制する1対以上の静磁場発生装
置と1箇以上の鋳型内溶鋼湯面計とを設け、この湯面計
からの波動高さの信号を静磁場発生装置の磁場制御入力
として鋳型内溶鋼表面の波動高さを制御する連続鋳造の
湯面制御方法。
One or more pairs of static magnetic field generators and one or more in-mold molten steel level gauges are disposed opposite to the long sides of a continuous casting mold to suppress surface vibrations on the surface of molten steel in the mold, A continuous casting hot water level control method that controls the wave height on the surface of molten steel in the mold by using the wave height signal from the hot water level gauge as the magnetic field control input of a static magnetic field generator.
JP25125686A 1986-10-22 1986-10-22 Control method for molten surface for continuous casting Pending JPS63104758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25125686A JPS63104758A (en) 1986-10-22 1986-10-22 Control method for molten surface for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25125686A JPS63104758A (en) 1986-10-22 1986-10-22 Control method for molten surface for continuous casting

Publications (1)

Publication Number Publication Date
JPS63104758A true JPS63104758A (en) 1988-05-10

Family

ID=17220064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25125686A Pending JPS63104758A (en) 1986-10-22 1986-10-22 Control method for molten surface for continuous casting

Country Status (1)

Country Link
JP (1) JPS63104758A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006217A1 (en) * 1999-07-16 2001-01-25 Pohang Iron & Steel Co., Ltd. Apparatus and method for measuring the molten metal level in electromagnetic continuous casting
WO2003041893A1 (en) * 2001-09-27 2003-05-22 Abb Ab A device and a method for continuous casting
JP2011079060A (en) * 2002-11-29 2011-04-21 Abb Ab Control system and method of casting machine for metal
JP2016022522A (en) * 2014-07-23 2016-02-08 新日鐵住金株式会社 State estimation method for molten metal surface variation in continuous casting mold
JP2016022523A (en) * 2014-07-23 2016-02-08 新日鐵住金株式会社 State estimation method for molten metal surface variation in continuous casting mold
IT201800006751A1 (en) * 2018-06-28 2019-12-28 APPARATUS AND METHOD OF CONTROL OF CONTINUOUS CASTING

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006217A1 (en) * 1999-07-16 2001-01-25 Pohang Iron & Steel Co., Ltd. Apparatus and method for measuring the molten metal level in electromagnetic continuous casting
US6517604B1 (en) 1999-07-16 2003-02-11 Pohang Iron & Steel Co., Ltd. Apparatus and method for measuring the molten metal level in electromagnetic continuous casting
WO2003041893A1 (en) * 2001-09-27 2003-05-22 Abb Ab A device and a method for continuous casting
US6938674B2 (en) 2001-09-27 2005-09-06 Abb Ab Device and a method for continuous casting
US7305271B2 (en) 2001-09-27 2007-12-04 Abb Ab Device and a method for continuous casting
KR100946612B1 (en) * 2001-09-27 2010-03-09 에이비비 에이비 A device and a method for continuous casting
JP2011079060A (en) * 2002-11-29 2011-04-21 Abb Ab Control system and method of casting machine for metal
JP2014147976A (en) * 2002-11-29 2014-08-21 Abb Ab Control system, device and method for controlling flow of liquid metal in metal casting machine
JP2016022522A (en) * 2014-07-23 2016-02-08 新日鐵住金株式会社 State estimation method for molten metal surface variation in continuous casting mold
JP2016022523A (en) * 2014-07-23 2016-02-08 新日鐵住金株式会社 State estimation method for molten metal surface variation in continuous casting mold
IT201800006751A1 (en) * 2018-06-28 2019-12-28 APPARATUS AND METHOD OF CONTROL OF CONTINUOUS CASTING
WO2020003336A1 (en) * 2018-06-28 2020-01-02 Danieli & C. Officine Meccaniche S.P.A. Apparatus and method to control continuous casting, using electromagnetic brake
CN112292222A (en) * 2018-06-28 2021-01-29 达涅利机械设备股份公司 Apparatus and method for controlling continuous casting using electromagnetic brake
US11597004B2 (en) 2018-06-28 2023-03-07 Danieli & C. Officine Meccaniche S.P.A. Apparatus and method to control continuous casting, using electromagnetic brake

Similar Documents

Publication Publication Date Title
KR101047826B1 (en) Control systems, computer program products, apparatus and methods
JPS63104758A (en) Control method for molten surface for continuous casting
JPH09276994A (en) Mold for continuous casting
JP2611594B2 (en) Method of manufacturing slab for steel slab
US7398817B2 (en) Apparatus for confining the impurities of a molten metal contained into a continuous casting mould
JPH0819842A (en) Method and device for continuous casting
JP3541594B2 (en) Method for controlling molten steel flow in continuous casting mold
CN1330439C (en) Control system, computer program product, device and method
KR101277701B1 (en) Device for controlling level of molten steel in mold and method therefor
JPH09168847A (en) Method for continuously casting steel
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH0484650A (en) Method for restraining drift of molten steel in continuous casting mold
JP3111344B2 (en) Flow control method in nozzle for molten steel ladle
JP3125661B2 (en) Steel continuous casting method
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JP6036144B2 (en) Continuous casting method
JP6806111B2 (en) Method for determining the risk of quality deterioration of continuously cast slabs due to non-metal inclusions
JP2696464B2 (en) Alloy enrichment method for molten steel in continuous casting mold
KR960000326B1 (en) Method for improving surface quality of continuous casting
JP2895603B2 (en) Surface defect judgment method for continuous cast slab
JP2825988B2 (en) Method of preventing longitudinal cracks in continuous casting of thin cast slab
JP3538967B2 (en) Continuous casting method
JP3147824B2 (en) Continuous casting method
JPH10328793A (en) Method for removing inclusion in tundish for continuous casting
JPH10193056A (en) Method for removing inclusion in continuous casting tundish